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Abstract. The optimum plasma density for achieving the largest wakefield
accelerating gradient in a plasma wakefield accelerator (PWFA) for a given
electron beam driver parameters (fixed charge, spot size and duration) is
analyzed. It is found that the peak beam current Ip (charge per unit time) plays
an important role in determining the optimum density. We show that for narrow
beams of low peak current (Ip � IA ≈ 17 kA and σr � σz), the prediction from
linear theory (Lu et al 2005 Phys. Plasma 12 063101) that kpσz =

√
2 or np

(cm−3) ≈ 5.6 × 1019/σ 2
z (µm) for a bi-Gaussian bunch of length σz and spot

size σr , works well for obtaining the maximum accelerating gradient. However,
for narrow beams of high peak current ( Ip & IA and σr � σz), the optimum
density can be an order of magnitude larger than that predicted by linear theory.
In this regime, we show that a new condition np ∼ nb0 should be used for
1. σz/σr . 10, where nb0 is the peak beam density. Theoretical arguments for
this new condition are given and the predictions are confirmed by particle-in-cell
(PIC) simulations.
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Recently, the field of plasma wakefield acceleration (PWFA) [1] has made amazing progress. In
a series of PWFA experiments performed at SLAC, energy gains in the 1–50 GeV range have
been demonstrated [2]–[5]. The most astounding result is the energy doubling of the 42 GeV
electrons in less than 1 m. This is significant because it is the first time that ultrahigh gradient
(∼50 GeV m−1) acceleration was sustained over meter long distances, thereby providing energy
gains of interests to high-energy physics [5]. In a typical PWFA experiment, a high gradient
(∼10 GeV m−1) multi-dimensional plasma wave wake with a phase velocity near the speed
of light is excited by the passage of an intense ultra-short, ultra-relativistic, particle beam.
A simple but fundamental question regarding this wake excitation process is as follows: given
the available electron beam parameters (e.g. the total charge eN , the spot size σr , the pulse
length σz, the electron energy γ and the normalized emittance εn), what is the optimum plasma
density to obtain the largest wakefield and is there a simple expression for it? Due to the highly
nonlinear and multi-dimensional nature of this problem, the answers are normally obtained
empirically via laboratory experiments or particle-in-cell (PIC) simulations, both of which
are expensive and time consuming. Therefore, a theory that takes into account all the key
physical effects is needed, because it can help to identify the parameter space for carrying out
experiments and simulations to precisely answer the question. In this paper, we will present a
simple answer to this basic question by utilizing the physical insight obtained from a recently
developed nonlinear theoretical framework of the blowout regime [6, 7]. The results work for
parameters of recent and planned PWFA scenarios.

Linear theory provides a useful starting point for determining the optimum density. In
linear theory, the density compressions and rarefactions of the wave are assumed to be small
compared to the background density np and a rough condition for this is that the beam density
nb is less than np. The limitations and usefulness of the linear theory can be found in [8].
We start from an expression in [8] for the absolute wakefield amplitude Ez0 (not normalized,
Enorm = eE z0/mcωp) for a bi-Gaussian drive bunch

Ez0 =
√

2π
mc2

e

nb0

np
k2

pσze
−k2

pσ 2
z /2 R(0), (1)

where R(0)=(k2
pσ

2
r /2)ek2

pσ
2
r /20(k2

pσ
2
r /2), 0(y)=

∫
∞

y t−1e−t dt and nb = nb0 exp[−(z2/2σ 2
z )−

(r 2/2σ 2
r )].

Next, we find the plasma density that maximizes the absolute wakefield amplitude. At this
point, it is important to be clear about what is being held fixed. For example, in the 1D or
wide beam limit (kpσr � 1), if we assume that nb0/np and σz are fixed, the absolute wakefield
Ez0 is maximized for kpσz =

√
2 or no (cm−3) = 5.6 × 1019/σ 2

z (µm). On the other hand (as
shown below), if we assume that the beam charge eN as well as σr and σz remain fixed, then
for σr � σz the absolute wakefield is instead maximized for kp

√
σrσz =

√
2 or equivalently

kpσz =
√

2
√

σz/σr �
√

2.
For the rest of this paper, we will assume the beam parameters are fixed and only the

plasma density varies. This is usually the situation of relevance when designing an accelerator.
For this situation it is useful to explicitly write out nb0 as nb0 = N/[(2π)3/2σ 2

r σz]. Equation (1)
now becomes

Ez0 = ek2
p Ne−(k2

p/2)[σ 2
z −σ 2

r ]0(k2
pσ

2
r /2). (2)
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In [8] it was shown that when optimizing Ez0 as a function of k2
p , i.e. np, the optimized

wakefield amplitude EzM can be written as

EzM =
eN

σrσz
2

(
σr

σz

)
(3)

and the universal function 2 was plotted in figure 2 of [8]. It is straightforward to obtain
asymptotic expressions for kp that optimizes Ez0 in the σr/σz � 1 and σr/σz � 1 limits. When
σr � σz, we call the bunch shape a cigar. In the opposite limit where σr � σz we call the bunch
shape a pancake. In the cigar limit, one can obtain kpσz ≈

