CIVIL & ENVIRONMENTAL ENGINEERING 253

Mathematical Models for Water Quality

CLASS NOTES

Michael K. Stenstrom
Civil & Environmental Engineering Department

October, 2007

PREFACE

These notes cover the majority of the topics included in Civil & Environmental
Engineering 253, Mathematical Models for Water Quality. The course stresses practical
ways of solving partial differential equations (PDESs) that arise in environmental engineering.
The course and the notes do not address the development or applications models, and the
derivation of a PDE for a particular problem is left to the student, and is covered in other

courses in our curriculum.

The course stresses finite difference methods (FDMs), as opposed to finite element
methods (FEMSs). | prefer this approach because it is conceptually easier. Furthermore, most
environmental engineering problems have simple, regular geometries, with the frequent
exception of groundwater simulations. For these geometrically simple problems, finite

difference methods are superior.

Finite element methods have traditionally been used for irregular geometries.
Recently, computer-based grid generation techniques have been developed, which are
extending the utility of the finite difference methods to irregular geometrics. With this
extension finite difference methods possess the geometric flexibility of finite element

methods. Finite difference methods are also easily extended to 2 and 3 dimensions.

The course also discsses issues with numeric solutions that allow the use of parallel

computers.

1. DISCRETE VARIABLES AND FINITE DIFFERENCES

Consider the following function:

u(X+Ax)
u(x)

X X+AX

Figure 1.1 Continuous Differentiable Function

If AX approaches zero we have

u(x+ dx) = u(x) +M -dx (1.1)
dx
or
dx% =du (1.2)
dx

The relationship is true for the case of u(x) being a differentiable function.

In two dimensions we have

dy@ + dxa—i =du (1.3)

oy 0

When we work with finite differences we cannot let Ax — 0, because our ability to compute
is finite. Therefore we have a finite difference approximation for Equation (1.1), as follows:

du(x) . A*x d?u(x) . A%x d®u(x) .

------ + HOTs 1.4
dx 21 dx? 31 dx® (14)

u(Xx+ Ax) =u(x)+ Ax

where HOTS refers to the higher order terms.

This is a Taylor Series.

For most of our work we will use constant Ax’s or Ay’s, which means we can write our finite
difference variables as follows:

Xy =0, Xj = 1(AX) (1.5)

i takes on values of 0 to iR, where

IR - AX = Xax (1.6)
and

Xjr1 = Xj +AX (1.7)

Xijz1 = AX(1+1) (1.8)

Xj_1 = Xj —AX (1.9)

Xj_1 = (i—1)Ax (1.10)

Using this notation X is equal to 0. This can be confusing when writing computer codes,

espcecially in FORTRAN. Pre-FORTRAN-77 compilers do not allow zero array subscripts,
which requires one to code x(1) equal to Xy, or x = 0. Most FORTRAN codes still avoid

using array subscripts equal to zero. Mathematically it is more convenient to use X, to
denote x = 0. Programmers must often use x(1) to denote x = 0.

We can write our Taylor Series using partials instead of total derivatives, as follows:

ou
Ujr1 = Uj + AX—
i+1 i ox

2, A2 3y A3 n n
A A A
x| xRl EX0X oTs (1.11)

+ + oo 4
21 ax2|i 31 ax3|i - ox"|

This equation estimates uj,, from u;j, and is called a forward Taylor Series, since it estimates
Uj,1 In the direction of increasing X.

In the direction of decreasing x we can write a backwards Taylor Series, as follows:

20 2 3, A3
a A"X 0°u A°X 0°u
Uji_y = Uj — AX—[+ | |

n A" 8"x
2 — 3 + ... — e
xli 2 ax? 3 ad

nl ox"

+(=1) +HOTs (1.12)

i
We can solve Equation (1.11) or (1.12) for the first partial as follows:

Ui —-Ujg AX 62u| A?X 63u|

u + —~ +
oAax o 2l 3 ad

OX

. + HOTs (1.13)

We truncate the series to obtain:

ul _UizUig (1.14)
é’xi AX .

Equation (1.14) is called an analog, because it is analogous to the first derivative.

2

. AXO0°u
The largest truncated term is 78_

5| - Itis of the magnitude Ax, or the first power of Ax.
X“|.
|

We refer to this analog as first-order correct. We could have truncated before we divided by
AX, but the order of correctness would be the same.

We can also solve Equation (1.11) for % and obtain similar results. Both the

forward Taylor series (Equation (1.11)) and the backward Taylor series (Equation (1.12))
give first-order correct analogs.

To obtain an approximation for the second derivative we add Equations (1.11) and (1.12) to
obtain

2 4, ~4
2.0 u| A'X 0 u|
Ujyi1+ Uj_1 = 2U; + A"X +2 +--- + HOTs 1.15
i+1 -1 i 8X2|i 41 8X4|i ()
After solving for the second partial derivative we obtain:
2 Y 2, A4
CU _ Uiy - 2itlig AXO 2| ... — HOTs (1.16)
ox A% 12 ox*|

We can truncate to obtain the second-order correct analog for the second derivate:

2| Uiy -2ui+uig

é’x2|i A?x

(1.17)

Finally we can truncate an improved first derivative by subtracting Equations (1.11) and
(1.12) to obtain

2, A3
i1—Uig A
M Ui Uig AXOU L hors (1.18)
OxXl; 2AX 6 ox
We truncate to obtain
oul _ Ujrg—Uig (1.19)
OXl; 2AX

This is a second-order correct analog for the first partial derivative.

To summarize we have three finite difference analogs.

ou Ujr1— Uj :
= -l (first-order correct)
OX i AX
ou Ujr1— Uj
] ELTES A (second-order correct)
OXj 2AX
2

o°u Ujy1 — 2Uj + U;

2| =i (second-order correct)
OX | A~X

From these analog we can construct finite difference equations for most partial differential
equations. Occasionally we develop additional analogs for special purposes. Analogs of any
desired order of correctness can be developed, but usually second-order correct analogs are

used for partial differential equations using finite differences.

The analogs we chose will depend upon the nature of the equations, parabolic, hyperbolic, or

elliptic, and our needs for accuracy and efficiency.

2. CLASSIFICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

It is useful to classify partial differential equations into three types: parabolic,
hyperbolic, and elliptic. The names arise due to the similarity of the classification
mechanism to analytic geometry. Solution techniques exist for each type of equation.
Generally an appropriate technique for one type of equation is not appropriate for another

type.

Consider a system of two 1st order PDE’s as follows:

a—+b—+c—+d—=1 (2.1)

e—+g—+h—+ia—:f2 (2.2)

We define the system as quasi-linear if coefficients a- to -i can be functions (linear or non-
linear) of X, y, or u or v. The problem is quasi-linear as long as none of these coefficients

. . . ou ou
contain terms involving — or —.
oxX oy

If the coefficients a to i and the functions f; and f; are constant or functions only of x or y,

then the problem is linear. If the coefficients involve functions of % or Z—; , the problem is

nonlinear.
We can conveniently classify linear and quasi-linear sets of the previous equations.
Nonlinear equations do not frequently arise in environmental problems.

Now, assuming u or v are differentiable, then we can represent the increment of u and

v by partial derivatives along the x and y directions as follows

Ax@ + Ay@ ~ AU (2.3)
OX oy

AXQ + Ayél = Av (2.4)
X oy

oras Ax, Ay —» 0

ou ou

dX— +dy— =du 2.5
o oy (2.5)
oV ov

dXx— +dy— =dv 2.6
8X-+yay (2.6)

The existance of the above derivatives are assured because we are working with continuously

differentiable function.

If we combine the directional derivatives with Equations (2.1) and (2.2) we have four
equations and four unknowns, and we can write them as follows:

[ou]
fa b c dllex| g7
e g n 12D
| |Igy|:|2| 2.7)
ldx dy 0 0 [l |du]
| ox |
LO 0 dx dyJ|@/| Lva
Loy]

Suppose the above system of equations is written at a particular point P in the domain x and
y, and that u and v are known at this point. Since a through i, and f; and f, are functions of
X, Y, v or u they are also known. Suppose that u and v are known at another point in the
domain I". Therefore, du and dv will be known. In this case all the coefficients in Equation
(2.7) will be known. Equation (2.7) will have a unique solution if the determinant is non-
zero. This implies that the derivative as we approach point P from either direction will be
equal.

The case where the determinant is zero is more interesting. A zero determinant
implies no unique solution for the derivatives in Equation (2.7). Consequently,
discontinuities in the derivatives may occur as one moves along different approaches to point
P.

To determine the values of Ax or Ay we take the determinate as follows:

b ¢ d a ¢ d

dx[g h i |-dyle h i |=0
0 dx dy 0 dx dy
[b d b cl] [a d a cl]
dx | —dx +dy —dy | —dx +dy =0 (2.8)
{ g i g h J { e | e h J
—d?x(bi — gd) + dxdy(bh — cg) + dydx(ai — de) — dy(ah —ec) = 0 (2.9)
collecting terms we obtain
d?y(ce —ah) + dydx(ai — de + bh —cg) +d *x(gd —bi) =0 (2.10)
Now we want to see what properties of dx and dy will cause the determinate to be
zero.
. .. dy
We see that we have a quadratic equation in ix
2
(%) (ce—ah)+g—i(ai—de+bh—cg)+dg—bi =0 (2.11)
Recall the quadratic formula
AX% +BX+C=0 (2.12)
_B+VB? —4AC
X = (2.13)
2A
We let
A = ce-ah
B = (ai-de+bh-cg)
C = dg-hi

We have real or complex roots depending on B2 - 4AC. The following cases exist:

B2 _4AC>0 2 real roots - hyperbolic
B2 —4AC =0 1 real root - parabolic
B2 —4AC <0 complex roots - elliptic

dx d e .
The value of the roots, @ or d—i are called characteristic directions. The solution

propagates along characteristic directions or lines. When numerically solving PDEs, we

9

must not select values of Ax or Ay which cross the characteristic directions; otherwise we

have non-unique solutions.

Now consider a second example.

(2.14)

This is a second-order problem in one equation. Note that we could reduce this to a 2 first-

order equation.

The directional derivatives become

(au_id o%u]
Ao Toxay Y

2, 2
d(ﬁ—ujzﬁ dx+82dy
oy’ oxoy oy

our matrix form is

Al
fa b cwiale T
| " %u ! | eu.|
dx dy 0, |—|=,d(—
{ y Jlaxay: | (6x)|
ou
o7y y
The determinant is

a ¢ a b

—dx +dy =0
dx 0 dx dy

—dx(0—cdx) + dy(ady —bdx) =0

We take
¢ (dx)? +a (dy)? — bdxdy = 0
or
(dy) bd—y+c—0
A ax dx
if we let A= a
B=-b
C=c

10

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

So we have

B2-4AC>0 2 real roots for hyperbolic
B2-4AC=0 1 real root for parabolic
B2-4AC <0 complex roots for elliptic

Consider a third example - the linear wave problem:

8%u &u
505 = 0
OX oy

A = 1

B = 0

C = -0

B2-4AC = 0+4a

The parameter o is always positive so this PDE is always hyperbolic.

