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PREFACE 

 

These notes cover the majority of the topics included in Civil & Environmental 

Engineering 253, Mathematical Models for Water Quality.  The course stresses practical 

ways of solving partial differential equations (PDEs) that arise in environmental engineering.  

The course and the notes do not address the development or applications models, and the 

derivation of a PDE for a particular problem is left to the student, and is covered in other 

courses in our curriculum. 

 

The course stresses finite difference methods (FDMs), as opposed to finite element 

methods (FEMs).  I prefer this approach because it is conceptually easier.  Furthermore, most 

environmental engineering problems have simple, regular geometries, with the frequent 

exception of groundwater simulations.  For these geometrically simple problems, finite 

difference methods are superior. 

 

Finite element methods have traditionally been used for irregular geometries.  

Recently, computer-based grid generation techniques have been developed, which are 

extending the utility of the finite difference methods to irregular geometrics.  With this 

extension finite difference methods possess the geometric flexibility of finite element 

methods.  Finite difference methods are also easily extended to 2 and 3 dimensions. 

 

The course also discsses issues with numeric solutions that allow the use of parallel 

computers.  
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1.  DISCRETE VARIABLES AND FINITE DIFFERENCES 
 
 
Consider the following function: 
 

x

u(x)

x+x

u(x+x)

 
 

Figure 1.1 Continuous Differentiable Function 
 
If x approaches zero we have 
 

 u(x dx)  u(x) 
du(x)

dx
 dx (1.1) 

or  

 dx
du

dx
 du  (1.2) 

 
The relationship is true for the case of u(x) being a differentiable function. 
 
In two dimensions we have 
 

 dy
u

y
 dx

u

x
 du  (1.3) 

 
When we work with finite differences we cannot let x  0, because our ability to compute 
is finite.  Therefore we have a finite difference approximation for Equation (1.1), as follows: 
 

 
2 2 3 3

2 3

( ) ( ) ( )
( ) ( )  

2! 3!

du x x d u x x d u x
u x x u x x HOTs

dx dx dx

 
             (1.4) 

 
where HOTs refers to the higher order terms. 
 
This is a Taylor Series. 
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For most of our work we will use constant x’s or y’s, which means we can write our finite 
difference variables as follows: 
 
 xo = 0, xi  i(x) (1.5) 
 

i takes on values of 0 to iR, where 
 iR  x  xmax  (1.6) 
 
and  
 xi1  xi  x  (1.7) 
 xi1  x(i  1) (1.8) 
 xi1  xi  x  (1.9) 
 xi1  (i 1)x  (1.10) 
 
Using this notation xo is equal to 0.  This can be confusing when writing computer codes, 
espcecially in FORTRAN.  Pre-FORTRAN-77 compilers do not allow zero array subscripts, 
which requires one to code x(1) equal to xo, or x = 0.  Most FORTRAN codes still avoid 
using array subscripts equal to zero.  Mathematically it is more convenient to use xo to 
denote x = 0.  Programmers must often use x(1) to denote x = 0. 
 
We can write our Taylor Series using partials instead of total derivatives, as follows: 
 

 ui1  ui  x
u

x i

2x

2!

2u

x2
i


3x

3!

3u

x3
i

  
nx

n!

nx

xn
i

 HOTs  (1.11) 

 
This equation estimates ui1 from ui, and is called a forward Taylor Series, since it estimates 
ui1 in the direction of increasing x. 
 
In the direction of decreasing x we can write a backwards Taylor Series, as follows: 
 

 ui1  ui  x
u
x i


2x

2!

2u

x2
i


3x

3!

3u

x3
i

   (1)n nx

n!

nx

xn
i

 HOTs  (1.12) 

 
We can solve Equation (1.11) or (1.12) for the first partial as follows: 
 

 
u

x i


ui  ui1

x

x

2!

2u

x2
i


2x

3!

3u

x3
i

      HOTs (1.13) 

 
We truncate the series to obtain: 
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u

x i


ui  ui1

x
 (1.14) 

 
Equation (1.14) is called an analog, because it is analogous to the first derivative. 
 

The largest truncated term is 
x

2!

2u

x2
i

.  It is of the magnitude x, or the first power of x.  

We refer to this analog as first-order correct.  We could have truncated before we divided by 
x, but the order of correctness would be the same. 
 

We can also solve Equation (1.11) for 
u

x
 and obtain similar results.  Both the 

forward Taylor series (Equation (1.11)) and the backward Taylor series (Equation (1.12)) 
give first-order correct analogs. 
 
To obtain an approximation for the second derivative we add Equations (1.11) and (1.12) to 
obtain 
 

 ui1  ui1  2ui  
2x
2u

x2
i

 2
4x

4!

