
A Formal Model of a Multi-Robot

Control and Communication Task

Eric Klavins
1

Computer Science Department
California Institute of Technology, Pasadena, CA

klavins@caltech.edu

Abstract

We introduce the Computation and Control Language
(CCL), a guarded-command language for expressing
systems wherein control and computation are inter-
twined. A CCL program consists of a set of guarded
commands that may update continuous or discrete vari-
ables and that can be reasoned about using a simple
temporal logic. In this paper, a detailed case study of
a robot capture-the-flag system, called the “RoboFlag
Drill”, is encoded in CCL and certain properties of it
are verified. The example consists of a self-stabilizing
communications protocol whose behavior depends on
the actions taken by the robots in their environment.
The paper concludes with a brief overview of our initial
implementation of the formal semantics of CCL as a
practical programming language.

1 Introduction

We are interested in designing large scale decentralized
systems with multiple computational and controlled el-
ements such as multi-vehicle systems or automated fac-
tories. Generally, to understand and control these sys-
tems, a combination of control, computation and com-
munication theory is needed at various different levels.
In any non-trivial system, these seemingly separate as-
pects of system design become intermingled. The re-
sult is that, for example, the verification of the control
part of the design depends heavily on the design of the
communications part, requiring, ideally, that these two
aspects of the design inhabit the same formalism.

For instance, the problem we consider in this paper
(Section 3.2) involves a group of robots that must de-
fend their flag against a group of opponent robots in
a capture-the-flag like game. Thus, each robot must
perform a low level motion control task (tracking an
opponent) and simultaneously take part in a high level
communications protocol with the other robots (to de-
cide who should track what opponent). The protocol

1This research is supported in part by AFOSR grant number

F49620-01-1-0361.

we propose is self-stabilizing [6] under certain circum-
stances (explored in Section 6) that depend on the mo-
tions of the robots. The stable configuration of the
protocol corresponds to a reasonable agreement among
the defending robots about who will track whom and
is important for the entire control scheme to function
correctly.

We specify this system in a formalism called the Com-

putation and Control Language (CCL). CCL is inspired
by the UNITY formalism for parallel programming [3]
but is adapted to dynamical systems and control tasks.
Simply put, a CCL program consists of a set of guarded
commands that are executed in some order at each step
in the evolution of the system. One feature of CCL is
that the dynamics of the environment are modeled by a
subset of the commands and not by separate differential
equations. The result is that the distinction between
the internal (logical) and external (physical) states of
the system under consideration is lost, allowing a single
set of tools to be used for modeling, specification and
analysis.

The main contributions of the paper are the introduc-
tion of CCL (Section 3) including a formal description
of its semantics (Section 4) and the logic used to rea-
son about CCL programs (Section 5). The static oper-
ator (Definition 5.4) that deals with arbitrary schedules
is, in particular, new. We also present a detailed case
study of the use of CCL with a simplified version of
the above-mentioned capture-the-flag system which we
both specify (Section 3.2) and verify (Section 6). Ul-
timately we intend for CCL to be used to not only for
modeling and analysis of systems but also as a pro-
gramming tool in its own right. Thus we also describe
a runtime CCL interpreter (Section 7). We begin with
a review of related work.

2 Related Work

The UNITY formalism was introduced in [3] and is used
to specify and reason about concurrent reactive systems
[13] and has been extended to real time systems [2].
Although UNITY was designed as a reasoning tool, an

implementation of it has been built [17]. To the best of
the author’s knowledge, the static operator (Definition
5.4) is defined in this paper for the first time.

There are several efforts underway that address the gulf
between modeling, control and computation. Giotto [7]
is a language for programming the interfaces between
control-software modules. It makes explicit the timing,
mode switching and communication aspects of an im-
plementation that may have been hidden (or assumed)
at the initial modeling and controller design stage. In
CCL, one generally models and programs these aspects
from the outset. Furthermore, CCL programs are re-
quired to be (in the sense defined in Section 5) robust
to low level scheduling. Charon [1] is modeling lan-
guage that in essence formalizes state-charts, a tool
provided by MATLAB. It provides a means of repre-
senting switching, parallel composition and refinement
of continuous/discrete modes. In contrast, CCL adopts
a logical/symbolic based description of both the system
dynamics and the control code. Furthermore, one can
specify only discrete-time dynamical systems in CCL
and must approximate continuous dynamics with dis-
cretizations of continuous systems. This is similar to,
for example, the tick-rules in real-time Maude [14].

