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Abstract— A time-variant model provides a framework for
understanding and modeling injection locking in oscillators and
frequency dividers. Application of the model offers new insights
and allows optimization for lock range and power consumption.
Two prototypes with no tuning are realized in 28-nm CMOS
technology. The first operates from 26 to 63 GHz while drawing
1.88 mW. The second achieves a range of 24–73 GHz with a
power consumption of 4.76 mW.

Index Terms— Frequency divider, injection locking, lock range,
oscillator, time variant.

I. INTRODUCTION

INJECTION locking finds application in high-speed sys-
tems where frequencies of interest challenge designers. For

example, clock generation for wireline transmitters operating
at 112 or 224 Gb/s relies on phase-locked loops (PLLs) that
run at 28 or 56 GHz, depending on the serialization approach
[1], [2], [3]. In addition, wireless transceivers targeting 5G
systems require quadrature local-oscillator (LO) phases at
24 to 40 GHz [4], calling for robust frequency dividers that
cover an input range of 48–80 GHz. For this reason, consider-
able efforts have been expended to widen such dividers’ lock
range [5], [6], [7], [13].

The principal drawback of injection locking relates to the
narrow frequency range that it provides and hence the need for
various tuning techniques [9], [10], [11], [12]. Unfortunately,
as shown in this article (Appendix A), a PLL employing
an injection-locked frequency divider (ILFD) may experience
false lock, thereby deceiving the tuning algorithm. For this
reason, it is desirable to develop ILFDs that achieve a wide
untuned lock range.

Prior work on injection locking has significantly advanced
our understanding of this phenomenon [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24], [25]. For
example, Hong and Hajimiri [21] introduced a phasor-based
analysis with two assumptions: 1) the oscillator transconduc-
tance current has a constant amplitude that does not depend on
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the output voltage amplitude and 2) the injection is a current
with a fundamental component independent of the output
voltage amplitude. The switch-based topology of interest to us
requires that we lift these restrictions. To this end, we express
both the negative transconductance and the injector switch
conductance as Fourier series. Another framework proposed
in [22] and [23] employs the impulse sensitivity function
(ISF), arriving at general explanations for injection locking
and pulling. While providing new insights about injection
locking and pulling phenomena, this approach also relies on
two assumptions. First, the charge injected into the oscillator’s
load is much less than the maximum charge swing. This
point does not hold in our circuits as, to achieve a wide
lock range, we make the injection current comparable to the
transconductance current. Second, similar to [21], the injection
current is assumed independent of the output voltage swing.

This article proposes a time-variant model that offers new
insights and leads to the design of broadband ILFDs. Two
divider prototypes fabricated in 28-nm CMOS technology
demonstrate the utility of the model and exhibit lock ranges
from 26 to 63 GHz and from 24 to 73 GHz with no need for
tuning [26].

Section II presents our proposed model for oscillators.
Section III applies the framework to dividers, and Section IV
extends it to quadrature coupling. Sections V and VI deal
with the circuit implementation and experimental results,
respectively.

II. TIME-VARIANT OSCILLATOR MODEL

Consider the basic cross-coupled oscillator shown in
Fig. 1(a), where I1(t) = Iinj cos(ωinjt) represents the injected
signal. We assume that the oscillator is locked. With typical
tank quality factor (Q) values, the differential output voltage
can be approximated as VXY (t) = V0 cos(ωinjt+φ). The circuit
provides a negative transconductance, Gm(t) = d IGm /dVout,
which varies periodically with time and can therefore be
expanded in a Fourier series [27]

Gm(t) = Gm0 + 2
∞∑

n=1

Gm,2n cos
(
2nωinjt + 2nφ

)
. (1)

We now construct three equations with the aid of the equivalent
circuit shown in Fig. 1(b). First, we have d IGm = Gm(t)dVout,
and hence,

IGm (t) =

∫
Gm(t)

dVout

dt
dt

= −V0ωinj

∫
Gm(t) sin

(
ωinjt + φ

)
dt. (2)
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Fig. 1. (a) Cross-coupled oscillator with a current injected to its output and
(b) its time-variant equivalent model.

Since we are interested in the first harmonic of IGm (t) in (2),
we write Gm(t) ≈ Gm0 + 2Gm2 cos(2ωinjt + 2φ), obtaining

IGm (t) ≈ (Gm0 − Gm2)V0 cos
(
ωinjt + φ

)
. (3)

Second, we express the tank current, It , as

It (t) =
V0

Rp
cos

(
ωinjt + φ

)
+

V0

L1ωinj
sin

(
ωinjt + φ

)
− V0C1ωinj sin

(
ωinjt + φ

)
.

(4)

Third, we write the injected current in the form

I1(t) = Iinj cos φ cos
(
ωinjt + φ

)
+ Iinj sin φ sin

(
ωinjt + φ

)
.

