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Abstract 
This paper presents an analysis that confers new insights 
into injection pulling and locking of oscillators and the re- 
duction of phase noiseunder locked condition. A graphical 
interpretation of Adler’s equation predicts the behavior of 
injection-pulled oscillators in time and frequency domains. 
An identity derived from the phase and envelope equations 
expresses the required oscillator nonlinearity across the 
lock range. 

I. INTRODUCTION 
The phenomenon of injection locking was observed as early 

as the 17th century, when Christian Huygens. confined to bed 
by illness, noticed that the pendulums of two clocks on the 
wall moved in unison if the clocks were hung close to each 
other [l]. Attributing the coupling to mechanical vibrations 
transmitted through the wall, Huygens was able to explain the 
locking between the two cl0cks.l 

Injection pulling and locking can occur in any oscillatory 
system, includinglasers, electrical oscillators, and mechanical 
and biological machines. For example, humans left in isolated 
bunkers reveal a free-running sleep-wake period of about 25 
hours [ 2 ] ,  but, when brought back to nature, they are injection- 
locked to the Earth’s cycle. 

This paper deals with the study of injection pulling and 
locking in oscillators, presenting new insights that prove use- 
ful in circuit and system design. Section II describes examples 
wherein injection pulling becomes critical. Following qualita- 
tive observations in Section m, Section IV provides a detailed 
analysis leading to Adler’s equation [3] and employs a new 
graphical interpretation to predict the time- and frequency- 
domain behavior of pulled oscillators. Sections V and VI 
deal with the effect of oscillator nonlinearity and phase noise, 
respectively. 

11. MOTIVATION 
Analog and mixed-signal systems containing oscillators must 

often deal with the problem of injection pulling. A few exam- 
ples demonstrate the difficulty. 

Consider the broadband transceiver shown in Fig. 1. Here, 
a phase-locked loop including VCOl provides a retiming clock 

‘Huygens is known for inventing the pendulum clock, discovering the 
naNre of the nngi m u d  S a m ,  and numerous other accomplishments. 

........ :. .................................................. 

Retimer 

Fig. 1. Injection pulling in a broadbandmrceiver, 

for thetransmitteddata, which is subsequently amplifiedby the 
driver to deliver large currents or voltages to a low-impedance 
load, e.g., a laser or a 50-C2 line. The receive path incorporates 
VCOz in a clock and data recovery loop. In practice, VCOl is 
phase-locked to a local crystal oscillator, and VCOl to incom- 
ingdata. As aresult, the two oscillatorsmay operate at slightly 
different frequencies, suffering from injection pulling due to 
substrate coupling. Similarly, the high-swing broadband data 
at theoutputof theTXdriver may contain substantial energy in 
the vicinity of the oscillation frequencies of VCOl and VC02, 
thus pulling both. 

Another example of pulling arises in RF transceivers if the 
power amplifier (PA) output spectrum lies close to the fre- 
quency of an oscillator (Fig. 2) .  The large swings produced 

Fig. 2. Injection pulling in an RF transceiver. 

by the PA couple to the oscillator through the substrate or the 
package, leading to considerable pulling. 

While injection pulling typically proves undesirable, injec- 
tion locking can be exploited as a useful design technique. 
For example, an oscillator running at W O  can be locked to a 
signal at 2Wo to petform frequency division [4, 5 ,  61. Simi- 
larly, two identical oscillators operating at W O  can be locked 
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to the differential phases of a signal at 2w0, thereby providing 
quadrature phases [7]. Injection locking must nonetheless deal 
with the problem of frequency mismatches or errors resulting 
from inaccurate device models and process and temperature 
variations. 

111. QUALITATIVE ANALYSIS 
How does an oscillator operating at WO respond if a periodic 

waveform at a frequency near wo is injected into it? We answer 
this question with the aid of some observations. 

Consider the simple, conceptual oscillator shown in Fig. 
3(a), where other parasitics are neglected, the tank operates 

It is interesting to note that, if wjn j  # WO (i.e.. the tank needs 
to contribute phase shift), then V,,t and Ij,j musf sustain a 
finite phase difference. As shown in Fig. 4(a), this is because 
ID I and V,.t are aligned, requiring a phase difference between 

lwo-ol"llt - .. . . . .. . ..... 

l1"I p2g; -1 (C) 

"" Fig. 4. Phase relationship belwecn input and output for different values of 
I w - ~ t n J ~ d I m j ~  