Note that the forcing functions, f; and f, in Equation (2.7) do not enter into the
classification mathematics. Furthermore, note that the coefficients a- to i- in Equation (2.7)

are not necessarily time invariant. Therefore, a transient problem could change its properties
during its solution, which might require two entirely different solution techniques.

In later sections we will develop numerical techniques to solve hyperbolic PDEs
using mathematics very similar to the classification procedures we used here. The technique
involves finding the characteristic directions and selecting values of Ax and Ay (or Ax, Ay

and Az) in order to place grid points along the characteristic directions. In this way we avoid
crossing a characteristic direction.

11

3. NON-DIMENSIONAL FORMS

It is customary to scale partial differential equations by introducing dimensionless
variables. This was quite popular before the advent of computers. Many handbooks have
tabulated solutions of commonly used PDE’s. By solving the equation one can often use a
tabulated solution. Such techniques are no longer considered “state-of-the-art”, and many
tabulated solutions contain serious errors or restrictions on the domain which are not
apparent to the unsuspecting user. Nevertheless, it is still desirable to scale PDE’s prior to
their solution, and it is important to know the procedure.

Consider the dispersive-convective transport equation:

2
pdC_yL_© (31)
OX ox ot

where C is a concentration, V is velocity, D is a diffusivity or dispersion coefficient, and x
and t are space and time. We check for dimensional consistency

Fmi 1 BURE (3.2)

all terms have units of I_3t Note that differentiating with respect to a variable adds the units

of the variable to the denominator of the term.

Let’s make the problem dimensionless by letting

X X
Z= =— or xX=LZ
Xmax L
C
u= or C=uCpax
Cmax 5
D L
0= t—2 or t :9_
L D

By substituting for x, C, and t we obtain

[o 6(quaX)—|_Va(UCmax) _ AUCmax)

== (3.3)
ALZ) a(LZ) ALZ) ~ 6L/ D)
CaxD 8°U CpayV OU Cppay OU
e 2 = o omax = (3.4)
L2 oz L o6z L2/Da6
2
du LVou o (3.5)

12

or

— -Pe— =— (3.6)

. : . : LV I
Therefore, we can describe all cases of this equation with one parameter, o which is

. D _
called the Peclet Number (Pe). Some authors define the Peclet Number as VA which is the

reciprocal of its more common definition.
Consider this equation over ranges of the Peclet.

as Pe »> « the problem becomes plug flow or hyperbolic
or Pe »> 0 the problem becomes pure diffusion or parabolic

The equation is parabolic for all finite values of Pe. For cases where Pe becomes very large
we have the “near hyperbolic” problem. Many finite difference and finite element
techniques becomes oscillatory for large values of Pe. We have special techniques to solve
near hyperbolic problems. When D = 0, we scale the problem differently, and Pe does not
exist.

Consider a second example of scaling an equation.

2
pZC X a7
OX ox ot
where 0 < X < Xmax
Let
z- 2 _X (3.8)
X L
\r}]&x
6=t (3.9)
u=—< (3.10)
Cmax
So we obtain
D [o a(Ucmax)—|_v AUCax) _ O(UC max) (3.11)
[az) awz) aLz) oL |
(V)
or
Du_au_a (312)
LV oz2 o0z o0 '
or

13

2
1ou o ou (313)
Peozc 0Z 06

It is easy to show that this is the same as our earlier sample. We still have one parameter, Pe,
to describe our equation. We note that there is not a unique scaling procedure.

Consider a third and final example: heat conduction in a cylinder. We have a one
dimensional problem in polar coordinates.

[T 1o1] ot

“IoZ TYor | (314)

This equation is the same as our previous examples, except in polar coordinates, with V =0,
and D = a.

To scale we let

X=—=— 3.15
R (3.15)
o

r=t? (3.16)
T-Ti

=— (3.17)
oTl

when Ti is a reference temperature.

Substitute
T = oTiu+Ti
¢ = Rzr
o
r = RX

araz(aTiu+Ti) 1 8(ocTiu+Ti)_|:8(ocTiu+Ti)

" arR9Z Rx ORx) | 6(%%)

(3.18)

which becomes

oczTi 82u oczTi ou azTi ou
2 7 ~ D2 A (3.19)
R< ox Rx ox R< Ot

which simplifies to

14

(3.20)

One can see the value of scaling from Equation (3.20). A single numerical solution
could be applied to many different problems using scaling factors, as defined by Equations
3.15-3.17.

15

4. PARABOLIC EQUATIONS IN ONE DIMENSION

The simplest and most often encountered partial differential equations are parabolic.
They arise from heat and mass transfer problems. Let’s consider our non-steady state
diffusion-advection or diffusion-advection-reaction transport equation, as follows:

2
@zoé—g-v@—m (4.1)
ot OX oX

with
Cc=1, x=0, t>0 (entrance boundary condition),
Z—i =0, x=1, t>0 (exit boundary condition)
Cc=0, x>0, t=0 (initial condition)

4.1 Forward Difference

Let us apply the analogs developed previously. We will not scale the problem in
order to see the effects of D and V. We will use second-order correct analogs for the spatial
derivatives, and a first-order correct analog for the time derivative.

Ci,n+l _Ci,n _ D{Ciﬂ,n —Zczi,n +Ci_1'n}_v[ci+1’n —Ci—l,n}_ KCin
At Ax 2% |

(4.2)
Note that we have two subscripts, i and n, for space and time, respectively.

Our shorthand for this equation becomes:

Figure 4.1 Forward Difference Analog - Interior Points

We note in Equation (4.1) that we have initial conditions and two boundary conditions.
Therefore the problem is referred to as a “split boundary, initial value” problem. We need
initial conditions to insure that we have a unique solution. The boundary conditions exist
because we know something from the physics and chemistry of the problem at the

16

boundaries. For this problem we have a fixed inlet boundary and a zero-flux exit boundary.
We will define a third boundary condition later.

We note from our analog picture above that the problem is explicit, since u; , is known from
the initial conditions. We have one equation in one unknown, which we solve as follows;

C +%(Ci+l,n -2C,,+C,,) _m(c

Ci,n+l =%in Az 2AX i+1,n

Ci—l,n) - AtKCln
(4.3)

Equation (4.3) is used to solve for all interior points. For the inlet boundary we place our
analog as follows:

Figure 4.2 Forward Difference - Inlet Boundary

The value of u;_; ,, in Equation (4.3) becomes the boundary value. Since u;_; , is known at

the boundary, we simply use it in our solution technique. When we are able to reduce the
analogue to a single unknown equated to several known, we have an explicit equations.
They are usually the easiest problems to solve.

For the exit boundary, we place the analog as follows:

O O n+1

Figure 4.3 Forward Difference - Exit Boundary (zero flux)

The point at i = iR + 1 does not physically exist and is called a false point. It is placed there
for convenience. We now apply our exit boundary condition, as follows:

17

ac

=0 4.4
OX iR ()
0= Ci+1,r12;Ci—1,n (45)
X
Ci+1,n = Ci—l,n (4-6)

Uis1 is the false point, and we remove it by substituting Equation (4.6) into (4.3) as follows:

DAt VAL
Cin+1=Cin +E(Zci—l,n —2Cin) _E(Ci—l,n —Ci_1.n) — KAC;

4.7)

The advective term involving the velocity vanishes because the partial derivative at the exit
boundary is equal to zero.

This method is explicit since it only has one unknown term in each analog. It is
called forward difference since it uses a forward Taylor series for the time derivative. One
should not refer to this method as the “explicit method” because there are many explicit
methods to solve this equation.

Forward difference is a popular method, especially with those who wish to use the
simplest computer code. The method is only first-order correct in the time derivative and is
conditionally stable. The method lends itself better to “pipe-lining” and parallel processing
better than many other methods.

Conditional stability or instability results when the higher order terms that were
truncated (Equations (1.11) or (1.13)) grow and become infinitely large. The error
introduced by assuming the higher order terms are insignificant is called truncation error.
This type of error is different than round-off error, which results because of a computer’s
finite precision.

Problems are stable if the truncation error at each time step decreases with increasing
time. When the error increases with each time step, the problem is unstable, and an
infinitesimally small error will grow to extremely large error in only a few time steps. Also
note that stable techniques do not insure accurate solutions, only finite solutions. One
frequently hears that the solution is “unstable” when it appears to be inaccurate or
oscillatory. This is an error. Solutions tend to infinity (“blow-up”) when they are unstable.
Solutions are inaccurate when they are stable but have excessive round-off or truncation
error.

We shall later see that forward difference is stable when

1
< E (4.8)

18

This constraint becomes very severe for small values of Ax, or large values of D. Many time
steps (small At) are required.
4.2 Backward Difference

We can improve our techniques for solving Equation (4.1) by using a backward
Taylor series for the time derivative. The analog looks like this.

Figure 4.4 Backward Difference - Interior Points

Our substituted equation becomes

Cins1 —Cin _ Dr Cit1n11=2Cin1a +Cignat | _VrCi+1,n+1 ~Ci_1ns1 |

At A2x 2 AX]

- KCi,n+1
(4.9)

We note that we have three unknowns (U1 41, Uj n+1- Ui, n+1) iN this equation. Collecting
terms we have

(-D V)
\ 2% 2ax/) Cign+1
(1 2D) 1
kAt +A2x+K) Ci,n+1 = At Ci,n (4.10)
(-D V
\ A2 +mj Cisgn+1
We employ a canonical form as follows:
2iCi1,n+1 +biCins1 +CiCisynag = d (4.11)

where a;, b;, and c; are the coefficients of the unknowns in Equation (4.10), and d; is the sum
of all terms on the right hand side of Equation (4.10). In general d; will be comprised of
terms involving Ci+1,n’ Ci—l,n’ Ci,n and source/sink terms. We will use this canonical form
through the rest of this course.

19

A solvable matrix form of these equations for IR = 5 is:

[by ¢¢ 0 0 O[C] [dp]

la, by, ¢, 0 ollc,| ldyl
0 a3 by c; 0llcgl =ld,l (4.12)
lo 0 a b, ¢ llc,! gl

0 0 0 a stLc:SJM lds |,

Note that there are five equations and five unknowns. The terms a; and cg are missing. It is

always necessary to remove these two coefficients using the two boundary equations;
otherwise no unique solution to the equations will exist (e.g., five equations with seven
unknowns).

To remove these two terms from Equation (4.10) we substitute our boundary conditions as
follows:

Inlet (
1 2D
L2 0,
1 (D V)
= At Cl,n +KA2X + ZAX) C|_11n+1 (413)
(-D V
\ 2 +m) Ci+1,n+1
where C;_; . is a known boundary point.
Figure 4.5 Backward Difference - Inlet Boundary
Exit
(—2D)
", Cii,na
(1 2D 1
KA'[+_+K) C|n+1— At Ci,n (4.14)

20

Figure 4.6 Backward Difference - Exit Boundary (zero flux)

Note that C; ; ;1 = Cj;q n4+1 @nd the terms resulting from the first spatial derivative vanish as
they did in Equation (4.7).

Equation (4.12) is a tridiagonal matrix. A system of equations described by a
tridiagonal matrix is very easy to solve if one uses the specialized Gaussian Elimination
technique called the Thomas Algorithm. Appendix A shows the Thomas Algorithm.