CCL originated with the practical desire to specify and
program distributed robotic and control systems, such
as the Caltech Multi-vehicle Wireless Testbed [4] or au-
tomated factories [8, 9], in a principled yet natural man-
ner. It was loosely inspired by RHexLib, a C++ library
[11] for programming the RHex Robot [16]. CCL has
since grown into a convenient tool for specifying multi-
agent control systems. CCL was first described in [10]
where it is used to specify multi-robot communication
algorithms whose communication complexities are sub-
sequently analyzed.

3 CCL

In this section we describe the Computation and Con-
trol Language (CCL) informally and present a detailed
example to illustrate some aspects of the language.

3.1 Anatomy of a CCL Specification

A CCL specification Π consists of two parts I and C.
I is a predicate on states called the initial condition. C
is a set of guarded commands, or clauses, of the form
g : r where g is a predicate on states and r is a relation

on states. Specifications 1, 2 and 3, described in the
next subsection, are examples. Note that in the rules,
primed variables (such as x′

i) refer to the new state and
unprimed variables to the old state. Specifications are
composed in a straightforward manner (as in equations
(4) and (6) defined in the next subsection): If Π1 =
(I1, C1) and Π2 = (I2, C2) then Π1 ◦Π2 = (I1 ∩ I2, C1 ∪
C2).

Specifications in CCL are thus similar in appearance to
UNITY specifications [3] except that we allow rules to
be relations instead of assignments. However, due to
our desire to model real-time, controlled systems, the
semantics of CCL are somewhat different. To explain
our choice of semantics, we first describe the semantics
of UNITY.

UNITY Semantics: At state s, nondeterministically
choose a clause g : r from C. If g(s) is true, then choose
s′ such that r(s, s′) is true. Repeat with the new state
s′. Every clause must be chosen infinitely often in any
execution.

The benefit of this interpretation is that arbitrary in-
terleavings of clauses (supposedly each assigned to a
different processor) can occur. If one can reason that
any interleaving leads to a correct behavior, then one
has a good specification of a parallel system. How-
ever, in CCL we usually combine computation and con-
trol clauses (performed by control processors or robots),
such as

g(xi) : u′
i = h(x), (1)

with clauses that model the environment as in

true : ||x′ − f(x,u)|| < ε. (2)

In the UNITY semantics, the latter clause may be cho-
sen one billion times before the former is chosen at all.
Of course, one could change the guards and add an aux-
iliary synchronizing state so that the intended behavior
occurs. This is essentially what we enforce with the
CCL semantics:

CCL Semantics: At state s′ = s0, choose an ordering
g0 : r0, g1 : r1, ..., r|C|−1 : g|C|−1 of the clauses. Obtain
new states s1, s2, ..., s|C|−1 = s′ such that if gk(sk)
then r(sk, sk+1).

Thus, the execution of a system is divided into epochs

during which each clause is executed exactly once. This
is an attempt to capture the small-time interleaving
that may occur between processors executing at essen-
tially the same rate. It is important to note that the set
of behaviors of a specification under the CCL semantics
is a subset of the behaviors of the same program under
the UNITY semantics. Thus, any statement (in tem-
poral logic) that is true about UNITY behaviors is true
about the CCL behaviors. CCL behaviors may satisfy
more properties, however, as discussed in Section 5.

Remark on Time: The intention is that epochs occur
at some fixed frequency, although this is not modeled
explicitly. Thus, equation (2) would represent a peri-
odic sampled version of some continuous-time system.

