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DDelta-Sigma modulators (DSMs) are a 
class of oversampling analog-to-dig-
ital converters (ADCs) that perform 
“quantization noise shaping,” thus 
achieving a high signal-to-noise ratio 
(SNR). An efficient solution for resolu-
tions above approximately 12 b, DSMs 
are extensively used in analog and RF 
applications. In this article, we study 
the fundamentals of this vast field.

The Delta Modulator
It is helpful to first study the prede-
cessor of DSMs, namely, the delta 
modulator. Shown in Figure 1(a), the 
latter consists of a 1-b quantizer (e.g., 
a single comparator) and an integra-
tor, both placed in a negative-feedback 
loop. The high loop gain ensures that 
V VF in.  and hence the digital output 
is a representation of the analog input. 

Figure 1(b) depicts a simple implemen-
tation where the integrator is approxi-
mated by a low-pass filter.

The principal difficulty with the 
delta modulator is 
that the output digital 
representation in fact 
contains only the de-
rivative of the input, as 
can be seen by noting 
that V D dtF out= #  in 
Figure 1(a). This dif-
ferentiation alters the 
signal spectrum, at-
tenuates the low-fre-
quency content of the 
signal, and amplifies 
high-frequency noise.

Brief History
To avoid the differentiation effect 
in Figure 1(a), Inose et al. [1] clev-
erly moved, in 1962, the integra-
tor from the feedback path to the 
forward path, introducing the “3R 
modulator” shown in Figure 2. Here, 
the high-loop gain forces the run-
ning average of tDou  to follow Vin. Of 
course, tDou  also contains the quan-
tization noise created by the quan-
tizer, but with certain interesting 
and useful alterations.

The 3R modulator structure actu-
ally predates the work by Inose et al. 
In a patent filed in 1961 [2], Brahm 
discloses the system shown in Figure 3, 
where the loop contains an integra-

tor, a multibit quantizer (an ADC), 
and a multibit digital-to-analog con-
verter (DAC).

In the 1970s, the potential of DSMs 
was further explored. 
Candy proposed the 
use of the structure 
for robust analog-to-
digital conversion in 
1974 [3] and, along 
with Ching and Al-
exander, in 1976 
demonstrated a reso-
lution of 13 b with a  
1-b quantizer in the 
loop [4]. These two 
papers pointed out 
that the overall reso-
lution increases as 

the quantizer is clocked faster and its 
output circulates around the loop more 
frequently. An important observation 
made by Candy was that the overall out-
put noise is the “first difference” of the 
quantizer’s additive noise, exhibiting a 
spectrum of the form ( / ),sin T 22

CK~  
where TCK is the quantizer clock period 
[3]. That is, the noise is suppressed at low 
frequencies. Candy also recognized that 
the performance negligibly degrades 
with the imperfections of the analog 
components within the loop.

The first integrated DSM was evi-
dently reported by van de Plassche 
in 1977 [5]. Using a continuous-time 
(CT) integrator, the ADC achieved  
a resolution of about 17 b in bipo
lar technology.

In 1978, Tewksbury and Hallock 
described higher-order DSMs, present-
ing the architecture shown in Figure 4 
(but attributing it to G.R. Ritchie) [6]. 
They also showed that the quantiza-
tion noise spectrum is attenuated 
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Figure 1: (a) A delta modulator and (b) its 
simple implementation.

Figure 2: A DSM.
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according to the shaping function 
( )z1 N1- - , where N denotes the order 
(the number of integrators).

In 1981, an n-type metal-oxide-semi-
conductor (NMOS) implementation using 
a single passive discrete-time integra-
tor was reported [7], and in 1982, a pat-
ent was filed disclosing a loop with two 
active switched-capacitor integrators 
[8]. CMOS realizations followed in 1986 
[9] and 1988 [10].

It is interesting that some authors 
use the term “3R modulator” and others 
use the term “ 3R  modulator” to refer to 
the circuit. One argument in favor of the 
former is that the loop first subtracts and 
then accumulates.

Basic Operation
Suppose we wish to digitize the ana-
log waveform shown in Figure 5. 
A Nyquist-rate ADC would sample 
and quantize Vin  at t1 and t2, with 

/( )f t t1s 2 1= -  slightly greater than 

twice the signal bandwidth. In this 
case, the samples at t1 and t2 exhibit 
little correlation, and so do their quan-
tization errors. On the other hand, if 
we additionally sample and digitize 

Vin  at ta, tb, and tc, we create corre-
lated quantization errors between 
consecutive samples. From another 
perspective, if the signal changes 
slowly enough from t1 to ta, then 
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Figure 3: The DSM proposed by Brahm in 1961.