4.3 Crank-Nicolson

The backward difference approach can be improved by using a centered, second-

order correct analog for the time derivative. The method is frequently called Crank-

Nicolson, after its developers.

The analog appears as follows:

@)
T
o

Figure 4.7 Crank-Nicolson -Interior Points

O Hn+1

@)
+
®/ @)n

i-1 1 i+1

Figure 4.8 Crank-Nicolson - Entrance Figure 4.9 Crank-Nicolson - Exit
Boundary Boundary

21

The “+” sign represents the center of all analogs. The spatial analogs are averaged over the
two time levels. After substituting the analogs into Equation (4.1) we obtain:

(D V). (D, V)

\op2 4ax) TR UoA2¢ Taax)

(1 D K (1 D K

St LI v o 2))
(=D, V) (D V).

202 " anx) N4 \2a2¢ ~ 4ax) ~HER

This set of equation forms a tridiagonal matrix just as the backward different set of equations
formed a tridiagonal matrix. The boundary conditions are also applied in a similar fashion,
except that terms on the right hand side (e.g., C; 4 , for the inlet boundary) must also be

eliminated or resolved by substitution. Crank-Nicolson, like backward difference, is
unconditionally stable.

If we define the parameter f and f* (which equals 1 - f) we can generalize a computer
code to solve forward difference, backward difference, Crank-Nicolson, and intermediate
values. The equation becomes:

(D V). (fD_fV)

KAX ZAX) 1-4n+l1 KAzx 2AX)

(Alt+2f—2+ﬂ<) Cinn = (ﬁ ZAfZD—fK) i (4.16)
(D V). (fD V).

k A2y 2AX) i+1,n+1 KAZX_ZAX) i+1l,n

When f = 0.5 Equation (4.16) becomes Crank-Nicolson. When f = 0 it becomes forward
difference, and with f = 1.0 it is backward difference.

We reviewed these three methods to get you started on solving PDEs. While you
developing your computer codes we will cover several other techniques, which have
specialized purposes. Figure 4.10 shows a block diagram of a program that could be either
Crank-Nicolson or backward difference.

4.4 Richardson’s Method

Richardson’s method is the “intuitively obvious” method but has unfortunate results;
however, it is important to be aware of it and know when it can be used.

22

Figure 4.11 Richardson’s Method

Consider the equation

23

(4.17)

Preliminaries. Dimension, initialization, opening
and closing of files, reading input parameters,
initial conditions, etc.

v

Set Upew to the initial conditions

y

Calculate A, B,C arrays
(left hand side)
Linear Problems Only

v

Exchange Levels <
Uold = Unew (i=1,iR)

v

Calculate D array
(right hand side)

v

Call TA to calculate
Unew

v

t=t+At

v

Print 277

v

Stop 7?7?

Figure 4.10 Block Diagram of a Crank-Nicolson or Backward Difference Program.

The obvious method is to use the following analog.

24

ui,n+1_u| n-1
2At

Az (|+1n 2ui,n"'ui—l,n) (4.18)

This method is second-order correct but is unconditionally unstable. Richardson realized the
instability only after using it for several years.

The method has very little application, though it can be used for short term problems which
require only a few time steps. Weather prediction is one such problem.

The method is non-self-starting. It requires two values of u; at old time level. We obtain one

level from the initial condition. We must use a self-starting method, such as forward
difference to obtain the second. Normally we cannot assume values for both initial time

levels. If we assume that u; ; , = U;

iy We are assuming that g—l: =0 att=n+1/2, which is

usually not true.

4.5 Dufort-Frankel

A modification to Richardson’s method was proposed by Duford and Frankel. We
can obtain a stable condition by averaging to remove the central point from the space
derivative in Richardson’s method, as follows:

1
Uin =7 (Ujnst + Ujn-1) (4.19)

After substituting this in Equation (4.18) our new analog becomes

2DAt
Uint1—Ujn-1 =75 2x (Uis1.n —(Uins1+ Ujn-1) + Uj1n) (4.20)

We can solve for u; ,, 1 as follows:

[2DAt (2DAt 2DAt 2DAt
Ui n+1\1+ j k) Ui n—1 "‘E Ui—1n +E Uit1n (4.21)

This method is second-order correct and unconditionally stable. Its properties are
inferior to Crank-Nicolson and it is seldom used, unless simplified computational
requirements are needed. The problem with this method, like all explicit methods for
parabolic PDEs, is that the solution crosses characteristic lines.

4.6 Parabolic equations with small D compared to V and L

25

A frequently encountered modeling need is to solve parabolic equations with small values of
D. This occurs, for example, in a long, tubular reactor that is almost plug flow but has a
significant mixing. The concept of axial mixing, originally described by Taylor, is one of the
phenomenon that creates dispersion along the traveling velocity front.

It can be shown that Crank-Nicolson produces oscillatory solutions when the following when
the following condition:

2D

AX >— (4.22)
VL

or AX > 2 (4.23)
Pe

This can be a severe constraint and can control execution time. Rather than simply reducing
AX, alternative methods can be used. These methods have sometimes been called “upwind”
methods.

The following sections describe several methods to solve these problems without suffering
the time penalty associated with equation 4.22.

4.7 Characteristics Averaging (CA)

Crank-Nicolson can be modified to solve the near-hyperbolic problem by diagonally
averaging the terms involving the first spatial derivatives. We use a second-order analog

. AX
written over 7 as follows:

oul Uiy (4.24)
é)X i+1/2 AX

We substitute this analog into Equation (4.1), with the other second-order spatial and time
derivatives as follows:

Uirtnaa(—a) b - DK
I+1,n+1 2A2X I,n At 2AX AZX 4

1 V D K 1 V D K
Uj + + +— = Ui - -—— 4.25
D Cyvayw A2x 2 ElCyvaryw A2 2) (4.25)
N (1_V_D+K) . (+D)
FIHON 2Ax A 4 2N a2

26

To include the reaction term we used a four point averaging scheme. This technique
can solve the range of parabolic to hyperbolic conditions if the constraint V = ™ IS

. A . . :
followed. By requmngz)t(=V, many of the terms in Equation (4.25) vanish, and a two

point diagonal average for the reaction term should be used. Equation (4.25) becomes

-D D
X X
|+1,n+1(2A2) |,n(2A2)
1 D K 1 D K
Ui (= 4 —— 42} = g (——— D 4.26
|,n+1(At AZX 2) i 1,n(A,[AZX 2) ()
-D D
Ui_1ns+1(——) Ui—o,n (=)
i-1,n+1 2A2X i-2,n 2A2X
i+1

O\ [O\O n+1

Figure 4.12 Characteristics Averaging - Interior Points

This solution technique is quite useful and can be generalized like Crank-Nicolson. It
can be used for a wide variety of Peclet numbers. We shall later see that this solution

technique, with V = N is always parallel to the characteristic lines. It is similar to a

technique called Keller-Box.

The exit boundary condition can be conveniently handled similarly to Crank-
Nicolson. The entrance boundary condition is more difficult. If the boundary is located at i -
1, then both C;_; ,,and C;_, ,, must be known. This condition is similar to non self-starting

analogs with respect to time, such as Richardson’s method.

. . oC
If one assumes C;_; =C;_, , a large error results. It is the same as assuming that 8_
X

is zero at i - 1/2, which is certainly not true. No entirely acceptable procedure exists for the
entrance boundary condition. One can write a Crank-Nicolson or Backward Difference
analog for the first analog and obtain acceptable results if the spatial and time increments are
carefully selected.

27

The CA technique works very well when V is constant. It is a simple matter to set
= and a non-oscillatory solution is obtained. Problems arise when V is not constant. In

this case, the locations of the grid points must be calculated before the solution is calculated.
In cases where V must be estimated or is a function of the solution, the grid points cannot be
exactly located along the trajectories defined by V and numerical dispersion occurs. The
Method of Characteristics is a better way of handling the changing locations of the grid
points, but is only useful for truly hyperbolic equations (D=0).

4.8 State Variable Formulation
Weaver et al (19xx) introduced a technique which is actually a clever use of the state

variable concept from process control theory. The procedure is to reduce the second-order
PDE to two first-order PDEs. If we start with equation 4.1 and substitute as follows:

ou

Xz 4.27
toz , (4.28)
PeoX ot

For this formulation, the Centered Difference technique (introduced in the chapter on
hyperbolic equations can be used. After the terms are collected a penta-diagonal matrix is
created, which can be solved using the pentadiagonal algorithm or the bi-tri algorithm. (see
the Appendix). Weaver et al report that the method is broadly applicable, spanning a wide
range of Pe. The method has an important condition related to the boundary conditions,
which can implemented exactly, unlike CA or in the following cases.

4.9 Non-central analogs

A simple way of overcoming the oscillatory behavior is to use non central analogs. For
example, if Centered Difference analogs are combined with the second derivative analogs as
show in Figure 4.13

Figure 4.13 Non-central analogs

28

This formulation is not second-order correct but can work. Handling the boundary conditions
requires some creativity.

Another alternative, proposed by Price, Varga and Warrren (19xx) uses a second-order
correct analog for the first spatial derivative as follows:

—4u. .
au :3u, u,+u,, (4.29)
é’X i,n+1/2 ZAX
This analog can be written with the second-order correct second spatial derivative analog,
centered at i and n+1/2 to create penta diagonal form (the new time level includes for values

of u, from i-2 to i+1).

4.10 Summary

Crank-Nicolson and Characteristics-Averaging are the methods of choice for solving
one dimensional parabolic PDE’s with split boundary conditions. They are computationally
very fast. Some investigators prefer finite element techniques, but their preferences are made
on the basis of ease of use, or super computer compatibility. For the simple equations
described herein with regular geometries, the finite difference techniques are superior.

29

5. PARABOLIC EQUATIONS IN TWO AND THREE DIMENSIONS

Our one dimensional transport equation in one dimension frequently occurs in two
dimensions. We can extend some of our one dimensional concepts to two dimensions,
although there are a number of complications. Consider the following equations:

a_u a2y o%u ou ou

=Dy—+Dy—-Vy,—-V,— —Ku 5.1
X ox2 y8y2 X ox yay (6-1)

5.1 Forward Difference in Two Dimensions

First we extend Forward Difference to two dimensions, as follows:

Figure 5.1. Forward Difference Extended to Two Dimensions

Yijntt —Yijn _ D [Uit jn—2Uijn+ “i—l,j,nlr D rui,j+1,n —2Ujjn+ Uij1n]
X

At k| A2x Y| A%y
—Vx|_ i+Ljn —Yi 1’J’n—|—Vy Li+Lln — 7ij-ln —Ku;j in
| 2 AX 2Ay] v

(5.2)

Solving for uj j n+1 and collecting terms we obtain

Ui S0
r ZDXAt 2DyAt —|
Ui,j,n+1 = + Ui,j,ntl— Azx — 2Ay —KAtJ

30

- [DyAt VAL
I+l,J,ﬂ|_ AZX ZAXJ
[DyAt VyAt]
Ty |
I_DyAt VyAt—|
Xy 2ay |

+u

for
1<i<iR 1<j<jR

(5.3)

We see our equation is explicit. The equation is much more forward than backward, and has

severe stability constraints. Boundary conditions are included as before with Forward

Difference. However, we now have four sets of boundary equations.