(5)

Noting that in Fig. 1(b), It (t) = IGm (t) + I1(t), we have

(Gm0 − Gm2)V0 cos
(
ωinjt + φ

)
+ Iinj cos φ cos

(
ωinjt + φ

)
+ Iinj sin φ sin

(
ωinjt + φ

)
=

V0

L1ωinj
sin

(
ωinjt + φ

)
− V0C1ωinj sin

(
ωinjt + φ

)
+

V0

Rp
cos

(
ωinjt + φ

)
. (6)

This equation must hold at all times, e.g., at t = (2π −

φ)/ωinj and at t = (π/2 − φ)/ωinj, yielding

Gm0 − Gm2 +
Iinj

V0
cos φ =

1
Rp

(7)

Iinj

V0
sin φ = −1ωC1

(
ωinj + ω0

ωinj

)
, (8)

where 1ω = ωinj − ω0 and ω0 = 1/
√

L1C1. Equations
(7) and (8) are the fundamental equations governing the
oscillator under injection. Interestingly, (7) can also be proved
by invoking the law of conservation of energy (Appendix B).

As ωinj changes, the oscillator regulates V0 and φ such
that both (7) and (8) remain satisfied. Note that a change in
V0 translates to one in Gm0 − Gm2 [27]. The results expressed
by (7) and (8) present refinements to those obtained in prior
work. Specifically, if φ = 90◦, then Gm0 − Gm2 = 1/Rp,
whereas Razavi [17] suggested that Gm0 = 1/Rp. Also,
if φ = 0, then Gm0 − Gm2 − 1/Rp = −Iinj/V0, whereas
Razavi [17] prescribed that Gm0 − 1/Rp = −Iinj/V0. The
large-signal transconductance, Gm0 − Gm2, varies across the
lock range. According to (8), as 1ω changes, so does φ,
obligating a change in Gm0 − Gm2 in order for (7) to be
satisfied. The change in the effective transconductance is made
possible by the change in the output amplitude, a result
revealed by our Fourier series expansion of the cross-coupled
pair’s transconductance. This interdependence has also been
observed in [16] and [21], by means of phasor analysis and
in [23] by means of an analysis framework based on the ISF.

It is possible to further simplify (7) and (8). If M1 and
M2 in Fig. 1(a) experience complete switching, then IGm in
Fig. 1(a) is a square-wave toggling between 0 and +ISS in
each branch, which translates to −ISS/2 and +ISS/2 in the
equivalent differential model of Fig. 1(b). The first harmonic
of this current is then given by (2/π)ISS cos(ωinjt + φ) and
must be equal to IGm in (3). It follows that:

Gm0 − Gm2 =
2ISS

πV0
. (9)

Moreover, for an input frequency range as wide as
0.5ω0 to 2ω0, the term (ωinj + ω0)/ωinj in (8) changes
from 1.5 to 3. It is therefore plausible that the substitution
(ωinj + ω0)/ωinj ≈ 2 maintains a reasonable accuracy in our
derivations. We then have

2ISS

πV0
+

Iinj

V0
cos φ =

1
Rp

(10)

Iinj

V0
sin φ = −21ωC1. (11)

Eliminating V0 and replacing C1 with Q/(Rpω0), where Q
denotes the tank quality factor, we obtain

|1ω| =
∣∣ωinj − ω0

∣∣ =
ω0

2Q
Iinj sin φ

2ISS/π + Iinj cos φ
. (12)

For a given Iinj, as ωinj varies, so does φ. The maximum value
of 1ω corresponds to the one-sided input lock range and is
computed by differentiating (12) with respect to φ. It follows
that:

|1ω|max =
ω0

2Q
1√(

2ISS

π Iinj

)2

− 1

(13)

which occurs when φ = cos−1
[−π Iinj/(2ISS)]. This result

agrees with those in [15], [16], [17], [21], and [23], indicating
that at the edge of the lock range, φ ≈ 90◦ if π Iinj ≪ 2ISS.
Of course, our proposed equations (7) and (8) are more general
and applicable even if Iinj is comparable to ISS.
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Fig. 2. (a) Indirect ILFD, (b) direct ILFD, and (c) time-variant equivalent
model of the latter.

III. INJECTION LOCKING IN ILFDS

The behavior of ILFDs has been analyzed extensively
[17], [18], [19], [20], providing fairly accurate results for the
topology shown in Fig. 2(a). We shall call this arrangement
an “indirect” ILFD in this article. For the “direct” ILFD
shown in Fig. 2(b) [28], on the other hand, the prior analyses
are not accurate, as will be quantified in the following. Our
work offers two key results: 1) a time-variant model that
predicts the direct ILFD’s behavior with reasonable accuracy
and 2) insights that allow us to widen the circuit’s lock range
considerably.