√
2[1 − (1/ ln(2/k2

pσ
2
r ))]1/2 which is

essentially kpσz =
√

2 for kpσr � 1. Interestingly although the limits are very different, for both
the 1D limit (kpσr � 1) when nb0/np and σz are held fixed and the narrow (σr � σz) 3D limit
where N , σr and σz are held fixed, the optimum density is no (cm−3) = 5.6 × 1019/σ 2

z (µm). In
the pancake limit, where k2

pσ
2
r /2 � 1 and 0(y) ∼ ((1/y) + (1/y2) + · · ·)e−y , one can easily show

that the density which optimizes Ez0 corresponds to kp=
√

2/
√

σrσz or kpσz =
√

2
√

σz/σr �
√

2.
To determine the optimum density for beams with σr ' σz, one can refer to figure 2 in [8], where
for a round beam kpσz ' 0.9.

While linear theory provides a useful starting point, its assumptions fail for most current
and planned PWFA experiments. As shown in [6]–[8], even if the assumptions fail the
expressions for the wake amplitude can still be useful. The figure of merit to determine if the
results from linear theory are valid is the normalized charge per unit length of the beam, 3 ≡∫

∞

0 kpr(nb0/np) dkpr = 2Ip/IA, where Ip is the peak current of the beam and IA ' 17 kA is the
Alfvén current. For beams with a bi-Gaussian profile, 3 = (nb0/np)k2

pσ
2
r =

√
(2/π)[re/σz]N

(re = e2/mc2 is the classical electron radius), or in physical units, 3 ≈ 2.25(N/(2 ×

1010))(20 µm/σz). For kpσr <
√

3 i.e. nb0/np > 1, the wakes are excited in a highly nonlinear
multi-dimensional regime (the blowout regime) for which linear theory is invalid.

To illustrate the usefulness and the limitation of the linear prediction, we show two
examples based on the parameters of PWFA experiments done at SLAC. In one of the examples,
although nb/np � 1 so linear theory should not apply, the quantity 3 � 1 and the prediction
from linear theory remains useful. For the other example, 3& 1 and the prediction for the
optimum density from linear theory is actually off by a factor of ten.

At SLAC, the electron bunches typically have a total number of electrons N ≈ 2 × 1010,
or contain ∼3 nC of charge. The beams can be focused down to a few tens of microns by
beam focusing optics. The pulse duration can be varied from ps down to 50 fs through a three-
stage bunch compression method. The first example corresponds to the E157 experiment, where
N = 1.9 × 1010, σz = 700 µm, σr = 30 µm and nb0 = 1.9 × 1015 cm−3. For these parameters
3 ≈ 0.06 and the linear theory predicts the optimum plasma density np ≈ 1.15 × 1014 cm−3.
For this density, the peak beam density nb0 is about 17 times higher than the plasma density,
which suggests that the nonlinear blowout regime is indeed reached. This can be easily seen in
figure 1(a) where the beam and plasma densities are plotted for np = 1.15 × 1014 cm−3.

The second example is from the E164 experiment, where the bunch length was significantly
reduced through compression. For typical E164 parameters, N = 1.8 × 1010, σz = 32 µm,
σr = 10 µm and nb0 = 3.6 × 1017 cm−3. For these parameters, 3 ≈ 1.27 and the linear theory
predicts the optimum plasma density np ≈ 3.5 × 1016 cm−3. We note that for these parameters
the asymptotic expression for the optimum density for σr/σz � 1 is no longer applicable since
σr/σz ∼ 0.3. Therefore, we use a value from figure 2 in [8] where one sees that kpσz ≈ 1.13 is
less than kpσz =

√
2 consistent with the asymptotic formula.
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(a)

(b)

Figure 1. (a) The beam and plasma density distributions at the optimum density
no = 1.15 × 1014 cm−3 for a bi-Gaussian electron beam with N = 1.9 × 1010,
σz = 700 µm and σr = 30 µm. (b) The normalized and absolute useful wakefield
amplitudes for different plasma densities.