Consider the case when 2—; =0atj=jR.

This boundary condition exists for all i, as shown below.

The analogs become
o I_DXAtJrVXAt—I
FLIRALTAZ T Ax

[2D,At 2D At 1
ui’jR’nL X A _KAtJ
D, At VXAt}

u

A% 2AX
[2Dy At]
ui,jR—l,nLA_z)/J

Uj jR,n+1 = Ui+1,jR,n[

(5.4)

For the special case at the four corners, we have two boundary conditions to implement, as

when
i=1,j=jR and Ujjr,n = Uo(t)
Ug jrn+1 = Uo(t +At)
or in the case when au =0, and u =0
OX oy
ati =iR, j=]JR
B 2D, At
UiR, jR,n+1 = UjR-1,jRn W

31

[2D.At 2DyAt]
+ UiR,ijLl— X _ y__ KAt

AP Azy

[2DyAt]
"‘UiR,jR-l,nL AZyJ

(5.5)

Conceptually the boundary conditions are the same as for one dimension, but must be
implemented along all four sides. The number of boundary analogs becomes 2jR + 2iR-2.

The stability constraints on the forward difference make it a poor choice for most problems.
It is conditionally stable subject to the following constraint.

At At
Dy—5— +Dy——<1/2 5.6
x2x TV 2y (5.6)

5.2 Backward Difference and Crank-Nicolson in Two Dimensions

Now let’s extend our one dimensional backward difference technique to two
dimensions. We use the following analogs:

Figure 5.2 Backward Difference Extended to Two Dimensions

i-1 j-1

Figure 5.3 Crank-Nicolson Extended to Two Spatial Dimensions

32

We obtain

DyAt VAt
Ui—1,j,n+1| ~ A2 > Ax
[2D.At 2DyAt]
ui,j,n+lL1+ AZXX + Azyy +KAtJ = Ui,j,n
D, At VXAt}
20 T oy
A°X 2AX
[DyAt \yAt]
Uj j— 1n+1L Agy - 2AyJ (5.7)
[Dy At VyAt—|

Uj j+1, n+1L Agy 20y J

u i+1,j,n+1[_

We see that we have an implicit solution with five unknowns. At first glance it seems that
we can use the band algorithm.

If we use a canonical form, with the i-1, i, i+1, j-1, j+1 terms corresponding to a, b, c, e, and f
coefficients, we will obtain the following matrix. Only one equation is shown from an
arbitrary size matrix. The dots represent other terms or zeros.

7
ul—lj

bi Ci € fi U

ul+lj| = (5.8)

I I
| 1] |
|] |
. 1] B
) i, |
) 1
I BN

Note that the uj_1 j, Uj j and uj,1 j terms are arranged in the u vector in ascending order of i. If

the next equation is written (i.e., incrementing i to the next grid point) in the same way as the
equation shown, an error will result. The a;, bj and c; terms will be multiplied by uj j, Ujy j

and Uj j+1.

It is not possible to order the terms in Equation (5.8) to produce a pentadiagonal matrix.
Correct ordering results in either a sparse matrix or a matrix with 2 diagonals separated by
zeros from 3 main diagonals. In either case, matrix inversion is quite time consuming and
not possible with existing computers for large problems.

33

The later case, with 2 diagonals separated from the 3 main diagonals, is easier to solve, and
the there are proprietory super computer routine that can invert this matrix, for well behaved
situation.

We can extend Crank-Nicolson to two dimensions as we tried with backward difference, but
we would still have a sparse matrix.

5.3 Alternating Direction Implicit in Two Dimensions

A technique which combines the properties of backward difference and forward
difference exists, which is unconditionally stable, and procedures an easily solved tridiagonal
matrix. The method is called Alternating Direction Implicit (ADI) and was developed by
Peaceman and Rachford (1955). The name arises because we write hybrid analogs that are
implicit in one direction and explicit in the opposite direction. We alternate the explicit and
implicit directions at each new time level. Usually we divide each time step into two parts,
and integrate over each direction at At/2. The analogs appear as follows:

n+l

n+1/2

© half level, unknown at n+1/2, known at

® oid level, N4l
known half level, unknown at n+1/2, known at
O n+1

Figure 5.4 ADI Analogs [Implicit X(i), then Implicit Y(j)]

n+1/2

Figure 5.5 ADI Analogs [Explicit Y(j), Implicit X(i)]

The analogs are developed as follows, using At/2 as the basic time step.

implicit x, explicit y

Ui—1,j,n+1/ 2[_ szAt _M
- 2A°x 4AX
Ui j n+1/2[1+ DéAt L
b A°X 4
Uir1,j n+1/2[—[)¢2At +M
b 2A°x 4AX
Figure 5.6

implicit y, explicit x

[Dy At vyAﬂ
ULl T2 " Ay |
[DyAt Katl
Ui’j’n+1L1+ATy +TJ
[Dy At vyAﬂ

Ui,j+1,n+1L_I2y +4_AyJ

rDyAt VyAﬂ

Upianl =5+
I 202y T any |
[DyAt Kat
AR
[DyAt VyAt]
u.. ——___ c———n.
I’J+1'nL2A2y 4AyJ

(5.10)

n+1

n+1/2

ADI Analogs [Implicit Y (j), Explicit X (i)]

DyAt VAt]
5 +
2A°x 4AX
DyAt KAt
APX 4]
DyAt VyAt]
2A%x AAX

Ui—l,j,n+1/2[

Ui,j,n+1/2[1_ (5.10)

Ui+1,j,n+1/2[

This procedure works well and is very widely used to solve 2-dimensional parabolic and
elliptic PDE’s with regular boundaries. The procedure requires that we divide our approach
into two types of analogs. We write our program as follows:

35

Preliminaries

v

Exchange Levels
Uold = Unew (i=1,iR)

v

Calculate
Right Hand Side

v

Call TA
Explicit Y, Implicit X

v

Exchange Levels
t=t+At/2

v

Calculate
Right Hand Side

Stop ???

v

Call TA
Explicit X, Implicit Y

Print ???

v

t=t+At/2

Figure 5.7

We can improve our implicit analogs in ADI by averaging them at the old time level. The
analogs for implicit x, explicit y would be written as follows:

36

n+1/2

Figure 5.8 Modified ADI Analogs [Explicit Y(j), Implicit X(i)]

U r -Dy At VAt DyAt +VyAt
I—l,j,rH—l/ 2 4A2X 8AX i,j-1,n 2A2y 4Ay
D,At KAt _ DyAt VyAt
Ujjne/2|1+ > A2x + 5 = Ui 202y _TAy
U:) |:—DXAt + VXAtj| 1 DyAt DXAt K At
WL Ty 2y T BAX Bin | TTAry oA 4
D At V, At
ui_l'j'n[422x " 8XAX}
(5.11)
DAt VAt
Hitdjn AN?X 8AX

We would develop similar analogs for the opposite direction.

At first this appears to be an improvement over ADI, since the implicit analogs are second-
order correct. Unfortunately the procedure is conditionally stable, and is generally inferior to
ADI. One might choose to use it for a stiff problem (very large K) where the required time
step is so small that stability is assured.

5.4 Improved Notation

To see that this method ADI is more forward than backward, we can develop a
shorthand. We use the one dimensional diffusion equation for starters.

Let
Uj —Uj_
qui,n _ |+1,r12AX| 1n (5.12)
Similarly

37

u: —U:
Sylljn = —'I%ﬂ (5.13)
and finally
Uj —2Uin +Ui_
Siui,n _Zi+lin AZI)? i—-1n (5.14)

We can use this notation to “shorthand” our previous work. For example, we can describe
solution techniques for Equation (4.1) as follows:

Forward Difference

8 tUj n = DS gl n — VUi n — KUj (5.15)

Backward Difference
2

dtUj n = DOy Uj nt1 — VOyUj nt1 — KUjnyg (5.16)

Crank-Nicolson
D .» D .o V V K K
8tui,n = E 8xui,n +E 8xui,n+1 _Esxui,n _Esxui,nﬂ _Eui,n _Eui,n+l (5.17)
or
2
OtUjn = DOy Uini1/2 —VOxUini1/2 —KUjni1/2 (5.18)

We can also write Crank-Nicolson as a two step procedure. We drop the advective and
reaction terms for simplicity.

8Ui,n = 5xUin (5.19)

Stljn = Siui,n-i-l (5.20)
Summing

2 8yUjn = S5Uj n +85Uj na1 (5.21)
or

SiUin =1/ 282U +1/2 85U; n4a (5.22)

It is easy to see that Crank-Nicolson is the alternating application of backward and forward
differences.

Now lets apply our shorthand to ADI. We first need to define derivatives in two spatial
directions

Ui jn+1 = Ui jn

O¢Uj jn = o

(5.23)

38

) Uitzin —2Uijn tUi_gj,
Slijn = L A'Z;(“ SnCPHL (5.24)
) Ui jrtn — 2Ujjn +Ujj-1n

Next we can write the two step ADI procedure as follows:

2 2
OtUj j,n = OxUjjn+1/2 +OyUjjn (5.26)
2 2

OtUjjn+1/2 = OxUjjn+1/2 +OyUjjns1 (5.27)
The location of the time derivatives can be determined by averaging the time indices of the
spatial derivatives on the right hand side, e.g., (n) and (n + 1/2) averages to n + 1/4 for the x
direction, and (n + 1/2) and (n + 1) averages to n + 3/4 for the y direction. Averaging the two
analogs (1/4 and 3/4) gives 1/2. We see that the time derivatives are located at exactly the

half-way point between the old and new time levels. ADI is analogous to Crank-Nicolson in
this case.

Now let us examine the modified ADI which we noted was conditionally stable.
2 2
O¢Ujjn = OxUijjn+1/4 +OyUijjn (5.28)
2 2

OtUjjns1/2 = OxUijjns1/2 +OyUjjn+3/4 (5.29)
We average to find the x derivative at 3/8, and the y derivative at 3/8. This indicates that the
procedure is more forward than backward, and this causes conditional stability.
5.5 Three Dimensional Problems

We now apply our techniques to three dimensional problems. Consider three

dimensional diffusion equations. Extrapolation of ADI to three dimensions gives the
following:

OtUj jkn = OxUijk,n+1/3 +OyUijk,n +O2Uijkn (5.30)
3k 2, * 2, *% 2

é"(ui,j,k,n+1/3 = 5x ui,j,k,n+l/3 + 5yui,j,k,n+2/3 +5z l'Ii,j,k,n (531)
Fokk 2 x 2 k% ARET]

OtUj j k,n+2/3 = OxUjj kn+1/3+OyUjjk n+2/3+0z7Ujjk,n+1 (5.32)

The increasing number of asterisks denote implicitly calculated analogs.

Now we average our spatial derivatives and discover that 6)2(is centered at 1/3, 8;2, is

centered at 4/9 and 8§ is centered at 1/3. Therefore our extrapolation of ADI to three

39

dimensions is more forward than backward, and we should expect conditional stability. In
fact this procedure is conditionally stable. We must look for other methods.