4u

x4
i

    HOTs  (1.15) 

 
After solving for the second partial derivative we obtain: 
 

 
2u

x2 
ui1  2ui  ui1

2x

2x

12

4u

x4
i

      HOTs  (1.16) 

 
We can truncate to obtain the second-order correct analog for the second derivate: 
 

 
2u

x2
i


ui1  2ui  ui1

2x
 (1.17) 

 
Finally we can truncate an improved first derivative by subtracting Equations (1.11) and 
(1.12) to obtain 
 

 
u

x i


ui1 ui1

2x

2x

6

3u

x3     -  HOTs  (1.18) 

 
We truncate to obtain 
 

 
u

x i


ui1 ui1

2x
 (1.19) 
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This is a second-order correct analog for the first partial derivative. 
 
To summarize we have three finite difference analogs. 
 

 
u

x i


ui1  ui

x
  (first-order correct) (1.20) 

 
u

x i


ui1 ui1

2x
 (second-order correct) (1.21) 

 
2u

x2
i


ui1  2ui  ui1

2x
 (second-order correct) (1.22) 

 
From these analog we can construct finite difference equations for most partial differential 
equations.  Occasionally we develop additional analogs for special purposes.  Analogs of any 
desired order of correctness can be developed, but usually second-order correct analogs are 
used for partial differential equations using finite differences. 
 
The analogs we chose will depend upon the nature of the equations, parabolic, hyperbolic, or 
elliptic, and our needs for accuracy and efficiency. 
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2.  CLASSIFICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS 
 
 

It is useful to classify partial differential equations into three types: parabolic, 
hyperbolic, and elliptic.  The names arise due to the similarity of the classification 
mechanism to analytic geometry.  Solution techniques exist for each type of equation.  
Generally an appropriate technique for one type of equation is not appropriate for another 
type. 

 
Consider a system of two 1st order PDE’s as follows: 

 a
u

x
 b

u

y
 c

v

x
 d

v

y
 f1 (2.1) 

 e
u

x
 g

u

y
 h

v
x

 i
v

y
 f2 (2.2) 

 
We define the system as quasi-linear if coefficients a-  to -i can be functions (linear or non-
linear) of x, y, or u or v.  The problem is quasi-linear as long as none of these coefficients 

contain terms involving 
u

x
 or 

u

y
. 

 
If the coefficients a to i and the functions f1 and f2 are constant or functions only of x or y, 

then the problem is linear.  If the coefficients involve functions of 
u

x
 or 

u

y
, the problem is 

nonlinear. 
 
We can conveniently classify linear and quasi-linear sets of the previous equations.  
Nonlinear equations do not frequently arise in environmental problems. 
 

Now, assuming u or v are differentiable, then we can represent the increment of u and 

v by partial derivatives along the x and y directions as follows 

 x
u

x
 y

u

y
 u  (2.3) 

 x
v

x
 y

v

y
 v  (2.4) 

or as x, y  0 
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 dx
u

x
 dy

u

y
 du  (2.5) 

 dx
v

x
 dy

v

y
 dv  (2.6) 

 
The existance of the above derivatives are assured because we are working with continuously 

differentiable function. 

 
If we combine the directional derivatives with Equations (2.1) and (2.2) we have four 
equations and four unknowns, and we can write them as follows: 
 

 

a b c d

e g h i

dx dy 0 0

0 0 dx dy



















 

u

x
u

y
v

x
v

y

























f1

f2

du

dv



















 (2.7) 

 
Suppose the above system of equations is written at a particular point  in the domain x and 
y, and that u and v are known at this point.  Since a through i, and f1 and f2  are functions of 
x, y, v or u they are also known.  Suppose that u and v are known at another point in the 
domain .  Therefore, du and dv will be known.  In this case all the coefficients in Equation 
(2.7) will be known.  Equation (2.7) will have a unique solution if the determinant is non-
zero.  This implies that the derivative as we approach point  from either direction will be 
equal. 
 

The case where the determinant is zero is more interesting.  A zero determinant 
implies no unique solution for the derivatives in Equation (2.7).  Consequently, 
discontinuities in the derivatives may occur as one moves along different approaches to point 
. 
 

To determine the values of x or y we take the determinate as follows: 
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 dx  

b c d

g h i

0 dx dy

  dy  

a c d

e h i

0 dx dy

  0  

 

 dx dx  
b d

g i
  dy  

b c

g h
 









 dy dx  

a d

e i
  dy  

a c

e h
 









 0  (2.8) 

 d2x(bi  gd)  dxdy(bh  cg)  dydx(ai  de)  d2y(ah  ec)  0 (2.9) 
 
collecting terms we obtain 
 
 2 2( ) ( ) ( ) 0d y ce ah dydx ai de bh cg d x gd bi         (2.10) 
 

Now we want to see what properties of dx and dy will cause the determinate to be 
zero.   
 