I D1 ID I and Ij,j so that IT can generate V,, after rotating through 

How far can wlnj deviate from WO while maintaining lock? 
To absorb the increasingly greater phase shift produced by the 

' lhI thetank. = - wlnl 

(d) 

Fig. 3. (a) Simple LC oscillator, (b) frequency shift due to additional phase 
shift. (c) open-lwp characteristics. (d) frequency shift by injection. 
at the resonance frequency WO = l / m ,  and the inverting 
buffer follows the tank to create a total phase shift of 360' 
around the feedback loop. What happens if an additional 
phase shift is inserted in the.loop, e.g.. as depicted in Fig. 
3(b)?* The circuit can no longer oscillate at W O  because the 
total phase shift at this freauencv deviates from 360' bv 40. 

tank, the Io1 phasor in Fig. 4(a) must form a larger angle 
with respect to I;,j p ig .  4(b)]. This trend continues until  ID^ 
is perpendicular to Iinj and $0 reaches a maximum. (If ID, 
further rotates counterclockwise, 4o begins to decrease.) We 
then surmise that the circuit begins to lose lock if the phase 
difference between Ii,j and VOut approaches 90°. This can 
also be seen in the time domain: if the zero crossings of I;,j 
coincide with the peaks of ID, ,  no phase synchronizationcan 

~~ 

4owo As our next step, we move winj  from ourside the lock 
w , - w o ! x -  (l) range towards it. The injected signal experiences regenera- 

tion around the oscillator loop and can thus he amplified. For 
an open-loop transfer function H ( s ) ,  Ii,, = I;,j,p coswi,jt 
is shaped by 

2Q ' 

Now suppose we attempt to produce 40 by adding a sinu- 
soidal current to the drain current of M I  [Fig. 3(d)]. If the 
amplitude and frequency of Iinj are chosen properly, the cir- 

exhibiting a phase that cancels the phase shift introduced by 
the tank. We say the oscillator is injection-locked to I;.j. 

current path. 

(2) 
cuit indeed oscillates at win j ,  with the resultant Of 10 I and Ij.j 1 

'Such a phase shift can be produced by adding a cascode device in the 
wherew;,j isassumed tobeclose tow0 [E]. Iftheoscillatorof 
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Fig. 3(d) operates with a unity loop gain, gmlRp = 1,' then: 

In other words, as winj  approaches w0. the injected signal 
circulates around the loop with a larger amplitude, "hogging" 
a greater fraction of the available power. We then expect that 
the component at WO begins to lose energy to that at winj, 
eventually vanishing if the latter is sufficiently close. This 
corresponds to injection locking. 

Let us now compute the injection level and frequency.such 
that the amplified input reaches an amplitude equal to that 
of the free-running oscillator. For the circuit of Fig. 3(d), 
the oscillation amplitude is approximately equal to Io8c ,pRp ,  
where Iorc,p denotes the peak excursion in the transistor drain 
current. Equating V,,, from (3) to Iorc,pRp, we obtain, 

(4) 

As we will see later, once win, enters the range given by 
this equation, the circuit locks to the input. In other words, 
injection-lockingoccurs if the oscillator amplifies the input so 
much as to raise its level to that of the free-running circuit. 

IV. FIRST-ORDER ANALYSIS 
With the foregoing observations in mind, we can now con- 

sider a more general LC oscillator under injection. 

A. Assumptions 

In order to arrive at a mathematically-tractable formulation, 
we make the following assumptions: (1) the injection level is 
much less than the free-running oscillation amplitude; (2) the 
input frequency is close to WO, i.e., 1wi-j - W O I  < WO/&; (3) 
the input is an unmodulated sinusoid. 

For subsequent derivations, we need an expression for the 
phase shift introduced by a tank in the vicinity of resonance. 
The circuit of Fig. 5 exhibits a phase shift of 

Since w$ - w2 = Zwo(w0 - w),  LwlRp  = 1/Q, and $712 - 
tan-' I = tan-'(z-'). we have 

tans - w). ( 6 )  
WO 

If the input current in Fig. 5 contains phase modulation, i.e., 
I,, = Iocos[wt+$(t)], thenthephaseshiftcan beobtained by 
replacing w in Eq. (6)  with the instantaneous input frequency, 
w + d$ /d t :  

2Q d$ tans  = -(WO - w - -). 
WO dt (7) 

Valid for narrowband phase modulation (slowly-varying $), 
this approximation holds well for typical injection phenomena. 

)Even for large-signal oscillation, we can a ~ ~ u m e  the "average" value of 
y, is equal lo Rp'. 