Rachford proposed a modified ADI for three dimensions which is unconditionally
stable by only first-order correct. We can describe it as follows:

OUj jkn+1 = OxUij jkn+1 +OyUijkn +90zUi jkn (5.33)
sk 2 % 2 k% 2

O¢Uj j k,n+1 = OxUi jk,n+1 +OyUijkn+1+0zUjjk,n (5.34)
BT 2 * 2 ek 2 kek

OUj jkn+1 = OxUi jk,n+1 +OyUijkn+1+0zUjjk,n+l (5.39)

The technique requires that the new time level, n+1, be calculated three times. Itis
calculated implicitly, using the x-direction derivatives in Equation (5.33). It is again
calculated implicitly in Equation (5.34), using y-direction derivatives. In Equation (5.34),
the results for u calculated in (5.33) are used as “knowns” in the x-direction derivatives,
while the z-direction derivatives are still represented using the known values of u at the n
time level. In Equation (5.35), the values of u are calculated a third time and final time,
using the z-direction derivatives. The results for u from Equations (5.33) and (5.34) are used
to represent the known values in the x and y directions, respectively. In all three equations
the time derivative contains a u .1 unknown, which is calculated implicitly the unknowns in

one spatial derivative.

Only the last values of n+1 are remembered for the next time step. That is to say,
only the results of Equation (5.35) are stored and they become the old time level at the next
time step. The time derivative is represented by the shift from left to right in the paper, since
we cannot draw in four dimensions.

To further improve upon the Peaceman and Rachford three dimensional ADI, Brian
(1961) developed a modified set of analogs which are unconditionally stable and 2nd order
correct. They are written as follows:

x 2 2 2
O¢Uj jkn+1/2 = OxUjjkn+1/2+0yUijkn +0zUjjk,n (5.36)
St =82u] 52u” 82u; | 5.37
tUij,k,n+1/2 = OxUijkn+1/2 T OyUij jkn+1/2 T OzUj jkn (5.37)
*kk 2 % 2 kk 2 dekk
OUj j k,n+1/2 = OxUijkn+1/2 +OyUi jkns1/2 +O7Ui jkn+1/2 (5.38)
2 2 k% 2 ko
OtUjj kn+1 = OxUi jkn+1/2 +OyUijk,ns1/2 +07Ujjkn+1/2 (5.39)

The values of u are calculated three times just as in the Rachford ADI. Equations
(5.36 through 5.38) implicitly calculate u using a different set of spatial derivatives. The
final value of u is calculated in Equation (5.39). which is completely explicit. In practice
Equation (5.39) can be combined into Equation (5.38) to save computer time, and is shown
here for clarity.

40

The computational requirements for multi-dimensional problems increase
exponentially. It is easy to see that a one-dimensional problem required one use the Thomas
Algorithm to solve for the new time level. For ADI with an even number of grid points in
each direction, the Thomas algorithm is called iR times for each new half level, or 2jR times
to advance one time level. For three-dimensional problems with an even number of grid
points, the Thomas algorithm is called 3 iR? times for each new time level. To see this
impact on computer time, a 100 grid point problem, which is a frequently used number of
grid points for a one-dimensional problem, would require 1, 200, and 30,000 uses of the
Thomas algorithm for one, two, and three-dimensional problems, respectively. We can see
that the computational requirements for three-dimensional transient problems are quite
severe, which explains the dearth of three dimensional problem solutions, especially with
large numbers of grid points.

41

6. ELLIPTIC EQUATIONS

The most common occurrence of elliptic PDE’s for us is steady state diffusion
problems. Consider non-steady state diffusion in two dimensions.

2 2
ou ou oau
Dy—%+Dy—5 =— 6.1
Xox2 Yoy? ot (6.1)
at steady state % =0
2 2
ou ou
Dy—+Dy—— =0 6.2
o Oy (6.2)
recalling our classifications
8°u Gl 8°u

+b +C =0 6.3
NG oxoy ay2 (6:3)

so A=Dy,andC=Dy,andB=0
Since Dy >0and Dy >0
B ~4AC = -4D,D, <0 (6.5)

Therefore this equation is always elliptic for all values of Dy and Dy. The problem is

parabolic when % # 0.

There are a number of possible solution techniques. One method is to use the parabolic
method, integrating to steady state. ADI is popular to use. A second method, altogether
different from parabolic methods are a class of methods, called relaxation or iteration
techniques.

2 2
i u u . .
Consider 2nd order correct analogs for ? and ﬁ for Equation (6.2) with a source or
y X

sink term, b.

Dxfui+1,j—2Ui,j+Ui—1ﬂ+D [Ui ja1—20i 5 +Ujja _
L A?x J yL Ay J

(6.5)

42

Figure 6.1 Elliptic Analog
for the convenient case of

Dy =Dy =1.0, and Ax = Ay, we get

2
Ui j —i (Ui, j+ Uicg,j+ Ui ja1 + Ui j1) = bi,j% (6.6)
Consider the following grid
0000000 0000 °
® OO OO OOODODOO0O e
®@ OO O0O0O0CO0ODOOO e
®@ OO ONO\NOOO OO0 e
@ 00Q[oj]Ooo0o00O @
®@ O OO COO OO0 e
®@ OO O0O0O0CO0ODOC0ODO e
| OO ONONONONOIONONON)
®@ OO O0O0O0COODOOO e
o OO0 000000 e
@|o|]Dooocooo0o00 @
o O 00 000 0 000

Figure 6.2 Grid of Points Showing Analog Placement (filled circles are known
boundary points)

Note that there are no initial values!

We have a problems with five unknowns. As with the direct extrapolation of Backward
Difference to two dimensions, we have a set of equations that are not convenient to solve
conventional tools for solving simultaneous equations. The analogs lead to a sparse matrix.
Consequently we develop iterative methods, whereby we guess for some of the unknowns
and use these guesses to solve for other unknowns. By comparing solutions to guesses to

43

create new guesses we obtain better and better solutions, until we eventually converge.
There are five popular methods, often called relaxation techniques or iterative methods.

Jacobi

Gauss-Seidel

Line Relaxation

Sucessive Over Relaxation (SOR)
Sucessive Line Over Relaxation (SLOR)

arOdDE

We develop techniques for each.

6.1 Jacobi and Gauss-Seidel

A jt1
@ i O Calculated
@ Old Guess (p)

v j - 1

Figure 6.3 Jacobi Analog

Write the equation as

A%x

1
Ui, j = Z(u”l’ﬁ Uj_1,j +ui,j+1+ui’j_1)+7bi,j (6.7)

We superscript the variables to differentiate between the guess and calculated values, as
follows:

pt1_ 1. p p p p AX pit
Ui =7 Ui j+ Uiigj + Ui + Ui j0) + =~ bijj (6.8)
where
p denotes initial guess or estimate for u or b

p+1l denotes calculated value for u or b.

By iteratively applying the above equation we can eventually produce solutions. We

solve for all values of uP*1 at i j, and then substitute u'ﬁ}”l for uf;.

The problem is that Jacobi is very, very slow to converge. We can improve the Jacobi
technique by using a coarse grid early in the problem, then refining it. In general, the finer

44

the grid, the longer it takes to converge. Now if we pay attention to our grid, we get a little
smarter.

Grid moves across and then up

ooce

000 Of0\0O O @
+@
v

0000

(ONoNoN)
oNoNoNeoX |

(oNoNoNolNoNoNoNON)
(ONoNoNoNoNoNONON)
(oNeNeolioNoNoNe o J

iooooooooc
eofofooooooooe

00O
O0O00O

¢/

@0 Do 0000000 e

X XXXy’

Figure 6.4 Grid of Points Showing Analog Placement (filled circles are known boundary
points)

We note that we have p+1 values for other analogs.

We can improve the Jacobi method as follows:

2
4 1 +1
uf; :Z(uplj up_lj+upj+1+ Jl)+ bp (6.9)

Note that we have already calculated uf”llj and u'“l1 when we wish to calculate

p+1 We will always know two of the terms no matter which way we progress through our

grld points. This modification of the Jacobi method is called Guess-Seidel or successive
relaxation. Gauss-Seidel converges twice as fast as Jacobi.

We always choose to use Gauss-Seidel over Jacobi if we are able to do so (usually
you can). If Jacobi converges, so will Gauss-Seidel. These two methods are often called
Relaxation methods because they compute the data in a successive manner, and “relax” to a
solution.

45

6.2 Line Relaxation

We note that for Jacobi we were only using one point at the new iteration level, p+1.
With Gauss-Seidel we used two more new points, for a total of three. What about using four
new points?

A jt1
jt1
@ Calculated] A
@ j @0Ild Guess (p) . O@cCalculated
ONew Guess (p+1) @] @0I1d Guess (p)[
g j-1 U ONew Guess (p+1)
j-1

i-1 i i+l i-1 i i+l
Figure 6.5 Gauss-Seidel Analog Figure 6.6 Line Relaxation

We see that we no longer have an explicit problem. (For the sake of simplicity we assume
that we have no souce or sink terms). We no longer can calculate new guess, i.e.,
p+1

1 1
——Uu: +up+1_—u

p+1 _l p+1 l p
4 LT HL Ty i—1,j—4ui,j—1+ Uj (6.10)

4 |,j+1

p+1

i—1j OF uﬁ_ll (not both!) from previous steps.

We have three unknowns. We can obtain u

Recall that with Jacobi or Gauss-seidel we had two unknowns at the new level, and
we eliminated one using the boundary conditions. Now that at the boundary we have at least
two unknowns.

_p+1

ul,j

uP /L andlor uf (6.11)

So we can never get started!

We need to solve this problem by using an implicit procedure. We arrange the equation as
follows:
_%uip:lj + ui‘,)jﬂ _%uiﬁ;lj = % (uir,)jtll +U'1) (6.12)

By writing our problem in matrix form we see our problem better.

[coefficients] [uﬁ;'l]: EJf}’_ll + uﬁj] (6.13)

46

1 -1/4 0 0 0
|-1/4 1 -1/4 0 0
0o w4 1 a4 o0
o 0 -1/4 1 -u4

1!
|l
|I 1 p+1
|
|
o o o -ua 1 Jbﬁj

p =
Ugjs1 + 4U4,j—1
1 p 1 p+1

ZU5J+1 + 4U5,j—1

(6.14)

where by and bg are inlet and exit boundary values, and are equal to the points at uy j and uy j.

We see we have a linear algebra problem with n-2 unknowns. The matrix is tridiagonal, and
we can use the Thomas Algorithm.