We see that we have a quadratic equation in 
dy

dx
 

 

 
dy

dx






2

(ce  ah) 
dy

dx
(ai  de  bh  cg)  dg  bi  0  (2.11) 

 
Recall the quadratic formula 

 AX2 BX  C  0  (2.12) 

 X 
B  B2  4AC

2A
 (2.13) 

We let 
 A = ce - ah 
 B = (ai - de + bh - cg) 
 C = dg - bi 
 
We have real or complex roots depending on B2 - 4AC.  The following cases exist: 

 B2  4AC  0  2 real roots - hyperbolic 

 B2  4AC  0 1 real root - parabolic 

 B2  4AC  0  complex roots - elliptic 
 

The value of the roots, 
dx

dy
 or 

dy

dx
 are called characteristic directions.  The solution 

propagates along characteristic directions or lines.  When numerically solving PDEs, we 
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must not select values of x or y which cross the characteristic directions; otherwise we 
have non-unique solutions. 
 
Now consider a second example. 
 

 a
2u

x2  b
2u

xy
 c

2u

y2  f  (2.14) 

 
This is a second-order problem in one equation.  Note that we could reduce this to a 2 first-
order equation. 
 

The directional derivatives become 
 

 d
u

x







2u

x2 dx 
2u

xy
dy  (2.15) 

 d
u

y



 




2u

xy
dx 

2u

y2 dy  (2.16) 

 
our matrix form is  

 

a b c

dx dy 0

0 dx dy

















 

2u

2x

2u

xy

2u

2y























f

d(
u

x
)

d(
u

y
)





















 (2.17) 

The determinant is 

 dx  
a c

dx 0
  dy  

a b

dx dy
  0 

 (0 ) ( ) 0dx cdx dy ady bdx      (2.18) 
We take 

 c (dx)2  a (dy)2  bdxdy  0  (2.19) 
or 

 a 
dy

dx






2

 b
dy

dx
 c  0  (2.20) 

 
if we let A =  a 
 B = -b 
 C =  c 
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So we have 
 B2 - 4AC  0 2 real roots for hyperbolic 
 B2 - 4AC = 0 1 real root for parabolic 
 B2 - 4AC  0 complex roots for elliptic 
 
Consider a third example - the linear wave problem: 
 

 
2u

x2  
2u

y2  0  

 
 A = 1 
 B = 0 
 C = - 
 B2 - 4AC = 0 + 4 
 

The parameter  is always positive so this PDE is always hyperbolic. 
 
Note that the forcing functions, f1 and f2 in Equation (2.7) do not enter into the 

classification mathematics.  Furthermore, note that the coefficients a- to i- in Equation (2.7) 
are not necessarily time invariant.  Therefore, a transient problem could change its properties 
during its solution, which might require two entirely different solution techniques. 

 
In later sections we will develop numerical techniques to solve hyperbolic PDEs 

using mathematics very similar to the classification procedures we used here.  The technique 
involves finding the characteristic directions and selecting values of x and y (or x, y 
and z) in order to place grid points along the characteristic directions.  In this way we avoid 
crossing a characteristic direction. 
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3.  NON-DIMENSIONAL FORMS 
 
 

It is customary to scale partial differential equations by introducing dimensionless 
variables.  This was quite popular before the advent of computers.  Many handbooks have 
tabulated solutions of commonly used PDE’s.  By solving the equation one can often use a 
tabulated solution.  Such techniques are no longer considered “state-of-the-art”, and many 
tabulated solutions contain serious errors or restrictions on the domain which are not 
apparent to the unsuspecting user.  Nevertheless, it is still desirable to scale PDE’s prior to 
their solution, and it is important to know the procedure. 

 
Consider the dispersive-convective transport equation: 
 

 D
2C

x2  V
C

x

C

t
 (3.1) 

 
where C is a concentration, V is velocity, D is a diffusivity or dispersion coefficient, and x 
and t are space and time.  We check for dimensional consistency 
 

 
2

3 3 3

1
2

l m l m m

t l l t l l l t
    


 (3.2) 

 

all terms have units of 
    

m

l3t
.  Note that differentiating with respect to a variable adds the units 

of the variable to the denominator of the term. 
 
Let’s make the problem dimensionless by letting 
 

 Z 
x

xmax


x

L
  or  x = LZ 

 u 
C

Cmax
 or  C = uCmax 

   t
D

L2  or  t 
L2

D
 

 
By substituting for x, C, and t we obtain 
 

 D 


(LZ)

(uCmax)

(LZ)






 V

(uCmax )

(LZ)

(uCmax )

(L2 / D)
 (3.3) 

 
CmaxD

L2
2u

Z2 
CmaxV

L

u

Z


Cmax

L2 / D

u


 (3.4) 

 
2u

Z2 
LV

D

u

Z

u


 (3.5) 
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or 

 
2u

Z2  e
u

Z

u


 (3.6) 

 

Therefore, we can describe all cases of this equation with one parameter, 
LV

D
, which is 

called the eclet Number (e).  Some authors define the eclet Number as 
D

LV
, which is the 

reciprocal of its more common definition. 
 
