ERRATA

Computational Fluid Dynamics: Incompressible Turbulent Flows

Takeo Kajishima & Kunihiko Taira Springer, 2017

Chapter 1

- p. 9, line 17: $u_2 = u \to u_2 = v$
- p. 10, Eq. (1.32): $D_{ij} = \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right) \to D_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right)$
- p. 21, Question 1.6: conversation \rightarrow conservation

Chapter 2

- p. 27, line 4: "an fifth" \rightarrow "a fifth"
- p. 31, Eq. (2.35): $\frac{f_j}{\Delta_{j-\frac{1}{2}}\Delta_{j+\frac{1}{2}}} \to \frac{2f_j}{\Delta_{j-\frac{1}{2}}\Delta_{j+\frac{1}{2}}}$
- p. 35, Eq. (2.46): $\frac{-f_{j-\frac{1}{2}}+f_{j+\frac{1}{2}}}{2} \to \frac{-f_{j-\frac{1}{2}}+f_{j+\frac{1}{2}}}{\Delta}$
- p. 44, Below Eq. (2.81): Eq. (2.15) \rightarrow Eq. (2.16).
- p. 47, 2 lines below Eq. (2.92): $\Delta g^n \to \Delta t g^n$
- p. 50, Eq. (2.105): $\frac{\Delta^2}{2} \to \frac{\Delta t^2}{2}$ (2 places) and $\frac{\Delta^3}{6} \to \frac{\Delta t^3}{6}$ (2 places)

Chapter 3

- p. 77, line 4: "in two steps" \rightarrow "into two steps"
- p. 94, Eq. (3.94): $\partial E_{i,j}^{\langle m \rangle} \to E_{i,j}^{\langle m \rangle}$
- p. 95, Eq. (3.98): $\beta + \frac{E_{i,j}^{\langle m* \rangle}}{B_{i,j}^0} \to \beta \frac{E_{i,j}^{\langle m* \rangle}}{B_{i,j}^0}$
- p. 101, below Eq. (3.116): "oftentime" \rightarrow "oftentimes"
- p. 104, Eq. (3.124): $u_{i+1,j+\frac{1}{2}} \to v_{i+1,j+\frac{1}{2}}$ and $2\Delta x$ in the last term $\to 2\Delta y$
- $\bullet\,$ p. 103, line 9: "later" $\rightarrow\,$ "latter"
- p. 105, Eq. (3.131): needs a comma "," after the mathematical expression.
- p. 126, 3rd paragraph, line 3: meant by "needed \rightarrow meant by "needed

Chapter 5

- p. 179, line 5: "fluid flow" \rightarrow "fluid flows"
- p. 185, Eq. (5.19): $d_3(x) \to d_3(x/\Delta s)$ as well as $\Delta x \to \Delta s$

Chapter 6

- p. 208, last line: "become" should be "becomes"
- p. 216, Fig. 6.6: +1.5 should be +5.1
- p. 235, Ref. 50: "Examinatino" should be "Examination"

Chapter 8

- p. 287, Eq. (8.67) should read: " $\frac{\partial E}{\partial C} = 4\overline{\Delta}^2 (2C\overline{\Delta}^2 \mathcal{M}_{ij} \mathcal{M}_{ij} + \mathcal{L}_{ij} \mathcal{M}_{ij})$ "
- p. 287, below Eq. (8.67): " $\frac{\partial E}{\partial C} = 8\overline{\Delta}^2 \mathcal{M}_{ij} \mathcal{M}_{ij} \ge 0$ " \rightarrow " $\frac{\partial E}{\partial C} = 8\overline{\Delta}^4 \mathcal{M}_{ij} \mathcal{M}_{ij} \ge 0$ "
- p. 303, Fig. 8.14: +1.5 should be +5.1

Appendix C

- p. 342, Eq. (C.8): $x^T(t_m) \to x^T(t_i)$
- p. 346, below Eq. (C.21): "where Φ is the left singular vectors from SVD (equivalent to POD modes)." \to "where Φ , Ψ , and Σ are matrices holding left singular vectors, right singular vectors, and singular values of $X_{1\to m}$ as determined from Eq. (C.16). It should be noted that the above similarity transform is performed with Φ , which corresponds to the POD modes of the flow."