3.2 Example: The RoboFlag Drill

In this section we consider a game called RoboFlag that
is similar to “capture the flag”, only for robots [5]. Two

Specification 1 Red Robot Dynamics: Πred (i)

Initial:

xi ∈ [min,max] ∧ yi > max
Clauses:

yi − δ > 0 : y′
i = yi − δ

Specification 2 Blue Robot Control: Πblue(i)

Initial:

zi ∈ [min,max] ∧ zi < zi+1

Clauses:

zi < xα(i) ∧ zi < zi+1 − 2δ : z′i = zi + δ
zi > xα(i) ∧ zi > zi−1 + 2δ : z′i = zi − δ

teams of robots, say red and blue, each have a defen-
sive zone that they must protect (it contains the team’s
flag). If a red robot enters the blue team’s defensive
zone without being tagged by a blue robot, it captures
the blue flag and earns a point. If a red robot is tagged
by a blue robot in the vicinity of the blue defensive
zone, it is disabled. These rules hold when the roles are
reversed as well.

We do not propose to devise a strategy that addresses
the full complexity of the game. Instead we examine the
following very simple drill or exercise. Some number
of blue robots with positions (zi, 0) ∈ R

2 must defend
their zone {(x, y) | y ≤ 0} from an equal number of
incoming red robots. The positions of the red robots
are (xi, yi) ∈ R

2. The situation is illustrated in Figure
1.

We first specify Πred (i) in Specification 1, the very sim-
plified dynamics of red robot i. It simply moves toward
the defensive zone with constant vertical velocity of −δ
m/s and no horizontal movement. When it reaches the
defensive zone, it simply stays there (as there is no rule
describing what to do if yi − δ ≤ 0). The constants
min < max describe the boundaries of the playing field
and δ > 0 is the magnitude of the distance a robot can
move in one step. The specification is parameterized
by i ∈ N and thus describes a family of specifications.

The reactive control law, Πblue(i) in Specification 2, for
the blue team is equally simple. Each blue robot i is
assigned to a red robot α(i). In each step, blue robot i
applies the law

ẋi = −sgn(xi − zα(i)) (3)

for δ seconds, as long as taking such an action does
not lead to a collision. The dynamics of the entire drill
system are defined by

Πdrill (n) , Πred (1)◦...◦Πred (n)◦Πblue(1)◦...◦Πblue(n).
(4)

The success of the control law as it stands depends very
much on the initial positions of the red robots and the
assignment α. Thus, we have devised a simple protocol,

Specification 3 Assignment Protocol: Πproto(n)

Initial:

α is a bijection from {1, ..., n} to {1, ..., n}.
Clauses:

switch1,2 : (α(1)′, α(2)′) = (α(2), α(1))
...
switchn−1,n : (α(n − 1)′, α(n)′) = (α(n), α(n − 1))

Πproto(n) in Specification 3, for updating α. Each robot
negotiates with its left and right neighbors to determine
whether it should trade assignments with one of them.
We first make the following definition

ri,j ,

{

1 if yα(j) < |zi − xα(j)| − δ
0 otherwise.

(5)

Thus, ri,j = 1 when it is not possible for blue robot i to
reach red robot α(j) before it reaches the defensive zone
(assuming no blue-blue robot collisions). The protocol
also uses the notion of a conflict: Blue robots i and j
are in conflict if zi < zj but xα(i) > xα(j). We define
the predicate switch(i, j) by

switchi,j , ri,j + rj,i < ri,i + rj,j

∨
(

ri,j + rj,i = ri,i + rj,j ∧ xα(i) > xα(j)

)

.

Thus, switchi,j is true exactly when switching the as-
signments of robots i and j decreases the number of
red robots that can be tagged or leaves it the same and
decreases the number of conflicts. The full system is
given by

Πrf (n) , Πdrill (n) ◦ Πproto(n). (6)

The protocol described in Πproto(n) is an example of a
self-stabilizing protocol [6] in that it settles into a mode
where no assignment trades are made after an initial
transient period. The duration of the transient is im-
portant. In particular, we desire that α stabilize before

the red robots get too close to the defensive zone. The
conditions under which this is possible are examined in
Section 6.

4 The Semantics of CCL

We define a state to be an assignment of values to
variables. For example,

s = 〈x := 1; p := true; t := 0.99〉

is a state over the variable set V = {x, p, t}. Each
variable v ∈ V has a type type(v) and we assume the
values assigned by states are always correctly typed.
The set of all states over a variable set V is denoted
SV , or just S when there is no danger of confusion.