Consider this equation over ranges of the eclet. 
 
 as  e     the problem becomes plug flow or hyperbolic 
 or  e    0 the problem becomes pure diffusion or parabolic 
 
The equation is parabolic for all finite values of e.  For cases where e becomes very large 
we have the “near hyperbolic” problem.  Many finite difference and finite element 
techniques becomes oscillatory for large values of e.  We have special techniques to solve 
near hyperbolic problems.  When D = 0, we scale the problem differently, and e does not 
exist. 
 
Consider a second example of scaling an equation. 

 D
2C

x2  V
C

x

C

t
 (3.7) 

where 0    x    xmax 
 
Let 

 Z 
x

xmax


x

L
 (3.8) 

   t
V

L
 (3.9) 

 u 
C

Cmax
 (3.10) 

 
So we obtain 
 

 D 


(LZ)

(uCmax)

(LZ)






 V

(uCmax )

(LZ)

(uCmax)

(
L

V
)

 (3.11) 

or 

 
D

LV

2u

Z2 
u

Z

u


 (3.12) 

or 
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1

e

2u

Z2 
u

Z

u


 (3.13) 

 
It is easy to show that this is the same as our earlier sample.  We still have one parameter, e, 
to describe our equation.  We note that there is not a unique scaling procedure. 
 
Consider a third and final example: heat conduction in a cylinder.  We have a one 
dimensional problem in polar coordinates. 
 

  
2T

r2 
1

r

T

r








T

t
 (3.14) 

 
This equation is the same as our previous examples, except in polar coordinates, with V = 0, 
and D = . 
 
To scale we let 

 
max

r r
x

r R
   (3.15) 

   t


R2  (3.16) 

 u 
T  Ti

Ti
 (3.17) 

 
when Ti is a reference temperature. 
 
Substitute 
 T = Tiu + Ti 

 t = 
R2


 

 r = Rx 
 

  
2(Tiu  Ti)

(Rx)2 
1

Rx

(Tiu  Ti)

(Rx)








(Tiu  Ti)

(
R2


)

 (3.18) 

 
which becomes 
 

 
2Ti

R2
2u

x2 
2Ti

Rx

u

x

2Ti

R2
u


 (3.19) 

 
which simplifies to 
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2u

x2 
1

x

u

x

u


 (3.20) 

 
 

One can see the value of scaling from Equation (3.20).  A single numerical solution 
could be applied to many different problems using scaling factors, as defined by Equations 
3.15 - 3.17. 
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4.  PARABOLIC EQUATIONS IN ONE DIMENSION 
 
 

The simplest and most often encountered partial differential equations are parabolic.  
They arise from heat and mass transfer problems.  Let’s consider our non-steady state 
diffusion-advection or diffusion-advection-reaction transport equation, as follows: 
 

 
C

t
 D

2C

x2  V
C

x
 KC (4.1) 

with 
 
 C = 1, x = 0, t  0 (entrance boundary condition), 

 
C

x
 0, x = 1, t  0 (exit boundary condition) 

 C = 0, x > 0, t = 0 (initial condition) 
 
 
4.1 Forward Difference 
 

Let us apply the analogs developed previously.  We will not scale the problem in 
order to see the effects of D and V.  We will use second-order correct analogs for the spatial 
derivatives, and a first-order correct analog for the time derivative. 
 

 
Ci,n1  Ci,n

t
 D

Ci1,n  2Ci,n  Ci1,n

2x






 V

Ci1,n  Ci1,n

2x






 KCi,n  

 (4.2) 
Note that we have two subscripts, i and n, for space and time, respectively. 
 
Our shorthand for this equation becomes: 
 

i i + 1i - 1

n

n + 1

 
 

Figure 4.1  Forward Difference Analog - Interior Points 
 
We note in Equation (4.1) that we have initial conditions and two boundary conditions.  
Therefore the problem is referred to as a “split boundary, initial value” problem.  We need 
initial conditions to insure that we have a unique solution.  The boundary conditions exist 
because we know something from the physics and chemistry of the problem at the 
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boundaries.  For this problem we have a fixed inlet boundary and a zero-flux exit boundary.  
We will define a third boundary condition later. 
 