A. Divider Analysis

In a manner similar to the oscillator analysis in Section II,
we represent the locked divider by a time-variant circuit
in which the negative transconductance varies periodically.
In this case, the differential output voltage of Fig. 2(b) is
written as V0 cos[(ωinj/2)t + φ]. Moreover, we also model
the injection mechanism by a time-variant structure, namely,
a switch [Fig. 2(c)]. The conductance of the switching branch,
Gsw, toggles between zero and Gsw0 = 1/Rsw at a rate
of ωinj if S1 turns on and off abruptly. As explained in
Section III-B, simulations with sinusoidal inputs confirm that

Fig. 3. Direct ILFD input and output waveforms in the middle of the lock
range (1ω = 0).

this approximation is reasonable. We then have

Gsw(t) = Gsw0

[
0.5 +

2
π

∞∑
n=0

(−1)n sin
[
(2n + 1)ωinjt

]
2n + 1

]
.

(14)

To write a Kirchhoff’s current law (KCL) for the five
branches, we first note that the switch current can be expressed
as I1(t) = −Gsw(t)Vout = −Gsw(t)V0 cos[(ωinj/2)t + φ].
Maintaining only the first two terms of (14), we have

I1(t) = −Gsw0

[
0.5 +

2
π

sin
(
ωinjt

)]
V0 cos

[(
ωinjt

)
/2 + φ

]
.

(15)

If only the fundamental component at ωinj/2 is retained

I1(t) ≈ −Gsw0

[
0.5 −

1
π

sin 2φ

]
V0 cos

[(
ωinjt

)
/2 + φ

]
− Gsw0

1
π

cos 2φ V0 sin
[(

ωinjt
)
/2 + φ

]
. (16)

We then write I1(t) + IGm (t) = It (t), expand the terms, and
evaluate the two sides at t = (2π − φ)/(ωinj/2) and t =

(π/2 − φ)/(ωinj/2). It follows that:

Gm0 − Gm2 − Gsw0

[
0.5 −

1
π

sin(2φ)

]
=

1
Rp

(17)

Gsw0
1
π

cos(2φ) = 21ωC1 (18)

where (ωinj/2 +ω0)/(ωinj/2) is approximated by 2 and 1ω =

ωinj/2−ω0. These equations play a central role in our analysis
and design of the direct ILFD.

Two points of contrast can be drawn between direct
injection-locked oscillators and dividers. First, in the middle of
the lock range, i.e., for 1ω = 0, (18) suggests φ = 45◦ rather
than φ = 0◦. As shown in Fig. 3, this point means that each
output zero crossing occurs halfway between two consecutive
input zero crossings. We can intuitively explain this result by
noting that the net charge flowing through S1 in half of the
input period must be zero (as indicated by the shaded parts of
Vout), as if the switch were absent and the oscillator operated
without injection. Second, at the edge of the lock range, the
oscillator model with weak injection implies that φ ≈ 90◦,
whereas (17) and (18) do not suggest so. In fact, at the edge,
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the value of φ strongly depends on Gsw0. This property proves
useful in our optimization of the divider (Section III-B).

B. Divider Optimization

Equations (17) and (18) reveal the dependence of the lock
range upon the average switch resistance, Gsw0. As such, they
can be exploited to maximize the lock range. To this end,
we eliminate φ from the two equations, obtaining

1ω = ±
Gsw0

2πC1

√
1 −

π2

G2
sw0

(
Gm0 − Gm2 −

1
Rp

− 0.5Gsw0

)2

.

(19)

Differentiating this result with respect to Gsw0 yields

Gsw0,opt =
2π2

π2 − 4

(
Gm0 − Gm2 −

1
Rp

)
(20)

|1ωmax| =
ω0

Q
√

π2 − 4

[
(Gm0 − Gm2)Rp − 1

]
(21)

where Q = RpC1ω0. Note that the two-sided input-referred
lock range is 41ωmax. To our knowledge, this is the first
analysis prescribing an optimum condition for the injector
transistor, a key benefit of the proposed time-variant model.

Let us simplify (20) and (21) to obtain some rules of
thumb. Since the output amplitude reaches a minimum at the
edge of the lock range, we can assume that the differential
negative resistance, −1/(Gm0 − Gm2), is approximately equal
to its small-signal counterpart,−2/gm . Also, gm Rp/2 ≫ 1, and
hence,

Gsw0,opt =
π2

π2 − 4
gm ≈ 1.7gm . (22)

Our first optimization rule of thumb then emerges as

Rsw ≈
1

1.7gm
. (23)

Moreover, the total input-referred lock range is

41ωmax ≈
2ω0

√
π2 − 4

gm Rp

Q

≈
0.83gm Rp

Q
ω0. (24)

Noting that Rp = QL1ω0 and ω2
0 = 1/(L1C1), we write our

second rule of thumb as

41ωmax ≈ 0.83
gm

C1
. (25)