A predicate on states is a set P ⊆ SV of states. For
example,

g = {s | s(x) > 0}

0 5 10

0

5

10

15 t=0

Defensive Zone

1
2

3

4

5

6

1 2 3 4 5 6

0 5 10

0

5

10

15 t=0.25

Defensive Zone

1
2

3

4

5

6

1 2 3 4 5 6

0 5 10

0

5

10

15 t=0.5

Defensive Zone

1
2

3

4

5

6

1 2 3 4 5 6

0 5 10

0

5

10

15 t=0.75

Defensive Zone

1
2

3

4

5

6

1 2 3 4 5 6

Fig. 1: The first four epochs of an execution of Πrf (6). Dots along the x-axis represent blue defending robots. Other dots
represent red attacking robots. Dashed lines represent the current assignment. The trading of assignments of blue robots 2
and 3 reduces r2,α(2) + r3,α(3). Other trades reduce the number of conflicts.

denotes the set of states that assign the variable x to a
value greater than zero. We usually denote predicates
in shorthand, so that the predicate g above is written

x > 0.

A rule on states is a relation r ⊆ SV × SV between
states. For example

r = {(s1, s2) | s2(x) > s1(x) ∧ s2(t) = s1(t) + δ}

is one such rule. As with predicates, we usually denote
rules in shorthand as well so that the rule r above is
written

x′ > x ∧ t′ = t + δ.

The rule r does not refer to the variable p. The in-
tention is that if a variable does not appear primed, it
should stay the same (in this case p′ = p) under appli-
cation of the rule. We tacitly make this assumption in
this paper.

The basic unit of a CCL specification is the clause. For-
mally, a clause is a pair

c = g : r

where g is a predicate called the guard and r is a rule.
Given a clause c, we denote the guard and rule of c by
g(c) and r(c) respectively. A clause defines a relation
on states. For example, define the clause c by

x > 0 : x′ ∈ [
x

2
, x] (7)

where, as in our examples so far, V = {x, p, t}. Then c
defines the relation

((

x > 0 ∧ x′ ∈ [
x

2
, x]

)

∨ (x ≤ 0 ∧ x′ = x)
)

∧ p′ = p ∧ t′ = t.

For an arbitrary clause we have:

Definition 4.1 If s and s′ are states and g : r is

a clause, we say that s′ simply follows s, denoted

s
g:r
−−→ s′, if either g(s) ∧ r(s, s′) or ¬g(s) ∧ s′ = s.

We now define specifications on states and their oper-
ational semantics as dynamical systems through state
space.

Definition 4.2 A CCL specification Π over a set of

variables V is a pair

Π = (I, C)

where I is a predicate over V and C is a set of clauses

over V .

Definition 4.3 Let Π1 = (I1, C1) and Π2 = (I2, C2)
be specifications. Their composition is

Π1 ◦ Π2 = (I1 ∩ I2, C1 ∪ C2).

Definition 4.4 A schedule for a specification Π =
(I, C) is a function ω : {0, ..., |C| − 1} → C.

Definition 4.5 Let Π be a specification and s, s′ ∈ S.

We say that s′ follows s, denoted s
Π
−→ s′, if there exists

a schedule ω and states s0, ..., s|C|−1 such that

1. s = s0 and s|C|−1 = s′ and

2. for all k, sk

ω(k)
−−−→ sk+1.

Definition 4.6 A behavior of a specification Π =
(I, C) is a sequence of states σ : N → S such that

1. σ(0) ∈ I

2. σ(k)
Π
−→ σ(k + 1).

The set of all behaviors of Π is denoted E(Π).

5 Properties of Specifications

Following [15], we will treat properties of specifications
as sets of specifications. Thus, a specification Π has
property P if Π ∈ P . We define standard notions of
safety (always and co) and progress (leadsto) as well as
the notion that a property is static, i.e. that it is true
at all points during the execution of an epoch.

Definition 5.1 Let A be a predicate. Then A is al-

ways true, written Π ∈ always A, if and only if for all

σ ∈ E(Π) and all k ∈ N, we have that σ(k) ∈ A.