Figure 5: Oversampling to create correlation between consecutive samples.

Figure 4: A high-order DSM attributed to Ritchie.
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the quantization errors incurred by 
these two samples are almost equal. 
We then surmise that subtracting the 
quantization error of one sample 
from the next can reduce the overall 
quantization noise.

This method of noise suppression 
can also be explained in the frequency 
domain, culminating in 
the concept of noise 
shaping. First, consider 
the negative-feedback 
system shown in Fig-
ure 6(a), where an 
unwanted signal Q(s) 
is injected “near” the 
output but inside the 
loop. The transfer function from Q 
to Y can be chosen to provide a high-
pass behavior. For example, if H(s) 

is an integrator, then ( ) /H s s1# =  
and hence / /( ).Y Q s s 1= +  We say 
the spectrum of Q is “shaped” by 
the feedback loop, an effect also 
observed for the phase noise of oscil-
lators in phase-locked loops.

In the next step, consider the ADC–
DAC cascade depicted in Figure 6(b), 

noting that VDAC is equal 
to the ideal analog in-
put plus the ADC’s 
quantization noise, q(t), 
if the DAC is ideal. It is 
therefore expected that 
placing this cascade 
within the feedback loop 
of Figure 6(a) can reduce 

the overall quantization noise for some 
frequency range [11]. Illustrated in Fig-
ure 6(c), such an arrangement guaran-

tees that Y(s) tracks X(s)—and that Q(s) 
is suppressed—so long as H(s) pro-
vides a high loop gain. For ( ) / ,H s s1=  
this occurs at low frequencies.

The foregoing observations lead  
to the first-order 3R modulator 
shown in Figure 7(a), where the ADC 
is realized as a 1-b quantizer (a sin-
gle comparator) and the DAC as two 
switches producing ±VREF. By virtue 
of its high gain, the comparator 
enforces a virtual ground at node X, 
but due to the discrete-time nature 
of the loop, only the average value 
of VX remains close to zero. This in 
turn means that the average differ-
ence between Vin  and VDAC, and hence 
between Vin  and t,Dou  is nulled. For 
example, if VX crosses from negative 
to positive, the comparator and the 
DAC apply a pulse to the integrator 
so as to return VX toward zero. Fig-
ure 7(b) illustrates how the running 
average of the digital output tracks 
the analog input [10].

The 1-b quantizer in Figure 7(a) 
suffers from enormous quantiza-
tion noise, q (t). One might won-
der, then, whether a more resolute 
quantizer can be used instead. This 
question leads to two different archi-
tectures, namely, loops containing a 
multibit quantizer or a greater num-
ber of integrators. Before describing 
these solutions, we need to derive the 
noise-shaping properties of the first- 
order modulator.
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Figure 6:  (a) A negative-feedback system with noise injected near the output, (b) an ADC/
DAC cascade modeled in terms of additive noise, and (c) the rejection of quantization noise by 
negative feedback.
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Figure 7: (a) A simple first-order DSM with a 1-b quantizer, and (b) input and output waveforms.
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Formulation of Noise Shaping
Let us examine how the quantiza-
tion noise introduced by the quan-
tizer in Figure 8(a) propagates to the 
output. We assume a discrete-time 
integrator and express its output as 
( ) [( ) ] [( ) ],u kT u k T g k T1 1s s s= - + -  

where [( ) ] [( ) ]g k T x k T1 1s s- = - -

[( ) ] .y k T1 s-  The quantizer output 
is given by ( ) ( ) ( ),y kT u kT q kTs s s= +   
and reaches the DAC output un-
changed if the DAC is ideal. Substituting  
for [( ) ]g k T1 s-  and for [( ) ],y k T1 s-   
we obtain

( ) [( ) ] [( ) ]

[( ) ] ( ) .

y kT u k T x k T

y k T q kT

1 1

1
s s s

s s

= - + -

- - +
 

�
(1)

Since [( ) ] [( ) ]u k T y k T q1 1s s- - - =-

[( ) ],k T1 s-  we have

	
( ) [( ) ] ( )

[( ) ] .