6.3 Over-relaxation

We observe after solving many examples using any of the three previously described
relaxation techniques that the solutions monotonically progress from the initial guess to the
final solutions. It is natural to take advantage of this information, and we do this by making
guesses of the unknown values as opposed to simply using the last calculated value. The
procedure is an extrapolation or acceleration, and is most commonly called overrelaxation.
The procedure can be applied to both Gauss-Seidel and Line Relaxation. Consider the
previous equation for Gauss-Seidel:

pet _Lop et e Py Lypp
uij = 4(Ui+1,j+Ui—1,j+Ui,j+1+Ui,j—1 _4bi,j (6.15)

At the time we perform this calculation, we also know the value of u'io j- To extrapolate we
p+l

can use the difference in u'ioj and Ujj . as follows:
-p+1 +1 +1
ui,j :UE),J' +(X.(Uﬁj —UP’J') (616)
) . . -p+1 .
where u'ioj+1 is the guess we would have made without extrapolation, and u'iO}L isan
p+1

improved guess. . is an extrapolation factor if it is greater than zero. Solving for uj j we

obtain

=-p+1
uP

P (1 ol - o (6.17)

1]

47

lettingo =1+ a

ﬁF;Ll mup+l+(1 m)u (6.18)
and finally
1 1-pp1 (l-o
up? :;uiﬁ’j (-0) -) up’; (6.19)
Substituting Equation (6.17) in (6.8), we obtain
U =S wP ruPh P u'OJrl) - bp- +(1-o)uP;
0 4 i+1j TUi-1, ij+1 -1 0] I, j (6.20)

We can drop the bar above u'“1 Equation (6.18) will converge much faster than Jacobi,

Gauss-Seidel or Line Relaxatlon. The same technique can be applied to Line Relaxation to
obtain an even faster converging routine. Equation (6.20) shows the LSOR form.

The value of @ must be greater than 1 to obtain increased convergence. If it is too
large the solution will oscillate and will converge more slowly. Optional values of ® can be
obtained by determining the eigenvalues of the coefficient matrix.

Typical convergence terms to obtain solutions with 10-6 of the final solutions, for
Equation (6.2), for 5 grid points in Table 6.1. and the trend shown is typical for most
problems.

Table 6.1 Typical Number of Interaction to Obtain 10-6 Error.

Jacobi 70
Gauss-Seidel 38
Line Relaxation 21
Successive Over-relaxation 15
Line Over-relaxation 12

48

7. HYPERBOLIC METHODS

Hyperbolic equations are among the most difficult to accurately solve. This results
because of the rigid requirement to place grid points in specific locations. The information in
a hyperbolic equation flows along lines, called characteristic lines. We shall see how to
manipulate the location of the grid points to place them on the characteristic lines.

7.1 First-Order Equations

The single approach to solving a hyperbolic equation would be to try the parabolic
methods. Consider this equation:

u_

Ku 7.1
ot OX (7.1)

We would use an analog like this for a forward different or explicit approach:

n-1

i-1 i i+l

Figure 7.1 Forward Difference Technique Applied to a Hyperbolic Equation

We see that the spatial and time derivatives have no common points. This method fails to
provide a solution. Backward difference and Crank-Nicolson fail as well. Alternative
approaches might be constructed as shown in in Figure 7.2.

(’@) e\ /O
@ o) o/ @

Figure 7.2 Alternative Analogs

49

The approach that works and works well is shown in Figure 7.3.

‘ O n+1

@ \OD
i-1 i
Figure 7.3 Centered Difference Analogs

This method is called centered difference and is a convenient and practical method. If we
substitute the analogs into Equation (7.1) we obtain the following:

lrui,nﬂ —Uin n Ui_1n+ _ui—l,n—| _ _Mrui,nﬂ —Ui—in41 n Ujn — U
2 At At 2 AX AX

K
) [ui,n+1 +Uin tUji—gn1 T Ui

i—1n

:
]
]
(7.2)

The reaction term can be represented in two ways. Equation (7.2) shows a four point
average. A two point average is also possible, using the terms u; .4 and u;_q ..

The method is second-order correct in both time and space, and is unconditionally stable.
The second-order correctness results because the two time derivatives and two spatial
derivatives average to a common point, shown by the "+" in Figure 7.3. Figure 7.4 shows
how the analog would be placed at the entrance boundary.

O n+1
®)

i-1 i
Figure 7.4 Inlet Boundary Condition

If we know the boundary condition the method is explicit. The exit boundary condition is
interesting, as shown in Figure 7.5.

50

‘ n+1

i-1 i
Figure 7.5 Exit Boundary Condition
We see that we can calculate the exit point, and we do not need an exit boundary condition.
A first-order hyperbolic equation only has an entrance boundary condition. A second-order

hyperbolic equation will have two boundary conditions.

To solve Equation (7.2) we average it to solve for u ; in+1r @S follows:

1V K]
Yinl At ax 2
1,V K] [1 VK]
Y 5 T ax T2 T A T A 2 (7:3)
(1 vV K]

Yicind "X T A T2

Note that the "2" in each term canceled. Equation (7.3) can be readily programmed and the
final result is no more complicated that a forward difference program for parabolic equations.

It is interesting to consider Equation (7.3) when V = Ax/At and for K =0. We can
substitute Ax =V At as follows:

i v Tl V]
u"n+1LAt+VAtJ_u'nLAt VAt

u Vv
'“‘LAt VAt
1 V]
- —t— 7.4
LA RYYRRVYY (7.4)
The equation simplifies to
(1] (1] (7.5)

Uine1 = 1= Uiin| =
W+l oat] ™ T2t

The u;_; 41 and u; , terms vanish, and we can conclude that

51

Uint1 = Yiin (7.6)

Equation (7.6) is the solution to Equation (7.1) when K = 0 and for the condition V = AX/At.
In fact this is the only correct solution to Equation (7.1). Solutions when V # Ax/At are
incorrect. This incorrectness is sometimes call numerical dispersion. Now we should
investigate the case when K = 0.

We first observe that when we use a four-point average that the u;_; ,,; and u; , terms

do not vanish. Therefore we shall try a two-point average. Equation (7.4) for this case
becomes:

Ui,n+1[§t+K} = Ui—l,n[Ait_K} (7.7)

If we rearrange as follows:

K
Uin+1 = Ui-1n _EAt[Ui,nﬂ + ui—1,n] (7.8)

or
Ujnsr = Ui—gn — KA1/ 2n41/2 (7.9)

This is a second-order correct ordinary differential equation. We can write ordinary
differential equations along the characteristic lines. Each initial grid point is connected to
additional grid points - as many as you wish to write, along lines with slope 1/V = At/AX.
Figure 7.6 shows the characteristic lines.

-

At

X —>

Figure 7.6 Characteristic Lines and Slope

52

7.2 Method of Characteristics for First-Order Equations

The method of characteristics (MOC) is a powerful but sometimes difficult to use
procedure to solve hyperbolic equations. Centered difference, with V = Ax/At, can be
considered a special case of MOC. We begin MOC by recalling the procedure for
classifying equations. Consider Equation (7.1) with directional derivatives:

[au]
[1 V-|| ot |_|'—Ku—|

Lt dXJL@ J | du | (7.10)
X
We calculate the determinant of the coefficient matrix and set it to zero to obtain:
dx-Vvdt=0 (7.11)
or
dx
=— 7.12
” (7.12)
We now substitute the forcing vector into the coefficient matrix as follows:
[1 —-Ku]
Ldt du J (7.13)
The determinant becomes:
du+Kudt=0 (7.14)
or
du = —Kdt (7.15)
u
Equation (7.15) is easy to integral analytically, to obtain
L Kt (7.16)

ug

where ug is the initial condition [ug = u(x, 0)]. In the analytical solution it is introduced as

an integration constant. This is also the analytical solution to Equation (7.8). Note that
Equation (7.16) is valid only when Ax and At are selected so that VV = Ax/At. If we do not
follow this constraint, we obtain an erroneous solution. We call Equation (7.12) the
characteristic equation, and we call Equation (7.15) the integration equation. You can also
think of Equation (7.12) as telling you where you can calculate a solution, while Equation
(7.15) tells you the value of the solution.

53

Both centered difference and MOC provide solutions to Equation (7.1). For K=0
and V = Ax/At, both techniques are exact, which means the solution they provide has zero
truncation error. The two point average should for the reaction terms be used when V =
AX/At. In some cases it may not be possible to use V = Ax/At, and under these circumstances
numerical dispersion will occur, and it may be better to use a four point average.

We now define the Courant number. For hyperbolic systems, a stable solution is
possible when the Courant number, VAt/AX is less than 1.0.
7.3 Method of Characteristics for Second-Order Equations

For second-order hyperbolic equations, MOC can still be used and provide a

mechanism for keeping track of grid points. We return to Equation (2.7), which is two
simultaneous first-order equations which could represent the second-order hyperbolic PDE,

82U 8%u
— -—a—s =f 7.17
o2 ox? (7.17)
[ouT
| ox |
[a b ¢ d —|| ou | [f]
e g h ilay Il
Y|_1 72
ldx dy 0 0||Q/|_|du| (2.7)
o0 0 dx dyJ| x| lav |
ov
oy
We set the determinant to zero and obtain the following equation
2
(%) (ce—ah)+g—i(ai—de+bh—cg)+dg—bi =0 (7.18)
This equation is hyperbolic if Equation (7.18) has two real roots forj—i . We make the
following assumptions and we can use the quadratic formula, as follows:
A =ce—-ah
B =ai—de+bh-cg
C=dg-hi
dy] —B+VB?-4AC (7.19)
dxly 2A '

54

_B-+vB? —4AC
—B= (7.20)
) 2A

dy
dx

Note that if B2 - 4AC < 0, then the Equation (7.17) is not hyperbolic and we must seek a
different solution technique. The results of Equations (7.19) and (7.20) are direction
equations. We can pick a dx and calculate dy, or vise versa.

Next we define the integration equation, by substituting the forcing vector into one of the
columns of the coefficient matrix, and then setting it to zero, as follows:

a b ¢ f

R 7.21
dx dy O duf (7.21)
0 0 dx dv

We expand along the bottom row to take advantage of the two zeros, as follows:

a b f a b c
dxle g f(-dye g h{=0 (7.22)
dx dy du dx dy O

We expand to obtain

dx[a(gdu — f,dy) — b(edu — f,dx) + f;(edy — gdx)]
—dv[dx(bh—cg) —dy(ah —ce)]=0 (7.23)
expanding
dxduag — dxadyf, —bdxedu + dszfz + dxfiedy — flgdzx
—dvdxbh + dvdxcg + dvdyah — dvdyce = 0 (7.24)

Now collecting terms by dv and du

du(dxag — bdxe) + dv(—dxbh + dxcg + dyah — dyce)

—dxadyf, + d*xbf, + dxfedy — f;gd°x = 0 (7.25)
We divide by dx to obtain:
dy .~ dy
du(ag — be) + dv(—bh + cg +—=ah — —ce
U(ag - be) + dv(-bh + og +— ah — — ce)
—adyfy + dxbf, + fiedy —figdx =0 (7.26)

We substitute o and {3 into Equation (7.26) to obtain two new equations, as follows:

55

Let p; =ag —be

p2 =-bh-cg

p3 = adyf, —dxbf, — fedy + f;gdx (along a direction)

p4 = adyf, —dxbf, —f,edy + f,gdx (along B direction)
prdu+dv(ps +aha — cea) = p3 (7.27)
prdu+dv(py +ahP —cep) = py (7.28)

Note that p3 and p4 are different because the value of either dx or dy will be different along
the different characteristic lines.