We note from our analog picture above that the problem is explicit, since ui,n is known from 

the initial conditions.  We have one equation in one unknown, which we solve as follows; 
 

 , 1 , 1, , 1, 1, 1, ,2
( 2 ) ( )

2i n i n i n i n i n i n i n i n

D t V t
C C C C C C C tKC

x x    
 

      
 

 

 (4.3) 
 
Equation (4.3) is used to solve for all interior points.  For the inlet boundary we place our 
analog as follows: 
 

i i + 1i - 1

n

n + 1

 
 

Figure 4.2  Forward Difference - Inlet Boundary 
 
The value of ui-1,n in Equation (4.3) becomes the boundary value.  Since ui-1,n is known at 

the boundary, we simply use it in our solution technique.  When we are able to reduce the 
analogue to a single unknown equated to several known, we have an explicit equations.  
They are usually the easiest problems to solve. 
 
For the exit boundary, we place the analog as follows: 
 

i i + 1i - 1

n

n + 1

 
 

Figure 4.3  Forward Difference - Exit Boundary (zero flux) 
 
 
The point at i = iR + 1 does not physically exist and is called a false point.  It is placed there 
for convenience.  We now apply our exit boundary condition, as follows: 
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C

x iR
 0  (4.4) 

 0 
Ci1,n  Ci1,n

2x
 (4.5) 

 Ci1,n  Ci1,n (4.6) 

 
ui+1,n is the false point, and we remove it by substituting Equation (4.6) into (4.3) as follows: 

 

 Ci,n1  Ci,n 
Dt

2x
(2Ci1,n  2Ci,n) 

Vt

2x
(Ci1,n  Ci1,n)  KtCi,n   

 (4.7) 
 
The advective term involving the velocity vanishes because the partial derivative at the exit 
boundary is equal to zero. 
 

This method is explicit since it only has one unknown term in each analog.  It is 
called forward difference since it uses a forward Taylor series for the time derivative.  One 
should not refer to this method as the “explicit method” because there are many explicit 
methods to solve this equation. 

 
Forward difference is a popular method, especially with those who wish to use the 

simplest computer code.  The method is only first-order correct in the time derivative and is 
conditionally stable.  The method lends itself better to “pipe-lining” and parallel processing 
better than many other methods. 

 
Conditional stability or instability results when the higher order terms that were 

truncated (Equations (1.11) or (1.13)) grow and become infinitely large.  The error 
introduced by assuming the higher order terms are insignificant is called truncation error.  
This type of error is different than round-off error, which results because of a computer’s 
finite precision. 

 
Problems are stable if the truncation error at each time step decreases with increasing 

time.  When the error increases with each time step, the problem is unstable, and an 
infinitesimally small error will grow to extremely large error in only a few time steps.  Also 
note that stable techniques do not insure accurate solutions, only finite solutions.  One 
frequently hears that the solution is “unstable” when it appears to be inaccurate or 
oscillatory.  This is an error.  Solutions tend to infinity (“blow-up”) when they are unstable.  
Solutions are inaccurate when they are stable but have excessive round-off or truncation 
error. 

 
We shall later see that forward difference is stable when 

 

 
Dt

(2x)


1

2
 (4.8) 
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This constraint becomes very severe for small values of x, or large values of D.  Many time 
steps (small t) are required. 
 
 
4.2 Backward Difference 
 

We can improve our techniques for solving Equation (4.1) by using a backward 
Taylor series for the time derivative.  The analog looks like this. 
 

n + 1

i i + 1i - 1

n

+

 
 

Figure 4.4  Backward Difference - Interior Points 
 
Our substituted equation becomes 
 
Ci,n1  Ci,n

t
 D

Ci1,n1  2Ci,n1  Ci1,n1

2x






 V

Ci1,n1  Ci1,n1

2x






 KCi,n1 

 (4.9) 
 
We note that we have three unknowns (ui+1,n+1, ui,n+1, ui-1,n+1) in this equation.  Collecting 

terms we have 
 

 
D

2x


V

2x





 Ci1,n1 

 
1

t


2D

2x
 K





 Ci,n1 

1

t
Ci,n  (4.10) 

 
D

2x


V

2x





 Ci1,n1 

 
We employ a canonical form as follows: 
 
 aiCi1,n1  biCi,n1  ciCi1,n1  di  (4.11) 

 
where ai, bi, and ci are the coefficients of the unknowns in Equation (4.10), and di is the sum 

of all terms on the right hand side of Equation (4.10).  In general di will be comprised of 

terms involving Ci+1,n, Ci-1,n, Ci,n and source/sink terms.  We will use this canonical form 

through the rest of this course. 
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A solvable matrix form of these equations for iR = 5 is: 
 

 

b1 c1 0 0 0

a2 b2 c2 0 0

0 a3 b3 c3 0

0 0 a4 b4 c4

0 0 0 a5 b5



















 

C1

C2

C3

C4

C5



















n 1



d1

d2

d3

d4

d5



















n

 (4.12) 

 
Note that there are five equations and five unknowns.  The terms a1 and c5 are missing.  It is 

always necessary to remove these two coefficients using the two boundary equations; 
otherwise no unique solution to the equations will exist (e.g., five equations with seven 
unknowns). 
 