The foregoing derivations have assumed abrupt clock tran-
sitions. For sinusoidal inputs, we can approximate the switch
conductance by a half-sine waveform (Fig. 4), where the
gate of the switch is biased one threshold voltage away
from the source and drain common-mode level, the input
amplitude is Vinj, and the peak switch conductance in Fig. 4 is
given by Gsw,max = µnCox(W/L)swVinj. We then approximate
this behavior by a square-wave toggling between zero and
(2/π)Gsw,max. The right-hand side of (23) is thus multiplied
by 2/π , while (25) remains the same. We observe intuitively
that a greater bias overdrive for the switch raises Gsw0, and a
large input swing leads to a higher value for Gsw,max, which

Fig. 4. Switch conductance waveform and its square-wave approximation.

also increases the equivalent Gsw0 = (2/π)Gsw,max. Hence, the
switch width must be so selected as to satisfy the condition
defined by (23). The maximum lock range prescribed by (25)
remains unchanged.

We should note that our analysis assumes that the injector
switch operates in the triode region. This is justified by
recognizing that, at the edge of the lock range, the divider
voltage swings are well below the amplitude applied to the
switch’s gate, while the dc level at this gate is chosen only
one threshold away from its source and drain dc levels. Since
the switch is biased at the edge of turn on, it is guaranteed
to enter the triode region as soon as the gate departs from the
dc level by about 75 mV. This point stands in contrast to the
analysis in [24] where a square-wave output is assumed with
voltage swings greater than the input amplitude, and hence,
the injector resides in saturation.

If small input swings and large dc overdrives are chosen,
the switch conductance does not fall to zero, thus presenting
a resistance between the divider output nodes [13]. In such a
case, we replace 1/Rp in (20) and (21) with 1/Rp + Gsw,min,
where Gsw,min denotes the minimum switch conductance.
We observe that this additional term reduces both the optimal
Gsw0 and the maximum lock range, an undesirable effect.

These insights are verified by circuit simulations in 28-nm
CMOS technology. We target a center output frequency, ω0,
equal to 2π(24 GHz) and select the devices in Fig. 2(b) as
follows: L = 30 nm, W1 = W2 = 3.2 µm, L1 = 2.4 nH,
C1 = 17 fF, ISS = 1.8 mA, and Rp = 1.8 k�. The
tank Q would be around 10, but, due to the transistors’
output resistance, it drops to 5 for small output swings
(∼150 mVpp, single-ended). The effective transconductance,
Gm0 −Gm2 = 2.32 mS, is close to gm/2 = 2.38 mS. Equation
(20) suggests that Gsw0,opt = 6 mS, which corresponds to a
switch width of 5 µm. Now, we vary this width and measure
the simulated lock range, observing the behavior shown in
Fig. 5. The optimum Gsw0 is around 7.2 mS, but the peak is
broad. Moreover, the maximum lock range obtained in these
simulations (≈34 GHz) agrees well with that predicted by (25)
(≈35 GHz). Also plotted is the behavior as predicted by our
model, except that finite rise and fall times are considered for
the switch conductance. We elaborate on this model refinement
in Appendix C. Some discrepancy is expected here as the
analysis assumes a sinusoidal output voltage, whereas, near the
edge of the lock range, the third harmonic becomes significant.

We should point out that the total tank capacitance varies
from 15 fF for Wsw = 0.5 µm to 21 fF for Wsw = 10 µm,
reducing the lock range by a small amount and causing
discrepancy.
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Fig. 5. Calculated and simulated two-sided input lock range versus switch
conductance (Gsw0).

Fig. 6. Time-variant model for quadrature current injection to a DILFD.

It is worth noting that (24) predicts a wider lock range than
that achievable by the Miller divider, namely [29]

41ωmax =
2gm Rp

π Q
ω0. (26)

The two differ by a factor of 1.3.

IV. QUADRATURE COUPLING

In this section, we exploit our previous results to determine
how adding quadrature injection to the direct ILFD alters its
lock range. By this type of injection, we mean a current at
the output frequency and 90◦ out of phase with respect to the
output voltage. Let us assume that, in Fig. 2(b), such a current
is applied to the output port. From the equivalent time-variant
model shown in Fig. 6, where IQ = Iinj sin[(ωinj/2)t + φ],
we recognize that only (18) changes

Gm0 − Gm2 − Gsw0

[
0.5 −

1
π

sin(2φ)

]
=

1
Rp

(27)

Gsw0
1
π

cos(2φ) +
Iinj

V0
= 21ωC1. (28)

Notably, this reveals that 1ω can be shifted up or down by
the term Iinj/V0. In fact, it is possible to shift 1ω completely
above or below the resonance frequency.