Fig. 5.  Phase shift in a nnk around resonance. 

B. Oscillator under Injection 

The objective of our analysis is to determine the effect of 
injection on the phase and envelope of the oscillator output. 
In this section, we deal with the phase response - the more 
important aspect. 

Consider the feedback oscillatory system shown in Fig. 6, 
where the injection is modeled as an additive input. The 

t ' I  

Fig. 6. Oscillatory syrtemunderinjection. 

output is represented by a phase-modulated signal having a 
carrier frequency of w;,j (rather than WO). In other words, 
the output is assumed to track the input except for a (possibly 
time-varying) phase difference. This representation is justified 
later. 

The output of the adder is equal to: 

Vx = coswinjt + L c , p  cos(wi,jt + 8 )  (8) 
= (K"j#+ v*,,,pcoss)coswi,jt 
- V,,,,psinBsinw;,jt. (9) 

Factoring Knj,p + V.,,,p cos 0 and defining 

we write 

Knj,p + Vo,,,p cos8 
cos $ Vx = COS(Wi"jt +$). (11) 
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Upon traveling through the LC tank, this signal experiences a 
phase shift given by (7): 

ring topologies aremore prone to injection locking(and pulling), 
underscoring the importance of LC oscillators. 

Second, suppose an LC oscillator having a free-running fre- 
quency of WO is redesigned to operate at 2wo by halving both 
the tank inductance and the tank capacitance. In the ideal case, 
the Q of the inductor is doubled at bo, resultingin the same 
lock range as that for oscillation at WO if remains 
constant. This is an alarming result as it predicts that the ~ l -  
ative injectionlock range, IWO - w;,jl/wo, becomes narrower 

K,r 4 L,,, costwi,jt + * 
+ Ian-' [ -winJ - *)] dt }, (13) 

Equating this result to V,,,,, cos(w;,t + 8). we obtain 

$ + [ - winj - -)] d$ = 8, (14) at high frequencies. For example, quadrature oscillators may 
WO dt face more severe trade-offs due to this trend. 

w e  also note from (10) that Third, injection locking to a frequency winj # WO mandates 
overation away from the tank resonance, where the Q begins . -  

VAC,, + V ~ , c , p l i n j , p c o s ~  dB - d* - 
dt VAC,, + 2 V 0 8 , , p K n j , p ~ ~ s ~ +  Yij,, dt 

to degrade. This is in stark contrast to phase-locking, in which 
case theoscillation frequency can be varied (e.g.; by a varactor) 
while maintaining the tank at resonance. 

Fourth, Eq. (19) confirms the trend predicted by Fig. 4, 
indicating that injection locking is accompanied by a static 

- - 

d8 
(15) 0 -&> 

and phase error: 

(21) 
WO - Wi"j 0 = sin-' 

K,j,,sinB (16) W L  

which, as depicted in Fig. 7. reaches f r / 2  at the edges of the 
lock range. As mentioned in Section 11, at 8 = f a / 2 ,  the zero 

tan(8 - *) = V,,,,, + K,j,,cos8 

4 7  ! h . p  si.n@, (17) 
VO,,,, 

It followsfrom (14), (15), and (17) that 

Originally derived by Adler [31 using a somewhat different 
approach, this equation serves as a versatile ind powerful ex- 
pression for the behavior of oscillators under injection. 

C. Injection Locking 2 j  

For the oscillator to lock to the input, the phase difference, 
8, must remain constant with time. Adler's equation therefore 
requires that: 

Since I sin 81 5 1, the condition for lock emerges as: 

which is the same as that expressed by Eq. (4). We denote 
[WO/(ZQ)](K,~,,/V,,~,,) by WL with the understanding that 
the overall lock r q g e  is in fact +WL around WO? 

This study confirms the hypothesis illustrated in Fig. 3: 
injection locking is simply a shift in the oscillation frequency 
in response to the additional phase shift that arises from adding 
an external signal to the feedback signal. 

Several important conclusions can be drawn from these 
equations. First, low-Q oscillators such as resistively-loaded 

4We call wL the "one-sided lack range. 

Fig. 7. Phase shift in an injection-locked oscillator. 

crossings of the input fail to synchronize the oscillator. 
Varying with process and temperature to some extent, 0 

may prove problematic if the phase relationship between the 
input and the output is critical in an application. For example, 
if an injection-locked oscillator serves as a frequency divider 
in a tree multiplexer or demultiplexer environment, then the 
variation of the phase becomes undesirable. 