56

8. NONLINEAR METHODS

The purpose of using numerical methods for solving PDE's is to solve nonlinear
equations, for which there are no analytical solutions. When we introduce reaction terms,
such as biological reactions or adsorption terms, we often make the equations quasi-linear.
Consider this equation:

2
ou 2
=D—5 —Ku 8.1
", (8.1)

x|

This is a quasi-linear equation. The introduction of the second-order reaction term creates
the nonlinearity. If we think about solving this equation using forward difference, we
envision these analogs.

n+1

@ \¢/ ®-

i-1 i i+1

Figure 8.1 Forward Difference Analogs

If we write the nonlinear term at the old time level, n, it can be calculated from u; ,, no matter

what sort of nonlinear term it is. For forward difference, with the nonlinear term is written at
the old time level, the numerical solution is about the same complexity as a linear solution
except that the time and distance steps will need to be much smaller. For this reason,
"canned" or "packaged" programs use the forward difference technique.

When we use a technique that requires the nonlinear term to be represented at the
new time level, we introduce difficulties in solving the resulting system of algebraic
equations. For example, with backward difference, the second-order reaction term will
appear on the left-hand side of the algebraic equations, in the "B" term of our canonical form,
as follows:

[-D

_E Ui—1n+1

1 2D 1

At +E+Kui,n+l}ui,n+1: 2l (8.2)
_—_D}u.

_AZX i+1,n+1

57

We see that we have a u2 term in the unknowns and our linear algebra solutions fail.
Therefore, we have no way of solving the equations for all our implicit methods, such as
Crank-Nicolson and ADI. For explicit methods we have a nonlinear equation for each
analog, which may or may not be directly solvable, depending upon the nature of the
nonlinearity. It may be required to use an iterative method at each point.

To solve the nonlinear PDE's we introduce two techniques to retain the linear
algebraic equations. The first is to project the nonlinear term, so that it can be replaced by a
known value. The second is iteration, which is a technique to determine how well we
projected the nonlinear terms, and to improve the projection.

There are four common ways of projecting nonlinear terms: using the old time level,
forward projection, backward projection, and central projection. All involve "factoring" the
nonlinear term into a linear portion and a projected portion. The term in Equation (8.1), u?,

would be factored into u-u*, where u* is a projected value. The "B" term in the canonical
form, shown in Equation (8.2) would become

1 2D N 1
At a2 Ui Uineg = 5 Ui

This equation is linear and the Thomas Algorithm can still be used to solve the resulting
system of equations. Any nonlinear term that we can envision can be factored in this way.
Here are a few examples:

Nonlinear term Linearized term
U2 u-u*
u u
Ks +U K +Uu*
e—u e—U*

In the case of the last term, e~Y, the linearized result would be transposed to the right hand
side of the canonical form (placed in the "knowns").

The easiest form of projection is to use the old time level. In our example case we
would use u; , = U;k,n+l- If the solution is not rapidly changing, then the change with each At

is small, and u; , = Uik,n+1 is a relatively good assumption. Note that we make the project for

each point at the new time level. For more rapidly changing solutions, we could use smaller
At. Such a procedure could work for almost any quasi-linear equation, but may not be the

58

fastest. Also we have no way, other than a sensitivity analysis, to determine how accurate
we are.

The second method is forward projection. This method uses a forward difference
program within the main program (e.g., Crank-Nicolson, ADI, etc.) to calculate the value of

uﬁml. The forward difference program uses the old time level to approximate the nonlinear

terms. The improvement of forward projection over using the old time level are mixed. The
At and Ax for the forward difference program must be selected so that the solution is stable.
It is difficult to selected a Ax that is different than the primary technique. Therefore, one
must pick smaller At's, or accept the instability. The forward difference program is only use
for one time step, since the n time level for the forward difference program is always the n
time level in the primary program. The projected values (u ik,n +1) are always discarded after

they are used for linearization; therefore, the error with each time step does not build up.
Nevertheless, the error associated with forward projection with DAt/A2x > 1/2 can be
significant.

A better alternative is to use backward projection. In this technique the nonlinear
terms are written at the n time level. An implicit solution is required and the Thomas
Algorithm works for this purpose. Stability is not a problem. Central projection is similar to
backward projection, except that Crank-Nicolson analogs are used. Backward difference is a
large improvement over forward projection or using the old time level. Central projection
takes almost as much computer time as the primary technique, and usually does nor provide
enough improvement to warrant its use. Figure 8.2 shows how a linear Crank-Nicolson
program would be modified to include projection.

The next question that arises is "what if the projected value, even with the best
projection, is inaccurate?" An obvious remedy is to decrease the time step which reduces
truncation error and also reduces the length of the projection (e.g., short At as opposed to
long At). This technique works but may produce excessive computer time, especially if there
IS a requirement to maintain V = Ax/At, as in the near hyperbolic case. A better approach is
to use iteration.

59

Preliminaries. Dimension, initialization, opening
and closing of files, reading input parameters,
initial conditions, etc.

Set Upew to the initial conditions

v

Predict u* g

Y

Calculate A, B,C arrays
(left hand side)

Y

Exchange levels
Uold = Unew (i=1,iR)

v

Calculate D array
(right hand side)

v

Call TA to calculate
Unew

v

t=t+At

Y

Print 7?2

Y

Stop ???

Figure 8.2 Block diagram of a program that uses prediction to solve a quasi-linear
equation.

60

There are three basic types of iteration: direct, modified and using a convergence
technique such as regula-falsi, the secent method, or Newton-Raphson. The first two are
often called Picard and modified Picard, respectively.

In direct iteration the first projection is the same as discussed previously. The old
time level or other methods of projection can be used. The primary method is next used to

solve for uj n4+1. After solution we have three set of U's: Uj 41, U;k,n+1 and Tuj p4q. The
Tuj n+1 is called a trial value of u; ,41. We have not yet decided to accept it. Presumably, if
it is accurate, we should accept it and increment time. If it is inaccurate then we should
estimate new and more accurate values of u; 41, then solve for new values of Tu; 1. We

should check to see if the difference between u:nﬂ and Tu; 41, as follows:

IR

82Z‘,|Uik,n+1_-|-ui,n+1 (8.3)
i=1

We use the absolute value in Equation (8.3) because it is usually faster than summing the
squares. We select an ¢ that is sufficiently small to insure an accurate solution. A sensitivity
analysis can be performed to determine the impact of € on the ovearll accuracy.

If the difference between Ui*,n+1 and Tu; 41 is too large (e.g., > €) then we select a

new value of u;k,ml. The different methods of selecting U?,n+l give rise to the different
iteration techniques. With direct iteration, we substitute U n+1 = TU; n+1. The trial values
become the projected values. It may be necessary to iterate many times, so we need to
number our trial values, such as Tu}]nﬂ, Tui2’n+1, etc., and our projected values, u*1, u*2,
etc.

If the summation is less than ¢, then the trial u values are accepted and they become
Ui n+1. EXecution proceeds, time is incremented, and the program can stop or continue

depending upon the value of t, or other criteria.

If the summation is greater than g, then a better estimate of U;k,n+1 Is required. With

direct iteration, the new estimate of U:n+1 is set equal to the trial values, Tu; 41, for all
values of i.
u;k,n+1 = TUjn+1 (8.4)

The trial values are discarded. Execution proceeds until convergence is obtained. For some
problems the solution will not converge - it diverges. A counter should be placed in the
iteration loop to insure that you do not have an infinite loop.

61

For modified iteration the value of uf,ml is calculated from the new trial value and
the old projected value, as follows:

%2 1 *]1
Uj ne1 = WITUj g + @ =wWh)uj 14 (8.5)

where f is a weighing factor that ranges between zero and 1.0, and the u}k’ml on the right
hand side are the projected values used to produce the trial values. We begin to number the

u™'s since we have more than one set. Figure 8.3 show how iteration can be incorporated into
a Crank-Nicolson program.

For problems that do not converge with direct iteration, modified iteration is more
likely to converge. Problems that converge with direct iteration will also converge with
modified iteration, but more slowly. Modified iteration should not be used unless you are
relatively confident that direct iteration will not converge.

In cases where modified iteration does not converge, or is very slow to converge, a
third option is likely. You can use a convergence technique. Using such a technique, a

better guess for U;k,n+1 is made using old projection for ui*,n+1 and the trial values they
produced. Figure 8.4 shows how such a technique could work.

62

Preliminaries. Dimension, initialization, opening
and closing of files, reading input parameters,
initial conditions, etc.

Set upew to the initial conditions

f

Predict u* <

!

Exchange levels
Uold = Unew (I=1,iR)

'

Calculate A, B,C arrays
(left hand side) ‘

v

Calculate D array
(right hand side)

!

Calculate
Call TA to calculate u*
TUnew (iteration)

* No?

e (TUneW - U*)

Print ???

!

Stop ???

Figure 8.3 Block diagram of a program that uses prediction and iteration to solve a quasi-
linear equation.

63

Tuinna

Tuina

1
Uin+t1 Uin+l

Figure 8.4

There are two lines on Figure 8.4. The first is an identity: we wish Tu = u*, and the line with
a slope of 1, crossing the origin describes this equation. The second line is defined by the

results of the first two iterations. On the first solution, we projected a value of u*, either by
using the old time level, backward, forward or central projection. We then calculated the

first trial value, Tui1,n+1, and we then make a new projection for ui*,n+1 using either direct or
weighted iteration. Finally, we calculate a second trial value Tuﬁn+1. At this point we have

four variables: two estimates for u ik,n+1 and two estimates for Tu; n41. These points are
plotted on Figure 8.4. Note that we can think of the PDE solution as a function relating
Uik,n+1 and Tu; n4+1. We provide a projected value, and we calculate a trial value. We can
represent this as follows:

TUjn+1 = f(uik,n+1) (8.6)

We can represent this function as a straight line on Figure 8.4. The slope of the line is
defined as

2 1
TUji = TUingg

m = slope = T (8.7)
Uin+1—Uin+1
The intercept is calculated from one pair of the trial and projected values, as follows:
2 *2
b =Tujpny —MUjney (8.8)
We now have two equations relating projected values to trial values, as follows:
P _ TP
Tui,n+1 - Tui,n+1 (8.9)
%
Tup e =muf o +b (8.10)

where m and b are the slope and intercept, as calculated in Equations (8.7) and (8.8), and p is
the iteration (trial) number. Equations (8.9) and (8.10) can be solved simultaneously to

64

- - - *p - - -
obtain a new projection, u; ", ; .technique can be applied as many times as necessary to
obtain convergence, The p counter is increased with each iteration.

There are other methods which can be used to quicken convergence. The secant
method can be used, as well as a method called Regula Falsi. The disadvantage of the
methods is that additional values must be stored. With direct iteration in a nonlinear

problem, we stored only two levels of u (u; , and Tu; h4+1) and one projected value, Uik,n+1-

With the described convergence, five levels of u must be stored (U; , TU; 41, Tu'ﬁ;il ,

umﬂ and u;"ﬂlll). This storage requirement could be significant with many grid points as
in two-dimensional problems.

65

9. STABILITY ANALYSIS

A solution is stable if the truncation error remains finite with increasing time. To
determine if the solution is stable we look at the difference between the real solution, u; ,,

and the truncated solution, w; ,, as n goes to infinity. This will be demonstrated using the
forward difference for the heat equation.