Let us investigate this point further. We begin by selecting
the switch width according to (20) and obtaining an output
lock range from ω0 − 1ωmax to ω0 + 1ωmax. Since 1ω

in (18) must satisfy the extreme values prescribed by (21),
φ varies across this range so as to keep (1/π)Gsw0 cos(2φ) in
(18) between two limits

−
2

√
π2 − 4

[
(Gm0 − Gm2) − 1/Rp

]

≤
1
π

Gsw0 cos(2φ)

≤
2

√
π2 − 4

[
(Gm0 − Gm2) − 1/Rp

]
. (29)

Next, we wish to shift the lock range, 1ω = ωinj/2 −

ω0, completely above ω0, i.e., 1ω in (28) must be pos-
itive, that is, we must ensure that Iinj/V0 is greater
than −(1/π)Gsw0 cos(2φ), which has a maximum given by
(29). It follows that:(

Iinj

V0

)
opt

=
2

√
π2 − 4

[
(Gm0 − Gm2) − 1/Rp

]
. (30)

This condition guarantees that the output lock range extends
from ω0 to ω0 + [2ω0/(Q

√
π2 − 4)][(Gm0 − Gm2)Rp − 1].

Similarly, inverting the injection polarity shifts 1ω completely
below ω0. In summary, the optimum quadrature injection is
expressed as(

Iinj

V0

)
opt

= ±
2

√
π2 − 4

[
(Gm0 − Gm2) − 1/Rp

]
(31)

that is, the lock range can be doubled if quadrature
current-mode injection augments the passive-switch-based
mechanism.

In order to provide a current that bears a 90◦ phase with
respect to Vout, we turn to a quadrature topology. Fig. 7(a)
shows such an arrangement in a simplified form, where
ZT denotes the RLC tank and Gmc denotes the coupling
coefficient. The circuit can be viewed as two direct ILFDs
that are coupled to each other or a quadrature oscillator that
receives direct differential injection through two switches.
Both perspectives prove useful in answering the following
question: how are the + and − signs in (31) satisfied as the
input frequency varies from below 2ω0 to above it? We know
that the quadrature oscillator can operate at either ω > ω0 or
ω < ω0 [30], but with different phase orders [Fig. 7(b)]. Thus,
as the input frequency goes from less than 2ω0 to greater
than 2ω0, VQ automatically rotates by 180◦, thereby providing
the sign reversal required by (31). Fig. 7(c) summarizes the
resulting shifts. In the optimum case given by (31), this figure
suggests an output-referred lock range from ω0 − 21ωmax to
ω0 + 21ωmax. The input-referred range is twice as wide. It is
interesting to note that a sufficiently strong coupling factor in
fact leads to a dead zone in the middle of the lock range.

The dead zone can be explained intuitively as well. In the
absence of an external injection, the coupled oscillators shift
to a frequency equal to ω0 ± Iinj/(2C1V0), where Iinj denotes
the amplitude of the current injected by one core into the
other. Viewing the overall circuit as a free-running oscillating
system, we recognize that locking it to an input frequency
equal to 2ω0 becomes more difficult as Iinj increases. If Iinj is
sufficiently large, the divider’s “natural” frequency is exces-
sively far from ω0, prohibiting lock. We remark that the lock
range can be widened by replacing the LC tank with a higher
order resonator, i.e., by making the tank’s phase response
flatter [6], [8].

We repeat the simulations of Section III-B for the quadrature
topology, but now varying the coupling transconductance,
Gmc, while the width of the injector switches has the optimum
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Fig. 7. (a) time-variant model of a quadrature DILFD, (b) output phasors
above ω0 and below ω0, and (c) output-referred lock range shift with different
quadrature coupling strengths.

Fig. 8. Two-sided input lock range versus normalized coupling transconduc-
tance (normalized Gmc).

value (5 µm) found earlier. Fig. 8 plots the two-sided input
lock ranges with the red plot indicating the lock range for the
optimum value of Gmc suggested by (31), i.e., 1.45 mS.

Three aspects of the characteristics in Fig. 8 merit dis-
cussion. First, as the coupling transistors are made wider to

Fig. 9. (a) Implemented single-core DILFD and (b) layout of differential
inductor.

Fig. 10. Output waveform at the lower edge of the lock range (input
frequency = 33 GHz) along with its spectrum.

increase the normalized Gmc from 0 to 1.6, 2ω0 drops from
2π (48 GHz) to 2π (39.3 GHz), an effect not included in
our derivations. Thus, the progression in Fig. 7(c) is affected
by this decrease of ω0; in essence, the circuit “resists” the
shift of 1ω to higher values. We then observe that the lock
range extends more above 2ω0 than below. This is due to the
(ωinj/2 + ω0)/(ωinj/2) factor that we approximated by 2 in
(28). In reality, this factor is less for ω > ω0 than for ω < ω0.
Consequently, 1ω in (28) must change in reverse proportion.