Definition 5.2 Let A and B be predicates. Then A
constrains B, written Π ∈ A co B if and only if

∀ s1, s2 . (s1 ∈ A ∧ s1
Π
−→ s2) ⇒ s2 ∈ B.

Definition 5.3 Let A and B be predicates. Then A
leads to B, written Π ∈ A 7→ B, if and only if for all

σ ∈ E(Π) and n ∈ N we have

σ(n) ∈ A ⇒ ∃m ≥ n . σ(m) ∈ N.

Definition 5.4 Let A be a property and Π = (I, C) be

a schedule. Then A is static, written Π ∈ static A, if

and only if for all schedules ω, if

s0
ω(0)
−−−→ ...

ω(|C|−1)
−−−−−−−→ s|C|−1

and s0 ∈ A then sk ∈ A for all k ∈ {0, ..., |C| − 1}.

These basic properties (except for static) obey all the
inference rules that the corresponding UNITY proper-
ties do [3] (although the proofs are somewhat different).
We illustrate a few (that we will encounter in Section
6) in the following proposition.

Proposition 5.1 For any specification Π = (I, C) and

predicates A, B, A1, A2, B1, B2 and C,

a. static A ⇒ A co A

b. I → A ∧ static A ⇒ always A

c. A1 co B1 and A2 co B2 ⇒ A1 ∩ A2 co B1 ∩ B2

d. A co B ⇒ A 7→ B

e. A 7→ C and B 7→ C ⇒ (A ∪ B) 7→ C.

We also have a variant of Lyapunov stability for spec-
ifications. The following proposition is similar to the
LATTICE rule in [12].

Proposition 5.2 If U : S → N and

Π ∈ ¬A ∧ U = k co A ∨ U < k

then Π ∈ ¬A ∧ U = k 7→ A.

In the next section we use these propositions to help us
show various safety, progress and stability properties of
the RoboFlag drill.

6 Analysis of the RoboFlag Drill

We now verify several properties of the RoboFlag spec-
ification Πrf (n) defined by equation (6) in Section 3.
Due to the space limitations of this paper, we do not
include detailed proofs for these results, which usually
require the analysis of many cases arising from the pos-
sible interleavings of the clauses. Instead, we endeavor
to sketch the proofs of the properties below which are,
after all, quite straightforward. We assume a fixed num-
ber n of blue(red) robots.

We first express the obvious fact that the system is safe:
no robots will collide.

Theorem 6.1 For all i, Πrf satisfies the property

always zi < zi + 1.

Proof: Certainly I ⇒ zi < zi + 1. The only clauses
that change zj for any j are in Πblue . These have guards
to prevent their application if zi and zi+1 are too close.
Thus, Πrf satisfies static zi < zi+1. The result follows
from Proposition 5.1(a).

Next we show that the protocol is self stabilizing. For
convenience, we need two auxiliary definitions. The
Active property expresses the fact that the protocol
Πproto has not determined a stable assignment of blue
to red robots:

Active , ∃i ∈ {1, ..., n − 1} . switch i,i+1. (8)

The Safe(m) property, parameterized by the natural
number m, states that no red robots will reach the de-
fensive zone and no blue robots will collide in the next
m epochs:

Safe(m) , ∀i ∈ {1, ..., n} . yi > δ ∧ zi + 2δm < zi+1.
(9)

We can show that the protocol is quiescent un-
der certain circumstances. Ideally, this means that
¬Active co ¬Active. However, ¬Active may not be

stable if some defender blocks another from moving
toward its assigned red attacker (recall the guards in
Specification 2). Such a situation may result in ri,i in-
creasing for the blocked robot. Thus, we must show the
weaker result that P is stable as long as the blue robots
are sufficiently far apart.

Lemma 6.1 If m > 1 then Πrf satisfies the property

Safe(m) co Safe(m − 1).

Proof Sketch: Consider, for each i, the clauses affect-
ing yi and zi. In particular, the clauses for yi decrease
yi by δ and the clauses for zi decrease the distance be-
tween zi and zi+1 by 0, δ or 2δ.

Lemma 6.2 If m > 1 then Πrf satisfies the property

static [Safe(m) ∨ Safe(m − 1)] ∧ ¬Active.