To remove these two terms from Equation (4.10) we substitute our boundary conditions as 
follows: 
 
Inlet 

 
1

t


2D

2x
 K





 Ci,n+1 

 
1

t
Ci,n 

D

2x


V

2x





 Ci-1,n+1 (4.13) 

 
D

2x


V

2x





 Ci+1,n+1 

 
where Ci-1,n+1 is a known boundary point. 

 

n + 1

i i + 1i - 1

n

+

 
 

Figure 4.5  Backward Difference - Inlet Boundary 
Exit 

 
2D

2x





 Ci-1,n+1 

 
1

t


2D

2x
 K





 Ci,n+1 

1

t
Ci,n (4.14) 
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n + 1

i i + 1i - 1

n

 
 

Figure 4.6  Backward Difference - Exit Boundary (zero flux) 
 
Note that Ci-1,n+1 = Ci+1,n+1 and the terms resulting from the first spatial derivative vanish as 

they did in Equation (4.7). 
 

Equation (4.12) is a tridiagonal matrix.  A system of equations described by a 
tridiagonal matrix is very easy to solve if one uses the specialized Gaussian Elimination 
technique called the Thomas Algorithm.  Appendix A shows the Thomas Algorithm. 
 
 
4.3 Crank-Nicolson 
 

The backward difference approach can be improved by using a centered, second-
order correct analog for the time derivative.  The method is frequently called Crank-
Nicolson, after its developers. 

 
The analog appears as follows: 

Figure 4.7  Crank-Nicolson -Interior Points  
i i + 1i - 1

n

n + 1

+

 
 

 
i i + 1i - 1

n

n + 1

+

 
i i + 1i - 1

n

n + 1

 
 
Figure 4.8 Crank-Nicolson - Entrance 

Boundary 
 Figure 4.9 Crank-Nicolson - Exit 

Boundary 
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The “+” sign represents the center of all analogs.  The spatial analogs are averaged over the 
two time levels.  After substituting the analogs into Equation (4.1) we obtain: 
 

 

D

22x


V

4x






 Ci-1,n+1

1

t


D

2x


K

2





 Ci,n+1

D

22x


V

4x





 Ci+1,n+1

 = 

D

22x


V

4x






 Ci-1,n

1

t


D

2x


K

2





 Ci,n

D

22x


V

4x





 Ci+1,n

 (4.15) 

 
This set of equation forms a tridiagonal matrix just as the backward different set of equations 
formed a tridiagonal matrix.  The boundary conditions are also applied in a similar fashion, 
except that terms on the right hand side (e.g., Ci-1,n for the inlet boundary) must also be 

eliminated or resolved by substitution.  Crank-Nicolson, like backward difference, is 
unconditionally stable. 
 

If we define the parameter f and f’ (which equals 1 - f) we can generalize a computer 
code to solve forward difference, backward difference, Crank-Nicolson, and intermediate 
values.  The equation becomes: 
 
 

 

fD

2x
 fV

2x







 Ci -1,n+1

1

t


2fD

2x
 fK





 Ci,n+1

fD

2x


fV

2x





 Ci+1,n+1

 = 

f ' D

2x


f' V

2x






 Ci -1,n

1

t


2f' D

2x
 f ' K





 Ci,n

f ' D

2x


f' V

2x





 Ci+1,n

 (4.16) 

 
When f = 0.5 Equation (4.16) becomes Crank-Nicolson.  When f = 0 it becomes forward 
difference, and with f = 1.0 it is backward difference. 
 

We reviewed these three methods to get you started on solving PDEs.  While you 
developing your computer codes we will cover several other techniques, which have 
specialized purposes.  Figure 4.10 shows a block diagram of a program that could be either 
Crank-Nicolson or backward difference. 
 
 
4.4 Richardson’s Method 
 

Richardson’s method is the “intuitively obvious” method but has unfortunate results; 
however, it is important to be aware of it and know when it can be used. 
 



 23

i

i + 1i - 1

n + 1

n

n - 1

 
Figure 4.11  Richardson’s Method 

 
 

Consider the equation 

 
u

t
 D

2u

x2  (4.17) 
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Set Unew to the initial conditions

Exchange Levels 
Uold = Unew (i=1,iR)

Calculate A, B,C arrays 
(left hand side) 

Linear Problems Only

Calculate D array 
(right hand side)

Call TA to calculate 
Unew

t = t + t

Print ???

Stop ???

Preliminaries.  Dimension, initialization, opening 
and  closing of files, reading input parameters, 

initial conditions, etc.

 
 

Figure 4.10  Block Diagram of a Crank-Nicolson or Backward Difference Program. 
 