2
ou o"u
EL&_j D

The exact solution uses the forward difference analogs before the higher order terms have
been truncated. Substituting these into (9.1) gives

[4 2 11 2 |
U; —2U; n + U; _ 2A U; —U; At
o [kl 2|,n i-1n O :JI IX +HOTs| =| o+t ~Yin _ 0 2u| E+HOTS|
] Ax o, 4 I lin &]
9.2)

The approximate solution that is second order correct in the spatial derivative and first order
correct in the time derivative yields the equation

o rWi+1,n —2Wjn+Wij_1n 1 ~ Win+1 —Win

9.3
A2x At 5:3)
If z is the truncation error, then z; , = Uj , —W; . Substracting (9.3) from (9.2) and
substituting z; , for u; , — w;j, an equation for the truncation error is obtained.
Zivin —2Zin +Zi_ Zinsl — Zj
a f 1+1,n 2|,n i-1n +HOTS} :[1,n+1 ,N +HOTS} (9_4)
AX
Neglecting the higher order terms of the error we can now ask if z becomes infinite or
remains finite as n — 0. Suppose that there are two fixed boundaries
Ux=0 =4
Uy_1 =D (9.5)
because there is no truncation error at fixed boundaries
Zy—0 =0
Zx:]_ =0 (96)

Using the shorthand notation, the equation for z is

66

2
o SX Zi,n = 8»[Zi,n (9.7)

To solve this equation, we will use the separation of variables technique and assume a
solution of the form

Z = pnobj (9.8)

where
pp IS a function of time only and

¢; is a function of distance only

Substituting (9.8) into (9.7) we obtain

a 85 (pndi) = ¢ (Pndi) 9.9)

Because py, is not a function of x, it can be taken out of the parentheses on the left hand side
of the equation. Similarly, ¢; is not a function of t, so it is constant with respect to the time
derivative. Removing the shorthand notation for the time derivative (9.9) becomes

2 [Pne1—Pn |
Oy 0j = b 9.10
o pn Ox ¢j = ¢j I At ()
or
Ph 2 Prni1 ~ Pn
a =" o =0 9.11
S o= (9.11)
N =P+l s called the time amplification factor. If [N| is less than 1, then the time portion

Pn
of the error decreases as n — . This is called the von Newmann condition. Substituting N
in (9.10) and rearranging we obtain

1-N

2
Oy Oj i=0 9.11
x Oi + AL Oj (9.11)
with boundary conditions
(I)l = 0 IX:O
¢| = O |X=1
Now assume a solution for ¢;
¢ = Asin(mpx;) + Bcos(mpx;) (9.12)
Applying the boundary conditions
atx=0 $j=B=0

67

atx=1 ¢j = Asin(np) =0

From the first condition there are only sine terms in the solution and from the second
condition p must be an integer. Substituting the trial solution, ¢; = Asin(npx;), (9.11)

becomes

52 ASin(ﬁpXi)-i-l_AI:I Asin(mpx;) = 0 (9.13)
o

Substituting

: (
8)2(Asin(mpx;) = (Ax)2 sman p—) Asin(npx;)

into (9.13), rearranging and dividing by Asin(mpx;) we obtain

Axf 4 of A 1-NT
sin(rp >)L Ax)2 sin®(7p 2) + AL J_O (9.14)
or /
= (XAt i 2 — = DY
=1- Ax)zsm | P 2) p=0, £1, +2,

: AX, . ..
We can cancel the sm(np7) since it will generally be non-zero.
Recalling that the criterion for stability is [N| <1

1—(v Slnz(np—) <1 (9.15)

The absolute value signs can be removed by converting (9.15) to the joint constraint

doAt . o AX
1- Sin —)<1 9.16
o2 () (9.16)
and
doAt . o AX
1- sin® (mp—) > -1 9.17
()2 (np 2) (9.17)

. o . 4aAt . . .
Since sin? is always positive and = > Is positive for a > 0, (9.16) is met for all Ax and At.

The maximum value for sin? (in) is 1, s0 (9.17) becomes

68

1- 7 1 (9.18)
or
(z XA)tZ s% (9.19)

This is a necessary condition for stability of the forward difference method. The
conditions for stability of other methods can be determined from the same procedure. Recall
that the differential equation was first written using the complete Taylor series expansion.
Second, the equation was written using the analog approximations. An equation for the
truncation error was then obtained by substracting the approximate equation from the
complete Taylor series equation. A solution consisting of a time dependent component and a
spatially dependent component was assumed and substituted into the error equation. For
stability we required that the magnitude of the ratio of the time component at one time step to
the time component at the previous time step be less than 1. This is necessary for the
truncation error to remain finite. Note that stability does not guarantee an accurate solution
because the truncation error may be very large even though it is finite.

The stability of the backward difference method will now be demonstrated using
(9.1). The differential equation is first written using Taylor expansion around the point
Ujn+1- The backward difference analog equivalent of the equation is then substracted. After

truncating higher order terms this leaves the following equation

o |_Zi+1,n+1_ 22i,2n+1 + Zi—l,n+1—| _ Zjin+1—Zin (9.20)

Again assuming a solution of the form z = p¢; (9.20) becomes

’ _
o 8y (Pn10i) = ¢i—(p”+1At o) (9.21)
Taking pp4q outside of the spatial derivative and substituting in N = Pnil yields
Pn
2 ¢ N-1
Oy pj =———— 9.22
X0 =~ (9.22)

Since the boundary conditions are the same as in the derivation of (9.19), we assume a
solution of the form ¢; = Asin(npx;). After substitution and rearrangement, (9.22) becomes

1
4oAt . AX
> sin? ™
A“X

(9.23)

1+

69

For o > 0 and finite, 0 < N < 1. Therefore, the von Newmann condition is met for

(AX)?

any choice of Ax and At, and the method is unconditionally stable.

If this procedure is repeated using Crank-Nicolson analogs, the following equation
for N is obtained

1-2 {OL—Atsin2 _npr}
A%X 2

t. AX
1+2 [&;smzﬂ}
A“X

N =

(9.24)

In this case -1 < N < 1 for a > 0 and any choice of Ax and At. This method, then, is also
unconditionally stable.

For the final example for stability analysis the stability condition for the two
dimensional advection-dispersion equation will be derived for the explicit analogs. The
governing equation is

ou a%u % ou v ou

— = DX_2+Dy8_y2_VX5(_ ya—y

— (9.25)

Expressed using the Taylor series expansion using j, k and n as the indices for x, y, and t, this
becomes

[2Ui p+U 2y ot |
i - i i— AX u
| AX " Xk]
N Dy| jk+1,n j,zk,n jk-dn _,2Y - +HOTs|
A VY 4 6}/ j.kon J
_| (9.26)
2. A3
Uj —Uj_ A"X 0°u
_ j+Lkn ~Hj-1kn _
V| > Y HOTs|
i - jkn]
Uibr U 2, A3 1
j.k+Ln ~Ujk-1n A%y o°u
- V| ” 3 3 —HOTs|
i y Y ljkn |

Substracting the forward difference analog (5.3), substituting z = u - w and truncating the
higher order error terms we obtain

70

2 2
Dy8%(Zj,k,n) + Dydy(Zjk,n) — Vdx(Zjk,n) = Vydy(Zjkn) = 0t(Zjkn)
(9.27)

We will assume a solution of the form

Zjn = pre P10 el kY (9.28)

where i = -1 and pn IS again a function of t only. In general, the constants p and g can be

complex. Substituting (9.28) into (9.27) the governing equation and taking terms that are
constant outside the derivatives we obtain

Dy P, el kgAy S)Z((EIJpAX)-i-Dy Pn el PAX 8)2,(pne' kqu)
Vi pp &' Y 5, (TP vy py TP (pe! YY) (9.29)

B eiijx eikqu(Pn+1—Pn)
- \
At
i j pAX ei kgAy

Taking the derivatives and dividing by e Pn, (9.29) becomes

- AtD
42; Dy sinz(péxj—4 I ysinz(%/)
X y (9.30)
—iﬂv sin Ax—iﬂv singAy+1=N

o VaSINPAX —1-00 Vy singay + 1=

Thus, N is a complex number so its magnitude can be expressed as

[At D 2
IN| = (1—4 ALDy sin2 PAX _4 Y sin2 quj

Azx 2 A2y 2

i (9.31)

+ [—%VX sin pAX— AA;/VV sin quj J

While it is tedious to do, it can be shown that [N| < 1 reduces to the stability condition

At At
Dy —— +Dy——<1/2 9.32
a2 TPV (9.32)

N ou - L
In general, the lower derivatives, such as pog do not effect the stability condition.
X

71

10. REFERENCES

Brian, P.L.T. (1961) Dimensional Transient Heat Conduction Problems, AIChE J. 7 (3), 367-
370.

Peaceman, D.W. and Rachford, Jr. H.H.(1955) The numerical solution of parabolic and
elliptic differential equations, J Society for industrial and applied mathematics, 3(1) 28-41.

Price, H.S., Varga, R.S. and Warren, J.E. (1966) Application of oscillation matrices to
diffusion-convection equations, J. of Mathematical Physics, 45 (3), 301-311.

von Rosenberg, D.U.(1969) Methods for the numerical solution of partial differential
equations, American Elsevier Publishing Co, New York, NY.

72

Appendix A. Tridiagonal Matrix Solution

The tridiagonal matrix is the “heart” of finite difference problems. It occurs in
implicit parabolic problems, elliptic line relaxation, and certain types of hyperbolic problems.

The problem is how to solve for the unknowns without performing calculations on the off

sT)°

diagonal zero’s. Gaussian elimination generally takes 3 calculations, where Sand T are
the array dimensions. The tridiagonal matrix solution, or Thomas Algorithm, which is a
special case of Gaussian elimination, take much less.

Here’s how we start.

At the boundaries we must eliminate two unknowns. We seen unknowns and n-2 equations
less than we need. We adopt the notation using a; for the u;_; 1 terms, b; for the u; 41

terms, ¢; for the u;,q 41 terms, and d; for all other terms. We eliminate the inlet and exit
boundary terms, which insures that a; and cjr = 0.

For the case of five interior grid points we have

by ¢ 0 0 01lul [dy]

:az b2 Co 0 OHUZ: :dZ:

| 0 az3 by c3 O ||U3|=|d3| (A1)
:O 0 8.4 b4 C4HU4: :d4:
[0 0 0 as bs|lus] |ds]
Now we need to solve for u.
The following Gaussian elimination procedure is suggested.

First perform the forward substitution, calculating intermediate variables b and g fori =2, IR

Bi = bj ——L=L (A2)
Bi-1
_di-ajvig A3
i B (A.3)
fori=1

Pr=1Dy (A.4)

_ %
V1= by (A.5)

73

Next calculate u as follows:

Ujp =7 ——Ci;:” (A.6)
UiR =7ViR (A.7)

The following code solves the tridiagonal matrix resulting from Crank-Nicolson or
Backwards Difference. The code is written assuming that the inlet boundary, u(1) is known
and need not be calculated by the routine. The exit boundary point u(iR) is calculated by the
routine. This implementation is most convenient when using a false point for a zero flux exit
boundary. Be very careful when using this code or others to solve the tridiagonal or band
matrices. The vast majority of programming errors are associated with incorrect handling of
the boundary conditions.

The following techniques are available for other frequently occurring band matrices.

They are copies form the out of print book, Numerical Methods for the Solution of Partial
Differential Equations, by Dale U. Von Rosenberg.

74