Second, the lower end of the input lock range in Fig. 8 does
not go below approximately 0.6 × (2ω0). For example, at a
normalized Gmc of 1.0, we have ωin,min = 2π(25 GHz). The
theoretical bound, on the other hand, is, from Fig. 7(c), equal
to 2ω0 − 41ωmax = 2π (42–33 GHz) = 2π (9 GHz). This is
because the sinusoidal output voltage waveform assumption
made above does not hold if the circuit operates at lower
frequencies, at which the third harmonic of the output current
sees a greater tank impedance. In fact, at ω = ω0/

√
3 ≈

0.58ω0, the tank impedances at the first and third harmonics
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Fig. 11. Implemented quadrature DILFD.

are equal. If not attenuated sufficiently, the latter creates
additional zero crossings in the output waveform, causing lock
failure. This phenomenon is similar to that observed in the
Miller divider [29].

Third, even though a greater coupling factor requires wider
transistors and introduces a larger capacitance at the output
nodes, Fig. 8 reveals that it still widens the lock range.

Finally, we have added the lock ranges predicted by the
theory based on (21) and (28) for the same Gmc values next
to the simulated plots. In these plots, we have assumed that
the minimum locking frequency is 0.6 × (2ω0), as discussed
above. The predicted lock range is slightly narrower due to
the limited accuracy of the assumption (ωinj + ω0)/ωinj ≈ 2,
made in (21) and (28).

V. CIRCUIT IMPLEMENTATION

The developments in Sections II–IV lead to two realizations
for direct ILFDs: a single-core differential topology or a
quadrature configuration. The former provides a narrower lock
range but employs one inductor, whereas the latter requires two
and also consumes a higher power. Both have been investigated
here.

The single-core ILFD is shown in Fig. 9(a). The use of both
NMOS and PMOS cross-coupled pairs raises the transcon-
ductance and establishes a common-mode level suited to the
injector switch. The input clock is terminated with an on-chip
50-� resistor and applied to the gate of the injector switch
through an ac coupling capacitor. The gate of the injector
switch is biased at the edge of turn on in order to provide
the half-sine conductance behavior described in Section III.
Moreover, capacitive coupling to the gates of M1 and M2 along
with a current mirror defines the bias properly, making it much
less sensitive to process, temperature, and supply variations.
To our knowledge, this biasing technique has not been used
in prior oscillators or dividers.

Inductor L1 in Fig. 9(a) can be naturally realized by a
standard symmetric geometry, but at the cost of substantial
capacitance as the interwinding components experience a large
voltage difference [31]. We instead opt for the structure shown

in Fig. 9(b), reducing the equivalent capacitance by 42%. This
modification drops the Q at 25 GHz from 14.9 to 11.5.

The simulation of the single-core ILFD with layout para-
sitics yields the waveform and spectrum shown in Fig. 10 at
the lower edge of the lock range. The inductors are modeled by
Ansoft’s HFSS. As mentioned in Section III, the direct ILFD
output departs considerably from a sinusoid near the edge of
the lock range when the design targets a wide 1ω. We note
that the third harmonic is only 6 dB below the fundamental
here.

One phenomenon that merits special consideration is the
fall of the output swing as the output frequency departs from
ω0. It can be explained with the aid of (17) and (18). In fact,
omitting φ from the two yields[

1
Rp

+
Gsw0

2
− (Gm0 − Gm2)

]2

+ 41ω2C2
1 =

G2
sw0

π2 (32)

revealing that, as 1ω2 increases, Gm0 − Gm2 must climb (for
a constant Gsw0). This is possible only if the cross-coupled
pairs experience less compression, i.e., if the voltage swings
become smaller. The outputs can be amplified by self-biased
inverters.

The quadrature ILFD circuit is shown in Fig. 11. Two test
and measurement issues govern the design. First, since it is
difficult to carry a differential clock onto the chip at high
frequencies, the core on the right employs a PMOS switch
so that a single clock phase can drive S1 and S2. Second,
in view of the low power levels available from millimeter-wave
generators (≈0 dBm), the input is capacitively coupled to the
gates of the switches and rides on a dc level of 0.75 V on the
NMOS gate and 0.1 V on the PMOS gate.

For testing and characterization, the ILFDs are followed by
open-drain PMOS common-source stages that directly drive
off-chip instrumentation. For each PMOS device, we have
W/L = 4 µm/30 nm, approximating a typical load that the
dividers would face in a transceiver environment.

VI. EXPERIMENTAL RESULTS

The two divider prototypes have been fabricated in TSMC’s
28-nm CMOS technology. Fig. 12 shows the die photograph
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Fig. 12. Die photograph of the quadrature DILFD.

Fig. 13. Input signal generation setup for frequencies higher than 50 GHz.

of the quadrature ILFD. The single-core counterpart is created
by simply copying this layout and removing one core and its
inductor. The circuits have been tested on a high-speed probe
station.