The obvious method is to use the following analog. 
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ui,n 1  ui,n 1

2t


D

2x
ui1,n  2ui,n  ui1,n  (4.18) 

 
This method is second-order correct but is unconditionally unstable.  Richardson realized the 
instability only after using it for several years. 
 
The method has very little application, though it can be used for short term problems which 
require only a few time steps.  Weather prediction is one such problem. 
 
The method is non-self-starting.  It requires two values of ui at old time level.  We obtain one 

level from the initial condition.  We must use a self-starting method, such as forward 
difference to obtain the second.  Normally we cannot assume values for both initial time 

levels.  If we assume that ui-1,n = ui,n, we are assuming that 
u

t
 0  at t = n + 1/2, which is 

usually not true. 
 
 
4.5 Dufort-Frankel  
 

A modification to Richardson’s method was proposed by Duford and Frankel.  We 
can obtain a stable condition by averaging to remove the central point from the space 
derivative in Richardson’s method, as follows: 
 

 ui,n 
1

2
(ui,n1  ui,n1)  (4.19) 

 
After substituting this in Equation (4.18) our new analog becomes 
 

 ui,n1 ui,n1 
2Dt

2x
(ui1,n  (ui,n1  ui,n1)  ui1,n) (4.20) 

 
We can solve for ui,n+1 as follows: 

 

 ui,n1 1
2Dt

2x





 1

2Dt

2x





ui,n1 

2Dt

2x
ui1,n 

2Dt

2x
ui1,n  (4.21) 

 
This method is second-order correct and unconditionally stable.  Its properties are 

inferior to Crank-Nicolson and it is seldom used, unless simplified computational 
requirements are needed.  The problem with this method, like all explicit methods for 
parabolic PDEs, is that the solution crosses characteristic lines. 

 
 
 

 
4.6 Parabolic equations with small D compared to V and L 
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A frequently encountered modeling need is to solve parabolic equations with small values of 
D.  This occurs, for example, in a long, tubular reactor that is almost plug flow but has a 
significant mixing. The concept of axial mixing, originally described by Taylor, is one of the 
phenomenon that creates dispersion along the traveling velocity front.  
 
It can be shown that Crank-Nicolson produces oscillatory solutions when the following when 
the following condition: 
 
                   (4.22) 
 
 
or                   (4.23) 
 
This can be a severe constraint and can control execution time. Rather than simply reducing 
x, alternative methods can be used. These methods have sometimes been called “upwind” 
methods.  
 
The following sections describe several methods to solve these problems without suffering 
the time penalty associated with equation 4.22.  
 
  
4.7 Characteristics Averaging (CA) 
 

Crank-Nicolson can be modified to solve the near-hyperbolic problem by diagonally 
averaging the terms involving the first spatial derivatives.  We use a second-order analog 

written over 
x

2
, as follows: 

 i 1 i

i 1/2

u uu

x x












 (4.24) 

 
We substitute this analog into Equation (4.1), with the other second-order spatial and time 
derivatives as follows: 
 
 

 

ui1,n1(
D

22x
)

ui,n1(
1

2t


V

2x


D

2x


K

4
)

ui1,n1(
1

2t


V

2x


D

2x


K

4
)

 = 

ui,n(
1

2t


V

2x


D

2x


K

4
)

ui1,n(
1

2t


V

2x


D

2x


K

4
)

ui2,n (
D

22x
)

 (4.25) 

 
 

2D
x

VL
 

2
x

Pe
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To include the reaction term we used a four point averaging scheme.  This technique 

can solve the range of parabolic to hyperbolic conditions if the constraint V 
x

t
 is 

followed.  By requiring
x

t
 V, many of the terms in Equation (4.25) vanish, and a two 

point diagonal average for the reaction term should be used.  Equation (4.25) becomes 
 

 

ui1,n1(
D

22x
)

ui,n1(
1

t


D

2x


K

2
)

ui1,n1(
D

22x
)

 = 

ui,n(
D

22x
)

ui1,n(
1

t


D

2x


K

2
)

ui2,n (
D

22x
)

 (4.26) 

 
 

i - 1 ii - 2

n

n + 1

i + 1

+

 
 

Figure 4.12  Characteristics Averaging - Interior Points 
 
 

This solution technique is quite useful and can be generalized like Crank-Nicolson.  It 
can be used for a wide variety of Peclet numbers.  We shall later see that this solution 

technique, with V 
x

t
 is always parallel to the characteristic lines.  It is similar to a 

technique called Keller-Box. 
 

The exit boundary condition can be conveniently handled similarly to Crank-
Nicolson.  The entrance boundary condition is more difficult.  If the boundary is located at i - 
1, then both Ci-1,n and Ci-2,n must be known.  This condition is similar to non self-starting 

analogs with respect to time, such as Richardson’s method. 
 