Proof Sketch: For each i, consider all interleavings of
the clauses affecting variables subscripted by i or i + 1.
In each case, all red robots move down and all blue
robots move toward their assignments. Thus, at all
steps either Safe(m) or Safe(m − 1). Furthermore, be-
cause ¬Active and because switch i,i+1 does not change
as long as Safe(m) for some m > 2, switch i,i+1 remains
false for all i.

Theorem 6.2 If m > 1 then Πrf satisfies the property

Safe(m) ∧ ¬Active co Safe(m − 1) ∧ ¬Active.

Proof: By Lemma 6.1, Lemma 6.2 and Proposition
5.1(a) and (c).

We next show that if the the protocol begins when
the red robots are “far enough” away then it will self-
stabilize before they arrive. To do this, we will show
that a certain function of x, y and z decreases every
time an assignment is updated by one of the rules in
Πproto(n). First define

ρ ,

n
∑

i=1

ri,i

to be the total number of impossible assignments. And
define

τ ,

n
∑

i=1

n
∑

j=i+1

γi,j , where γi,j ,

{

1 if xα(i) > xα(j)

0 otherwise,

to be the total number of conflicts in the current assign-
ment. We will show that either ρ decreases with each
application of a rule in Πproto(n), or it remains con-
stant while τ decreases. Thus, (ρ, τ) will decrease lex-
icographically after each step for which Active is true.

Noting that ρ ∈ {0, ..., n} and τ ∈ {0, ...,

(

n
2

)

}, this

is equivalent to having

U ,

[(

n
2

)

+ 1

]

ρ + τ

decrease at each step. Since U ≥ 0, this process must
eventually stop. The function U is essentially a Lya-
punov function for the system in the sense of Proposi-
tion 5.2.

Lemma 6.3 If m > 1 then Πrf satisfies the property

Safe(m) ∧ Active ∧ U = k co U < k.

Using Lemma 6.3 and Proposition 5.2 we can, finally,
show the following.

Theorem 6.3 For all m > 0, Πrf satisfies the property

Safe(m) ∧ U = m 7→ ¬Active.

7 CCL Software Tools

In addition to providing a tool for modeling systems
and a logic for reasoning about such models, we are
developing a programming language version of CCL for
the implementation of controllers in settings where con-
trol and communication depend on each other. To this
end, we have built a prototype CCL interpreter called
CCLi. CCLi input consists of basic types (boolean,
integer, floating point, string, list, lambda expression
and records), basic expressions on these types, and pro-

grams. A program is essentially a specification as de-
fined in Section 4 except that rules are of the form

x1 := expr1,

...

xk := exprk

– that is, they are sets of assignments (as opposed to
arbitrary relations as in Section 4). The specification of
programs in CCLI has two other features. First, pro-
grams can be parameterized (as in Π(k)) and instan-
tiated later (as in Π(0.1)). Second, programs may be
composed with hidden and shared variables as in

Π1 ◦ Π2 sharing x, y

which means that any use of variables named x or y
in Π1 and Π2 refer to the same object while all other
variable references are local to Π1 or Π2 as the case may
be.

After defining any number of variables and parameter-
ized programs, execution is initiated by calling exec Π
on a program with no parameters. Then, every 10-100

ms (depending on the configuration), CCLi executes all
the clauses in Π. CCLi includes an interface to shared
libraries (written in C++ for example) so that it can
easily be interfaced to libraries in other languages, sim-
ulation software or a controls testbed. We are presently
experimenting with CCLi program development with
the Caltech Multi-Vehicle Wireless Testbed [4]. More
information about CCLi can be found at the URL

http://www.cs.caltech.edu/∼klavins/ccl/.

8 Conclusion

We have introduced a formalism, CCL, for modeling
control systems wherein computation takes a primary
role. We demonstrated CCL by specifying and verifying
the RoboFlag drill controller and its self-stabilizing pro-
tocol. This example is typical of the sorts of systems
that we wish to specify build, involving both control
(albeit simple in this example) and distributed compu-
tation.