y kT x k T q kT

q k T

1

1
s s s

s

= - +

- -
�

(2)

As expected, the output quantiza-
tion noise is equal to the difference 
between the quantization errors 
incurred by two consecutive sam-
ples. Taking the z transform of both 
sides yields

	 ( ) ( ) ( ) ( ) .Y z z X z z Q z11 1= + -- - � (3)

The output thus contains the input 
with no change but just a delay. 
The quantization noise experiences 
a z1 1- -  transfer function. We say 
the system provides a “signal trans-
fer function” (STF) equal to z 1-  and a 
“noise transfer function” (NTF) equal 
to .z1 1- -

To determine the output noise 
spectrum, we replace z in z1 1- -  
with ( )exp j Ts~  and multiply the  
spectrum of q(t), ( ),S fQ  by | exp1 -
( ) | ( ) .sinj T fT2s s

2 2~ r- =  Figure 8(b) 
plots this noise-shaping function, 
revealing that integrated quantiza-
tion noise can be small if the input 
signal bandwidth / .f f 2B s%  The 
quantity ( / )/M f f2s B=  is called the 
“oversampling ratio” (OSR) and sig-
nifies how far above the Nyquist 
rate the system operates. The area 
under the curve in Figure 8(b) from 

zero to fB is proportional to / ,M1 3  
revealing the strong dependence of 
the performance upon the oversam-
pling ratio.

In addition to noise shaping, DSMs 
provide two other advantages over 
Nyquist-rate ADCs. First, for a given 
amount of kT/C noise, the sampling 
capacitors in the former can be smaller 
than those in the latter by a factor of 
M. This can be intuitively explained 
by noting that the extra samples taken 
in Figure 5 are eventually combined 
with those at t1 and t2 (by means of 
a “decimator”), benefiting from kT/C 
noise (and op amp noise) averaging. 
Second, the antialiasing filter in the 
former has a more relaxed selectivity 
than in the latter.

DSMs with Multibit Quantizers
In the spirit of Brahm’s patent (Fig-
ure 3)  and to lower the quantization 
noise, we can digitize the integra-
tor output with more than one bit 
of resolution and feed the result to 
a multibit DAC. Typically realized as 
a flash stage, the quantizer injects 
proportionally less noise as its reso-
lution increases. The performance 
of the system, however, is limited 
by the DAC nonlinearity, as pointed 
out by van de Plassche in 1979 [5]. 
In contrast to the two-level DAC 
in Figure 7(a), a multibit DAC exhib-
its nonlinearity in its input–output 
characteristic if its constituent com-
ponents (resistors, capacitors, or cur-
rent sources) have mismatches. This 
phenomenon can be viewed in Figure 
8(a) as an undesirable term subtract-
ed by the DAC from x and hence indis-
tinguishable from nonlinearity in the 
input path.

The problem of DAC nonlinear-
ity proves serious because DSMs 
typically target high resolutions, at 
which the “raw” device mismatches 
produce considerable distortion. For 
this reason, loops containing multi-
bit DACs employ “dynamic element 
matching” techniques to reduce this 
nonlinearity [5].

Higher-Order DSMs
Another approach to reducing the 
noise of the quantizer is to replace 
it with another 3R modulator [Fig-
ure 9(a)]. Here, the outer loop fur-
ther shapes the quantization noise 
of the inner loop, yielding a shaping 
function of the form ( )z1 1 2- -  for 
the 1-b quantizer’s noise. The area 
under | |z1 1 2- -  from zero to fB is 
now proportional to 1/M5, a marked 
reduction compared to that of the 
first-order loop.

Providing identical outputs, the two 
DACs in Figure 9(a) can be merged, 
resulting in the more compact architec-
ture shown in Figure 9(b). Exemplified  
by the implementation in Figure 9(c)  
[10], this simple, robust topology is  
the most commonly used DSM for 
moderate-performance applications. It 
can be shown that such imperfections 
as capacitor mismatch, op amp offset, 
op amp gain error, and comparator off-
set have much less impact here than 
in, for example, pipelined ADCs. The 
order of the loop can be increased 
further by adding more integrators, 
but instability becomes problematic, 
requiring other measures.