D. Injection Pulling 

If the injected signal frequency falls out of, but not very 
far from, the lock range, then the oscillator is "pulled." This 
behavior can be studied by solving Adler's equation with the 
assumption IWO - winj l  > W L  = [~0/(2Q)](li~j,~/V~~~,~). 
Notefrom(l8) thatd8ldt reaches amaximumofwo-~; ,~  + 
W L ,  asmallvaluecompared towo. Similarly, higherderivatives 
of 8 are also small. That is. 8 indeed varies slowly. 

Adler's equation can be rewritten as: 

= d t .  (22) 
d8 

WO - winj  - W L  sin 8 
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Noting that sin8 = 2tan(9/2)/[1 + tan2(8/2)]. making a 
change of variable tan(8/2) = U, and carrying out the in- 
tegration, we anive at: 

+ W b  tan-, (23) 8 W L  

2 WO -wi.j WO - Wi"j  2 

where wb = JW. This paper introduces a 
graphical interpretation of this equation that confers a great 
deal of insight into the phenomenon of injection pulling. 

Case I: Quasi-Lock Let us first examine the above result 
for an input frequency just below the lock range, i.e., win, < 
W O  - WL but (w0 - uin,)/w~ m 1. Under this condition, 
W b  is relatively small, and the right hand side of Q. (23)  is 
dominated by the first term (zz 1) so long as tan(Wbt/2) is 
less than one, approaching a large magnitude only for a short 
duration [Fig. 8(a)]. Noting that the cycle repeats with a 
period equal to Wb, we plot 8 as shown in Fig. 8(h). The key 

W b t  tan- = 

tan! y1 J ~ 

+1 .. i... ..., ... ....... 

- 2n -! 
o b  

(a) 

of both W O  - wjnj and W L  (and hence the injection level). (2) 
Since the oscillator is almost injection-locked to the input for 
a large fraction of the period, we expect the spectrum to con- 
tain significant energy at wnj. ( 3 )  Writing the instantaneous 
frequency of the output as d(winjt + 8)/dt = wi,j + d8/dt 
and redrawing Fig. 8(b) with the modulo-2n transitions at 
the end of each period removed Fig.  9(a)], we obtain the 

:... 
+ n..i .............................. 

wl"l+% K'"n_n 
Onnl ..; ..... ......... ........ 

Quasi-Lock Phase Slip 
(4 

Fig. 8. Phase variation of gn injection-pulled oscillator. 
observation here is that 8 is near 90' most of the time - as if 
the oscillator were injection-locked to the input at the edge of 
the lock range. At the end of each period and the beginning of 
the next period, 9 undergoes a rapid 360' change and retums 
to the quai-lock condition [Fig. 8(c)l. 

We now study the spectrum of the pulled oscillator. The 
spectrum has been analytically derived using different tech- 
niques [9, IO]. but additional insight can be gained if the re- 
sults in Fig. 8 are utilized a the starting point. The following 
observations can be made. (1) The periodic variation of 9 at a 
rate of W b  implies that the output beats with the input, exhihit- 
ing sidebands with a spacing of Wb. Note that Wb is a function 

WlnI'ob 0,.1;3wb 

(4 

Rg. 9. Instantaneous Frequency andspecmmofan mleetion-pulledoscillator 
result depicted in Fig. 9(b). The interesting point here is that, 
for wjnj  below the lock range, the instantaneous frequency of 
the oscillator goes only above win,, exhibiting a peak value 
of W O  + W L  as obtained from Q. (18). That is, the output 
spectrum contains mostly sidebands above w+. 

We now invoke a useful observation that the shape of the 
spectrum is given by the probabilitydensity function (PDF) 
of the instantaneous frequency [ I l l .  The PDF is qualitatively 
plotted in Fig. 9(c), revealing that most of the energy is con- 
fined to the range [win, W O  + W L ]  and leading to the actual 
spectrum in Fig. 9(d). The magnitude of the sidebands drops 
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approximately linearly on a logarithmic scale [9, 101. 
Is it possible for one of the sidebands to fall at the natural 

frequency, WO? The following must hold: WO = wi,j + nwa. 
where n is an integer. Thus, (WO - uinj)'/w: = 1 - l/n'. 
Since w i n j  is out of the lock range, the left side of this equation 
exceeds unity and no value of n can place a sideband at WO. 

We therefore say the oscillator is "pulled" from its natural 
frequency. This also justifies the use of wi,j - rather than WO - 
for the carrier frequency of the output. 

