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One unique feature of optical-field ionization (OFI) plasmas is that When a high residual energy from tunnel Llnear1polar|zat|on Electron residual energy spectrum
_dl_s'Flnct non-l\/laxwelllan e_Iecjtror? distribution functions can lpe ionization degas is ionized by an intense )
Initiated by intense laser ionization of neutral gases depending on

the laser polarization. In this work, we apply various Thomson laser pulse, the plasma electrons can get
scattering techniques to probe the evolution of optical-ionized very pending on the polarization of the
helium plasmas produced by linearly and circularly polarized pulses. incident laser pulse.

Polarization-dependent initial distributions have been inferred from 1st and 2" He electrons mix | ‘
collinearly-probe Thomson scattering of a second-harmonic probing _ _ _ 9 ” in linear polarization case 005 0 005
pulse generated from a KDP crystal. A 90-degree probe Thomson Energetic electrons emitted from optical- Time (fs) 5|

scattering system with changeable wavelengths has been set up to field 1onized atoms have been measured In Circular polarization /

probe plasma modes induced by nonequilibrium plasmas. Finally, the past. However, no direct measurements 1 \| e
we measured the plasma temperatures after the plasma become ’ R
of the resultant non-thermal electron

Isotropic by fitting time-resolved scattering spectra. The results o _ _ _ _ _ — L g
indicate the thermalization process of OFI helium plasmas involves distribution function in a high density
the combination of collective plasma effects and collisions. plasma have been made.
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Determine the initial state of the plasma: Fitting the initial distribution using Thomson Fitting for slightly non-Maxwellian plasmas: Fitting for strongly non-Maxwellian plasmas:
Collinearly-probe Thomson scattering UCL AR scattering theory for Maxwellian plasmas UCLAJ Linear polarization in scattering plane UCLAR Circular polarization UCLA

For L, polarization, the first electron and the second electron will distribute Circular polarization will yield electrons with high momentum, forming a

Experiment parameters: TS spectral density function: In Maxwellian respectively, we can apply this distribution to spectral density plasma deviated far from Maxwellian distribution.

Pump: 0.8 um, energy~10 mJ , tpyyn~50 fs, ap~0.2 , ) electrons momentum will distribute -
_ Skw) = 2|1 - Xe|s (f)+% Xl £ (£) . . function S(k,w). - o _
Prol?e. _0.4 um, energy~1.5mJ, tryyy~50fs ! el 7\k/) "k el 7°\x/) | perpendicular to the scattering plane. p— . | T — - . For low densities, fitting with For high densities, the
Static filled helium 5-100 torr S (k,w) o SW,S,, (k,w) . The scattering spectra resemble to _ 10 torr 50 torr the velocity distribution from k-v fitting does not work
e  the ones from cold plasmas. 6.4 x 1017 /cc|2 3.2 X 108 /cc simulations. atall
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Thomson scattering setup for measuring TS Spectral evolution for the plasma generated
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