In order to measure the dividers’ lock range, HP 83650B
generates inputs up to 50 GHz. For higher frequencies, the
setup shown in Fig. 13 is used. Keysights’ E8257D generates
an output in the range of 12.5–18.25 GHz, which is then
quadrupled by E8257DS15.

The prototypes have been characterized with both 1- and
1.1-V supplies with a maximum input power of 0 dBm and
no tuning. Even with a 1.1-V supply, none of the transistors
experiences VGS, VDS, or VGD greater than 855 mV, avoiding
stress as the default supply voltage for this technology is 1 V.
Fig. 14 plots their input sensitivity as a function of the input
frequency. The single-core ILFD operates from 26 to 63 GHz
and the quadrature counterpart operates from 24 to 73 GHz.
The power consumptions are 1.88 and 4.76 mW (excluding
that of the output buffers). For parts of the input range,
e.g., between 42 and 56 GHz in Fig. 14(a), the necessary input
power is below −10 dBm. Input power levels below −10 dBm
are not investigated in view of practicality. The rise in the
required input power between 40 and 52 GHz in Fig. 14(b)
is to be expected. We show that, in a quadrature ILFD, the
sensitivity is best at two input frequencies above and below
2ω0, thus degrading between the two. We first rewrite (28) as

Gsw0
1
π

cos(2φ) = 21ωC1 −
Iinj

V0
(33)

and seek the “best” case as when Gsw0 can be at its low-
est. Bearing in mind that Iinj/V0 can be either positive

Fig. 14. Measured input sensitivity of (a) single-core DILFD and (b) quadra-
ture DILFD.

or negative in a quadrature design (Section IV), we rec-
ognize that the right-hand side of (33) approaches zero
at 1ω ≈ (+Iinj/V0)/(2C1) and 1ω ≈ (−Iinj/V0)/(2C1).
These two offsets are located on the two sides of
2ω0 and enable operation with a minimal Gsw0. In between,
a higher Gsw0 and, hence, a higher input power is
necessary.

Fig. 15 shows the measured output spectra of the dividers at
the lower and upper edges of their lock range, demonstrating
proper operation.

Fig. 16 plots the measured phase noise profiles at the
60-GHz input frequency for offset frequencies from 100 Hz to
10 MHz. It can be seen that the output phase noise is limited
by that of the signal generator. According to simulations,
the intrinsic phase noise of the ILFDs is about −131.5 to
−146.5 dBc/Hz at 10 MHz depending on the input frequency
(lower in the middle of the lock range and higher at the
edges). The HP 83650B signal generator exhibits substantial
phase noise fluctuations at low offset frequencies. Since we
are unable to monitor the dividers’ input and output phase
noise profiles simultaneously, the difference between the two
departs from the nominal value of 6 dB at some offsets.

Table I summarizes the measured performance of the pro-
posed dividers and compares it to that of the prior art. Both
exhibit wide lock ranges, namely, 83% and 101%. Moreover,
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Fig. 15. Output spectrum of (a) single-core DILFD at the lower edge of
the lock range, (b) single-core DILFD at the upper edge of the lock range,
(c) quadrature DILFD at the lower edge of the lock range, and (d) quadrature
DILFD at the upper edge of the lock range.

the single-core circuit provides a 9-dB advantage in the figure
of merit (FOM).

VII. CONCLUSION

This article introduces a general time-variant model for
injection locking in oscillators and frequency dividers that
yields new insights and optimization criteria. The model is

Fig. 16. Phase noise profile at 60-GHz input frequency for (a) single-core
DILFD and (b) quadrature DILFD.

applied to both single-core and quadrature topologies, offering
methods of maximizing the lock range without sacrificing the
quality factor. The proposed concepts lead to wide lock ranges
and highest FOM reported to date.

APPENDIX A

An oscillator or divider under injection at a frequency of
fin but operating outside its lock range produces a spectrum of
discrete frequencies the strongest of which is not harmonically
related to the input [15], [17] [Fig. 17(a)]. Upon traveling
through a ÷N circuit, the weaker spurs are suppressed by
a factor of N . The ILFD and ÷N stages thus behave as if
they received an input frequency equal to 2 f1 even though the
actual value is fin. This can cause a false lock in a PLL.