Problem of Tones
As explained earlier, the average 
output of a DSM tracks the input signal.  
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Figure 8: (a) First-order DSM for noise shaping calculations and (b) its noise-shaping function.
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What happens if Vin in Figure 2 is 
constant? Since the loop is periodi-
cally clocked and Vin does not change 
with time, we surmise that the out-
put is also periodic. For example, if 

. ,V V0 001in REF=  then Dout consists of 
one ONE and another 999 ZEROs so as 
to produce such an average. Repeat-
ing with a period of 1000Ts, the output 
therefore exhibits harmonics given 
by mfs/1000, many of which can fall 

within the signal band. These “tones” 
corrupt the digitized signal. The tones 
tend to be smaller in magnitude in 
higher-order loops or at higher overs-
ampling ratios, but one must often 
incorporate “dithering” to break their 
periodicity and convert them to noise.

Continuous-Time DSMs
The evolution of DSMs has made a  
360° turn over the years. The earliest  

designs, those by Brahm and Inose  
et al., for example, employed continu-
ous-time integrators, but, as switched-
capacitor techniques matured in CMOS 
technology, discrete-time integrators 
became more common. In the late 
1990s, it was recognized that con-
tinuous-time integrators offer certain 
advantages, and continuous-time DSMs 
(CTDSMs) rapidly rose as a formidable 
contender. It is important to note, how-
ever, that even CTDSMs are discrete-
time feedback loops, still facing tone 
and stability issues.

Depicted in Figure 10 is a simple 
CTDSM realization of a second-order 
loop, where the current sources act as 
1-b DACs. This arrangement provides 
three advantages over its discrete-time 
counterparts: 1) the sampling is per-
formed by the comparator, obviating 
the need for highly linear front-end 
(bootstrapped) samplers, 2) the DSM 
presents less input capacitance and 
kickback noise, easing the demand on 
the preceding circuit, and 3) the two 
integrators naturally provide antialias-
ing filtering, simplifying the other fil-
ter stages in the signal path.

CTDSMs entail their own draw-
backs. First, the jitter in the com-
parator clock modulates the amount 
of charge delivered by the feed-
back DACs to the integrators. This  
issue has been addressed by vari-
ous techniques, e.g., the use of 
switched-capacitor DACs [12]. Sec-
ond, the integrator op amps must 
have enough bandwidth to avoid 
slewing, a difficult issue because the 
comparator quantization noise trav-
eling through the DACs and arriv-
ing at the integrators presents fast 
changes. This translates to a greater 
power consumption than that of op 
amps in discrete-time DSMs. Third, 
the signal-dependent delay of the 
comparator, each time it approaches 
metastability, also modulates the 
DACs’ outputs, leading to distortion. 
The comparator must therefore be 
designed for a short regeneration 
time so that metastable states occur 
infrequently enough to negligibly af-
fect the signal. Fourth, the thermal 
noise of R1 and I1 in Figure 10 limits 
the performance.

Figure 10: A simple second-order CTDSM.
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Figure 9: (a) A second-order DSM, (b) the simplified architecture, and (c) a discrete-time 
implementation.
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Note on StrongArm Latch
In my article on the StrongArm latch 
[13], I had traced the circuit to a 1992 
paper by Kobayashi et al. The idea was 
in fact filed for a patent by Madden 
and Bowhill on 27 June 1988 in the 
United States and by Kobayashi’s coau-
thor, Nogami, in Japan on 13 July 1988.

Questions for the Reader
1)	Explain in the time domain why 

z1 1- -  represents a high-pass function.
2)	 Explain why the comparator clock 

jitter in a discrete-time SDM such 
as that in Figure 9(c) is not critical.

Answers to Last Issue’s Questions
1)	 The commutated capacitors of Fig-

ure 11 are placed at the antenna 

port of a Global System for Mobile 
Communication (GSM) receiver so 
as to attenuate by 20 dB a 0-dBm 
blocker at 20-MHz offset. What is-
sues does such a circuit face?

Such an approach faces three 
issues. First, from Smith’s equa-
tion, the array must employ a large 
capacitance to provide a small 
bandwidth with a 50-Ω source re-
sistance. Second, the on-resistance 
of the switches must be about 5 Ω, 
demanding a high power in the LO 
drive circuitry. Third, the switches 
experience a large voltage swing in 
the presence of a 0-dBm blocker, ex-
hibiting considerable nonlinearity.

2)	Does V1 in Figure 11 change if the 
circuit contains four capacitive 

branches that are driven by 25%- 
duty-cycle local oscillator phases?

No, it does not. The steady-state 
swing remains the same.
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