Case 11: Fast Beat It is instructive to examine the results 
obtained above as win, deviates farther from the lock range 
while other parameters remain constant. Rewriting Eq. (23) 
as 

, t a n - , ( 2 4 )  wat 
wL + / I -  (WO - Wi"j) 2 

O 
tan- = 

2 wo-wi,j 

we recognize that the vertical offset decreases whereas the 
slope of the second term increases. The right hand side there- 
fore appears as depicted in Fig. 10(a). yielding the behavior 
shown in Fig. 10(b) for 8. Thus, compared to the case illus- 
trated in Fig. 8, (1) the beat frequency increases, leading to a 
wider separation of sidebands; (2) 0 stays relatively constant 
for a shorter part of the period and exhibits a faster variation 
at the beginning and end; (3) the instantaneous frequency is 
around win j  for a shorter duration [Fig. IO(c)], proddcing a 
smaller spectral line at this frequency. In fact, if win j  is suffi- 
ciently far from WO. the energy at wi,j falls below that at the 
next sideband (w;,j + wa) [Fig. 10(d)]. Eventually, the com- 
ponents at win j  and w;,j + h a  exhibit approximately equal 
levels [9, IO]. 

Interestingly,the analyses in [9, IO] onlyreveal thespectrum 
in Fig. 10(d). On the other hand, the approach presented here, 
particularly the use of the PDF of the instantaneous frequency, 
correctly predicts both quasi-lock and fast beat conditions. 
This is evidenced by the measured results shown in Fig. 11 
for a 1-GHz CMOS LC oscillator. 

In quadrature oscillators, pulling may occur if the frequency 
mismatch between the two cores exceeds the injection lock 
range. With insufficient coupling, the oscillators display a 
behavior similar to that depicted in Figs. 8 and 10. Note that 
the resulting sidebands are not due to intermodulation between 
the two oscillator signals. For example, the spacing between 
the sidebands is a function of the coupling factor. 

v. EFFECT OF OSCILLATOR NONLINEARITY 

Our analysis of injection locking and pulling has thus far 
ignored nonlinearities in the oscillator. While this may imply 
that a "linear" oscillatoS can be injection pulled or locked, we 
know from the superposition principle that this cannot happen. 
Specifically, superpositionof an initialcondition (to define the 
oscillation amplitude) and the injected signal does not lead to 

'A linear osciIIalor can be deflned as on in which the loop gain is exactly 
unity for all signal levels. 

0 + O L  .., ..... 0 ........ ............... ~ ............... 
wlnl+- 

dl 

ol"l ... i .......... i .......... i .......... :... - 
t 

output 
Spectrum 

(Log Scale) 

win1 i 0 4 + 2 0 b  i oln,+4wb 0 

wlnl+wb wlnl*3wb 

(d) 

Fig. 10. Pulling behaviorfor injection somewhat far fmm the lock range. 

pulling or locking. To resolve this paradox, we reexamine 
the oscillatory system under injection, seeking its envelope 
behavior. 

In this case, it is simpler to model the oscillator as a one-port 
circuit consisting of a parallel tank and a nonlinear negative 
conductance, Fig. 12, where GI = R;'. For example, MI 
and the inverting buffer in Fig. 3(a) constitute a negative G, 
cell. As we will see, the average value of -G, varies with 
I;.j and winj. For this circuit, 

Now let us assume IInj(1) = I;nj,pcosW;,jt = Re{I;nj,p 
exp(ju;,jt)} and Vosc(i) = V,,,(t)cos(w;,jt + 8) = 
Re{V, , , ( t )exp(jwi , j t+jO)} .  where K,,(t) denotestheen- 
velope of the output. Substituting the exponential terms in 
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@) 

Pig. 11. Measuredpullkg behaviorfor (a) quasi-lock and (b) fast beaf condi- 
tions. 

'In1 4 - 

Fig. 12. One-ponrepresentation of an oscillator under injection. 

(25) and separating the real and imaginary parts, we have, 

1 
LI 

+-V,,, = ~ i , j I i " ~ , ~  sine (26) 

d0 dv.,. d20 
dt dt 2 C l ( W i " j  + -)- + c13vn". 

d0 
dt 

+(GI - G m ) ( ~ i n j  + --)!&e = ~ i , j I i , , j , ~ c 0 ~ 8 .  (27) 

To simplify these equations, we assume: (1) the envelope 
varies slowly and by a small amount: (2) the magnitude of 
the envelope can be approximated as the tank peak current 

produced by the -G, circuit, Io,,,p, multiplied by the tank 
resistance, G-I = Q L t w o ;  (3) w:nj - w i  rz h o ( w o  - w;.,j); 

(4) winj W O  where applicable; (5) the phase and its deriva- 
tives vary slowly. Equations (26) and (27) thus reduce to 

The first is Adler's equation whereas the second expresses the 
behavior for the envelope. 