We study the locking behavior of a PLL exploiting a direct
ILFD with a narrow lock range. As shown in Fig. 17(b),
the PLL comprises a behavioral voltage-controlled oscillator
(VCO), an injection-locked divide-by-2 stage, a latch-based
divide-by-16 stage, and a sampling phase detector. The ILFD
has an input lock range of 52–54.5 GHz. In this experiment,
the reference frequency is swept to obtain the desired VCO
output frequency. As shown in Fig. 17(c), when the target
VCO frequency is 52.8 GHz ( fref = 1.65 GHz), the PLL
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TABLE I
DIVIDERS’ PERFORMANCE SUMMARY AND COMPARISON WITH PRIOR ART

Fig. 17. (a) Output spectrum of an injection-pulled frequency divider before and after a ÷N stage, (b) PLL with a direct ILFD divider, and (c) its lock
behavior.

properly locks. If the target frequency is 51.2 GHz ( fref =

1.6 GHz), the PLL fails to lock, as expected. However, when
the target frequency is 52.16 GHz ( fref = 1.63 GHz), the
VCO frequency reaches 51.53 GHz, representing a false lock
condition. In fact, under this condition, fin/2 in Fig. 17(a) is
equal to 51.53 GHz/2, but f1 = 52.16 GHz/2. After passing
through the ÷16 circuit, only f1/16 = 1.63 GHz survives and
drives the phase detector.

APPENDIX B

In this appendix, we use the law of conservation of energy
to obtain the first key equation governing injection locking.
In the time-variant model of Fig. 1(b), the power injected into

the tank by Iinj and IGm must be equal to that consumed by
the tank. The first two power quantities are expressed as

Pinj =
1
T

∫
+T/2

−T/2
IinjV0 cos(ωt + φ) cos(ωt)dt

=
V0 Iinj cos(φ)

2
(34)

and

PGm =
1
T

∫
+T/2

−T/2
(Gm0 − Gm2)V 2

0 cos2(ωt + φ)dt

=
(Gm0 − Gm2)V 2

0

2
. (35)
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Equating Pinj + PGm to V 2
0 /(2Rp) yields

Gm0 − Gm2 +
Iinj

V0
cos(φ) =

1
Rp

. (36)

APPENDIX C

In this appendix, we study a more general form of injection
in direct ILFDs and compare the analytical and simulation
results. Let us assume that the switch conductance toggles
between zero and its maximum with finite rise and fall times,
tr , as shown in Fig. 18, rather than with abrupt transitions.
From Section III, we know that only the dc and the first
harmonic of the conductance play the main role in our
derivations. It can be shown that the sum of these two is given
by Gsw0[0.5 × (1 − 2tr/Tinj) + (2/π)sinc(2tr/Tinj) sin(ωinjt)],
where sinc(2tr/Tinj) = sin[π(2tr/Tinj)]/[π(2tr/Tinj)].

We rewrite the KCL equations of Section III and revise
(17) and (18) to, respectively

Gm0−Gm2−Gsw0

[
0.5 ×

(
1 −

2tr
Tinj

)
−

1
π

sinc
(

2tr
Tinj

)
sin(2φ)

]
=

1
Rp

(37)

Gsw0
1
π

sinc
(

2tr
Tinj

)
cos(2φ) = 21ωC1. (38)

Eliminating φ yields

1ω = ±
Gsw0

2πC1
×

√
sinc2

(
2tr
Tinj

)
− α2 π2

G2
sw0

(39)

where α = Gm0 − Gm2 − 1/Rp − 0.5 × (1 − 2tr/Tinj)Gsw0.
This in turn provides the optimal Gsw0 and 1ωmax

Gsw0,opt =

0.5π2
(

1 −
2tr
Tinj

)
0.52π2

(
1 −

2tr
Tinj

)2
− sinc2

(
2tr
Tinj

)
×

(
Gm0 − Gm2 −

1
Rp

)
(40)

|1ωmax| =

ω0sinc
(

2tr
Tinj

)
2Q

√
π2

[
0.5 ×

(
1 −

2tr
Tinj

)]2
− sinc2

(
2tr
Tinj

)
×

[
(Gm0 − Gm2)Rp − 1

]
. (41)

In order to plot the lock range versus Gsw0, we need to
optimize 1ω in (39) with respect to Gm0 −Gm2 for each value
of Gsw0. In other words, for each Gsw0, the direct ILFD sets
its output amplitude such that the resulting Gm0 − Gm2 maxi-
mizes 1ω. Since Gm0 − Gm2 cannot exceed the small-signal
differential transconductance, gm/2, the two-sided input lock
range is conditionally expressed as

4|1ωmax| =

2sinc
(

2tr
Tinj

)
πC1

Gsw0 (42)

if Gsw0 ≤ (gm − 2/Rp)/(1 − 2tr/Tinj) or as

4|1ωmax| =
2Gsw0

πC1

√
sinc2

(
2tr
Tinj

)
− β2 π2

G2
sw0

(43)

Fig. 18. Switch conductance waveform with finite rise and fall times, tr .

if Gsw0 > (gm − 2/Rp)/(1 − 2tr/Tinj). Here, β = gm/2 −

1/Rp − 0.5(1 − 2tr/Tinj)Gsw0.
Since simulations (and measurements) are performed with

a sinusoidal input, we estimate the rise and fall times of
about 0.05Tinj for the switch conductance, obtaining the results
shown in Fig. 5.
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