To find out how well the linear theory predictions work, we performed full-scale 3D PIC
simulations with code QuickPIC [9] by scanning the plasma density for the above two examples.
The results are shown in figures 1(b) and 2(b) where we plot both the absolute (GV m−1) and
the normalized (mcωp/e) useful wakefield amplitude against the plasma density. For the first
example (figure 1), the density range scanned is from 1013 to 1015 cm−3. One can see clearly for
this weakly nonlinear case the plasma density that maximizes the absolute wakefield amplitude
is very close to the linear theory prediction, np = 1.15 × 1014 cm−3.

For the second example (figure 2), the density range scanned is from 1016 to 1018 cm−3. For
this more strongly nonlinear example, the absolute maximum amplitude occurs at a density near
4 × 1017 cm−3, which is surprisingly more than ten times larger than the linear theory prediction
3.5 × 1016 cm−3.
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(a)

(b)

Figure 2. (a) The beam and plasma density distributions at the optimum density
no = 4 × 1017 cm−3 for a bi-Gaussian electron beam with N = 1.8 × 1010, σz =

32 µm and σr = 10 µm. (b) The normalized and absolute useful wakefield
amplitudes for different plasma densities.

The above two examples clearly demonstrate the usefulness and limitation of the linear
theory predictions regarding to the optimum plasma density for wakefield amplitude. The
question then is how can we understand these results? It turns out that a clear understanding and
a simple estimation can be obtained based on physical intuition from the nonlinear wakefield
theory in [6, 7].

In the nonlinear framework of the blowout regime [6, 7], the plasma response to the
electron beam driver can be divided into three distinct regions, namely the ion channel, the
narrow electron sheath and the linear response region beyond the sheath. The key parameter for
identifying the different regimes is the normalized blowout radius kp Rb. In the non-relativistic
blowout regime where kp Rb � 1, the contribution from the linear response region dominates
the wakefield structure; therefore, a formula similar to the linear theory expression can be used
even though blowout occurs. In the regime where kp Rb ∼ 1, the contribution from both the ion
channel and the linear response region is important. In the relativistic blowout regime where
kp Rb & 2, the ion channel dominates the contribution. The normalized blowout radius kp Rb is
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mainly determined by the beam peak current Ip (charge per unit time) and an approximate
formula for a narrow drive beam (σr < Rb) is [7]

kp Rb = 2
√

3 = 2
√

2Ip/IA. (4)

This formula has been verified in self-consistent simulations and it can be argued by
equating the wakefield forces on an electron moving backward in the sheath with the peak
space charge force of the beam [7]. As shown in [7], the normalized wakefield amplitude
scales as 3 ln(1/3) in the non-relativistic blowout regime (3 � 1), which is similar to the
prediction of linear theory. While in the relativistic blowout regime (3& 1) the normalized
wakefield amplitude scales as

√
3. For the given total beam charge eN , 3 is independent of

plasma density np and the spot size σr and only depends on the pulse length σz. However, for
equation (4) to be meaningful in the blowout regime, there are indeed two implicit conditions:
the first one is that the beam should not be much shorter than a plasma skin depth k−1

p , otherwise
the plasma blowout will not occur within the bunch and the plasma electrons simply receive an
impulse from beam, in which case the blowout radius will be determined by the total charge
in the bunch other than the peak current [7]; the other condition is that the beam density nb0

should be comparable or larger than the ambient plasma density np, such that the condition
for trajectory crossing and blowout is satisfied. The first condition implies a lower limit on the
plasma density, e.g. kpσz & 0.2 and the second implies an upper limit on the plasma density, e.g.
np . nb0 or kpσr .

√
3.

We are now in a position to determine the optimum density in the blowout regime for either
the non-relativisitic (3 � 1) and relativistic (3& 1) regimes for cigar-shaped beams (σr � σz).
We fix the beam parameters (N , σr , σz) and then gradually increase the density. We start at a
sufficiently low density, such that the first condition in the previous paragraph is not met (e.g.
kpσz . 0.2). In this regime, the meaningful parameter for determining the blowout radius and
wakefield amplitude is the normalized total charge Q ≡ 3kpσz because only the total impulse
from the beam matters (kp Rb ∝

√
Q) [7]. Q increases as the plasma density increases from zero

to the lower limit; therefore, for both the non-relativistic and relativistic blowout regimes in this
density range, both the normalized and the absolute wakefield amplitudes increase as the density
increases.