The verification of high level algorithms such as the
one presented in this paper, however, represents only
the first step on the design path. We are presently
exploring methods for refining CCL specifications into
executable code by applying the formalism to increas-
ingly rich examples from, for example, our multi-vehicle
testbed [4] where we plan to have actual vehicles run-
ning verified CCL programs.

More generally, we are examining the formal proper-
ties of CCL especially composition with respect to au-
tomated reasoning tools, local and shared variables,
refinement and refinement operators, and alternative
asynchronous semantics that guarantee that each clause
is executed with a specified frequency.

Acknowledgments

Many of the ideas in this paper grew out of discussions
with Jason Hickey, Richard M. Murray, Raff D’Andrea
and Reza Olfati-Sabor. The idea for a CCL interpreter
came from discussions between the author and Uluc.
Saranli. Natarajan Shankar made several suggestions
regarding self-stabilizing protocols. The author also
thanks the CCL Courselet attendees for serving as beta
testers for the CCL software tools. This research is sup-
ported in part by the AFOSR, grant number F49620-
01-1-0361.

References

[1] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee.
Modular specifications of hybrid systems in CHARON. In
Hybrid Systems: Computation and Control, LNCS 1790,
pages 6–19, Pittsburgh, PA, 2000. Springer-Verlag.

[2] A. Carruth. Real-time UNITY. Technical Report
TR-94-10, University of Texas at Austin, 1994.

[3] K. M. Chandy and J. Misra. Parallel Program Design:

A Foundation. Addision-Wesley, 1988.

[4] L. Cremean, B. Dunbar, D. van Gogh, J. Hickey,
E. Klavins, J. Meltzer, and R. M. Murray. The Caltech
multi-vehicle wireless testbed. In Conference on Decision

and Control, Las Vegas, NV, 2002.

[5] R. D’Andrea, R. M. Murray, J. A. Adams, A. T.
Hayes, M. Campbell, and A. Chaudry. The RoboFlag Game.
In American Controls Conference, 2003. Submitted for re-
view.

[6] E. W. Dijkstra. Self-stabilizing systems in spite of dis-
tributed control. Communications of the ACM, 17(11):643–
644, November 1974.

[7] T. A. Henzinger, B. Horowitz, and C. M. Kirsch.
Giotto: a time-triggered language for embedded program-
ming. In Proceedings of the First International Workshop on

Embedded Software, LNCS 2211, pages 166–184. Springer-
Verlag, 2001.

[8] E. Klavins. Automatic compilation of concurrent hy-
brid factories from product assembly specifications. In Hy-

brid Systems: Computation and Control, LNCS 1790, pages
174–187, Pittsburgh, PA, 2000. Springer-Verlag.

[9] E. Klavins. Automatic synthesis of controllers for dis-
tributed assembly and formation forming. In Proceedings of

the IEEE Conference on Robotics and Automation, Wash-
ington DC, 2002.

[10] E. Klavins. Communication complexity of multi-
robot systems. In Workshop on the Algorithmic Foundations

of Robotics, December 2002.

[11] E. Klavins and U. Saranli. Object oriented state ma-
chines. Embedded Systems Magazine, pages 30–42, May
2002.

[12] L. Lamport. The temporal logic of actions. ACM

Transactions on Programming Languages and Systems,
16(3):872–923, May 1994.

[13] J. Misra. A logic for concurrent programming: Safety
and Progress. Journal of Computing and Software Engineer-

ing, 3(2):239–300, 1995.

[14] P. C. Ölveczky and J. Meseguer. Real-Time Maude:
A tool for simulating and analyzing real-time and hybrid
systems. In 3rd International Workshop on Rewriting Logic

and its Applications, volume 36 of Electronic Notes in The-

oretical Computer Science. Elsevier, 2000.

[15] L. C. Paulson. Mechanizing UNITY in Isabelle. ACM

Transactions on Computational Logic, 1(1):3–32, July 2000.

[16] U. Saranli, M. Buehler, and D.E. Koditschek. RHex:
A simple and highly mobile hexapod robot. International

Journal of Robotics Research, 20(7):616–631, July 2001.

[17] R. T. Udink and J. N. Kok. Impunity: UNITY with
procedures and local variables. In Mathematics of Program

Construction, pages 452–472, 1995.