To develop more insight, let us study these results within the 
lock range, i.e., if d8fdt = dV,,,/dt = 0. Writingsin'B + 
cos2 8 = 1 gives the following useful identity, 

( w a ~ ~ ) Z +  ( G 1 - G m V e , , u , p  &"j,P 

For winj = W O ,  

(31) 
IilLj,p 

V,*,,p 
Iinj,p 

RpIosc,p 

G, = GI-- 

(32) 

that is, thecircuitresponds by weakening the -G, circuit (i.e., 
allowing more saturation) because the injection adds energy 
to the oscillator. On the other hand, for Iwo - winj I = W L ,  

we have G, = GI, recognizing that the -G, circuit must be 
sufficiently strong under this condition. Figure 13 illustrates 
the behavior of G, across the lock range. 

= GI--. 

Fig. 13. Behavior of G, across the lack range 

VI. PHASE NOISE 
The phase noise of oscillators can be substantially reduced 

by injection locking to a low-noise source. From a time- 
domain perspective. the "synchronizing" effect of injection 
manifests itself as correction of the oscillator zero crossings 
in every period, thereby lowering the accumulation of jitter. 
This viewpoint also reveals that (1) the reduction of phase 
noise depends on the injection level, and (2) the reduction 
reaches a maximum for win, = WO [Fig. 14(a)l (where the 
zero crossings of Iinj greatly impact those of IoaJ and a 
minimum for wi,j = WO W L  [Fig. 14(b)] (where the zero 
crossings of Iinj coincide with the zero-slope points on 

We present a new analysis of phase noise under injection 
locking using the the one-port model of Fig. 12 and Eq. 
(32). As depicted in Fig. 15, the noise of the tank and the 
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running noise shaping function of Eq. (3) to Rp Iorc,p/Iinj,p: 
%I= 0 0  

(33) 
L c , p  R - R -  

2 Q b n  - W O /  1 ” J . P  
p -  P I .  . I 

WO 4 ” j , ,  
I W * - W o I = - . - .  29 Io, , , ,  

obtaining 

(34) 
+ 

(a) t Thus, the free-running and locked phase noise profiles meet at 
the edges of the lock range. 

It is interesting to note that the derivations in [121 and [131 
conclude that thenear-carrier phase noise is nearly equal to that 
of the synchronizing input and relatively independent of the 
free-running oscillatorphase noise. By contrast. ourderivation 
reveals a significant contribution by the oscillator itself within 
the lock range and its dependence on the injection level. This 
has been indeed verified by measurements on a 1-GHz CMOS 
LC oscillator. 

As illustrated in Fig. 14(b). if the input frequency deviates 
from W O ,  the resulting phase noise reduction becomes less 
pronounced. This can also be seen from Eq. (30) because 
GI - G, drops to zero as the input frequency approaches 
wo * W L .  General equations for this case and the case of noisy 
input are given in [12, 131. 

O y - O O f O L  

1-c ‘v\/L 
ltnl 

* 
i 

Fig. 14. Effect of injection locking on jitter (a) in l he  middle and (b) at lhe 
edge of Ihe lock mge.  

- II.) +m: + ‘1 

Fig. 15. Model forrtudyingphase noise. REFERENCES 

-G, cell can be represented as a current source I,,. With 
no injection input, the average value of -G, cancels GI,  and 
I,, experiences the noise-shaping function given by Eq. (3). 
Thus, I,, is amplified by an increasingly higher gain as the 
noise frequency approaches WO! 

Now suppose a finite injection with no phase noise is ap- 
plied at the center of the lock range, w j n j  = W O .  Then, 
Eq. (32) predicts that the overall tank admittance rises to 
GI - G, = Ijnj ,p/(R~Iosc.p) .  In other words, the tank 
impedance seen by I, at W O  falls from infinity (with no in- 
jection) to Rplosc,p/I,nj,p under injection locking. As the 
frequency of I ,  deviates from W O ,  RpIose,p/I~nj,p continues 
to dominate the tank impedance a p  to the frequency offset at 
which the phase noise approaches that of the free-running os- 
cillator (Fig. 16). To determine this point. we equate the free- 

/I\ Free-Running 
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