As the density is increased further into an intermediate range (where kpσz & 0.2 and kpσr .√
3, assuming σr < σz), we need to treat the non-relativistic and relativistic blowout regimes

differently. In the non-relativistic blowout regime, the wake amplitude is roughly determined
from the linear theory so the optimum density is about kpσz =

√
2. On the other hand, for

the relativistic blowout regime, the normalized wakefield amplitude is determined by the
normalized blowout radius kp Rb, which for this density range is approximately given by kp Rb ≈

2
√

3. Since 3 does not depend on the plasma density, the normalized wakefield amplitude is
insensitive to the density. Therefore, the absolute wakefield amplitude will increase with the
plasma density in this density range, implying we should continue to increase the density.

For the relativistic blowout regime (3& 1), as the density is increased further it eventually
exceeds the upper limit (e.g. nb0/np . 1 or kpσr &

√
3). At this point the wake is now

marginally excited in the blowout regime and the linear expression becomes valid again.
Therefore, if kpσz <

√
2, then the density can be increased further to increase the amplitude

until kpσz =
√

2. However, for cigar-shaped beams if kpσr &
√

3, then kpσz �
√

2. As a result
the wake amplitude will decrease as the density is increased further. We therefore conclude that
the maximum wakefield amplitude is reached near nb0/np ∼ 1. For 3& 1 and nb0 ∼ np, the
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Figure 3. The normalized beam parameters kpσr , kpσz and the normalized
blowout radius kp Rb for a bi-Gaussian beam with N = 1.8 × 1010, σz = 32 µm
and σr = 10 µm.

normalized beam spot size is kpσr =
√

3 ∼ kp Rb/2. Therefore, the absolute wake is maximized
when the spot size is roughly matched to the blowout radius (for example, on can see this from
the beam and plasma density plot in figure 2(a)).

We note that for the above analysis to be valid, an additional condition, σz . 5Rb ≈ 10σr ,
should be imposed, otherwise the beam plasma interaction will be in the adiabatic blowout
regime where the ion channel is balanced by the electric and magnetic force of the beam and
the wake amplitude scales as ∼

√
3/kpσz. A detailed analysis will be presented in another

publication.
To see the validity of the above analysis and reasoning, we revisit the two examples given

earlier in this paper. In the first example, the electron pulse is relatively long (σz = 700 µm)
and it has 3 = 0.06; therefore, it is within the non-relativistic blowout regime and the optimum
plasma density should be close to the linear theory prediction. This was confirmed in figure 1(b)
as mentioned earlier. For the second example, the electron pulse is much shorter (σz = 32 µm)
and it has 3 = 1.27 and nb0 = 3.6 × 1017 cm−3; therefore, it is in the relativistic blowout regime
and an optimum plasma density close to the beam peak density nb0 should be expected. The
PIC simulation results shown in figure 2(b) confirmed this: the trend of the absolute wake
amplitude increasing with density and the optimum density, np ≈ 4 × 1017 cm−3, is close to
the prediction of 3.6 × 1017 cm−3. In light of the factor of ten difference of the plasma density
between the linear and nonlinear predictions, this agreement clearly shows the usefulness of
the above reasoning. In the above we argued that kp Rb is very insensitive to the density for
fixed 3. To show this we also plot the normalized blowout radius against plasma density for
the simulations in figure 2(b). In figure 3, it is evident that the normalized blowout radius kp Rb
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changes very little for plasma densities spanning two order of magnitude. The average kp Rb is
around 2.2 and is close to the theoretical estimate of 2

√
3 ≈ 2.25. We note that for np > nb0 in

figure 3, the blowout radius is not clearly defined and it is roughly deduced from the density
perturbation in the simulations.

In conclusion, we have analyzed the optimum plasma density for achieving the largest
accelerating gradient in an electron beam driven PWFA. It was found that the peak beam current
Ip (charge per unit time) plays an important role in determining the optimum density. A single
parameter 3 (3 ≡

∫
∞

0 kpr(nb/np) dkpr = 2Ip/IA) can be used to identify the different regimes,
namely the non-relativistic blowout regime (3 � 1) and the relativistic blowout regime (3& 1).
For low current beams (Ip � IA ≈ 17 kA or 3 � 1), the linear theory prediction for a cigar-
shaped beam (kpσz =

√
2 for σr � σz [8]) provides a good estimation. But for high peak current

cigar-shaped beams, such as Ip & IA/2 or 3& 1, the optimum plasma density can be order of
magnitude larger than the linear theory prediction. The major reason for this difference is that
the wakefield amplitude in the relativistic blowout regime has a very different scaling than that
of the linear regime and the non-relativistic blowout regime. The nonlinear analysis in this paper
suggests that the optimum plasma density for this case is roughly equal to the peak beam density
nb0 so long as 1& σr/σz & .1 and this prediction was confirmed by full 3D PIC simulations.
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