If one assumes Ci-1 = Ci-2  , a large error results.  It is the same as assuming that 
C

x
 

is zero at i - 1/2, which is certainly not true.  No entirely acceptable procedure exists for the 
entrance boundary condition.  One can write a Crank-Nicolson or Backward Difference 
analog for the first analog and obtain acceptable results if the spatial and time increments are 
carefully selected. 
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The CA technique works very well when V is constant. It is a simple matter to set 

V 
x

t
 and a non-oscillatory solution is obtained. Problems arise when V is not constant. In 

this case, the locations of the grid points must be calculated before the solution is calculated. 
In cases where V must be estimated or is a function of the solution, the grid points cannot be 
exactly located along the trajectories defined by V and numerical dispersion occurs. The 
Method of Characteristics is a better way of handling the changing locations of the grid 
points, but is only useful for truly hyperbolic equations (D=0).  

 
4.8 State Variable Formulation 
 
 Weaver et al (19xx) introduced a technique which is actually a clever use of the state 
variable concept from process control theory.  The procedure is to reduce the second-order 
PDE to two first-order PDEs. If we start with equation 4.1 and substitute as follows: 
 
 
           (4.27) 
 
 
           (4.28) 
 
 
For this formulation, the Centered Difference technique (introduced in the chapter on 
hyperbolic equations can be used. After the terms are collected a penta-diagonal matrix is 
created, which can be solved using the pentadiagonal algorithm or the bi-tri algorithm. (see 
the Appendix). Weaver et al report that the method is broadly applicable, spanning a wide 
range of Pe. The method has an important condition related to the boundary conditions, 
which can implemented exactly, unlike CA or in the following cases.  
 
4.9 Non-central analogs  
 
A simple way of overcoming the oscillatory behavior is to use non central analogs. For 
example, if Centered Difference analogs are combined with the second derivative analogs as 
show in Figure 4.13 
 
 
 
 
 
 
 
 
 
   Figure 4.13 Non-central analogs 
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This formulation is not second-order correct but can work. Handling the boundary conditions 
requires some creativity.  
 
Another alternative, proposed by Price, Varga and Warrren (19xx) uses a second-order 
correct analog for the first spatial derivative as follows: 
 

 i i 1 i 2

i,n 1/2

3u 4u uu

x 2 x




 



 



      (4.29) 

This analog can be written with the second-order correct second spatial derivative analog, 
centered at i and n+1/2 to create penta diagonal form (the new time level includes for values 
of u, from i-2 to i+1).  
 
 
4.10 Summary 
 

Crank-Nicolson and Characteristics-Averaging are the methods of choice for solving 
one dimensional parabolic PDE’s with split boundary conditions.  They are computationally 
very fast.  Some investigators prefer finite element techniques, but their preferences are made 
on the basis of ease of use, or super computer compatibility.  For the simple equations 
described herein with regular geometries, the finite difference techniques are superior. 
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5. PARABOLIC EQUATIONS IN TWO AND THREE DIMENSIONS 
 
 

Our one dimensional transport equation in one dimension frequently occurs in two 
dimensions.  We can extend some of our one dimensional concepts to two dimensions, 
although there are a number of complications.  Consider the following equations: 
 

 
u

t
 Dx

2u

x2  Dy
2u

y2  Vx
u

x
 Vy

u

y
 Ku (5.1) 

 
 
 
5.1 Forward Difference in Two Dimensions 
 

First we extend Forward Difference to two dimensions, as follows: 
 

j - 1 i - 1  

i + 1 
n 

n + 1 

i,j 

 
 

Figure 5.1. Forward Difference Extended to Two Dimensions 
 
 
ui,j,n1  ui,j,n

t
 Dx

ui1, j,n  2ui,j,n  ui1, j,n

2x






 Dy

ui,j1,n  2ui, j,n  ui,j1,n

2y







 

 Vx
ui1,j,n  ui1,j,n

2x






 Vy

ui, j1,n  ui,j1,n

2y







Kui, j,n  

 (5.2) 
 
Solving for ui,j,n+1 and collecting terms we obtain 
 

   ui1, j,n
Dxt

2x


Vxt

2x





 

 ui,j,n1        =      ui, j,n 1 
2Dxt

2x


2Dyt

2y
 Kt
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  ui1,j,n
Dxt

2x


Vxt

2x






  ui,j1,n

Dyt

2y


Vyt

2y








  ui,j1,n

Dyt

2y


Vyt

2y








 (5.3) 

for 
 1  i  iR 1  j  jR 
 
We see our equation is explicit.  The equation is much more forward than backward, and has 
severe stability constraints.  Boundary conditions are included as before with Forward 
Difference.  However, we now have four sets of boundary equations. 
 

Consider the case when 
u

y
 0  at j = jR. 

 
This boundary condition exists for all i, as shown below. 
 
The analogs become 

 

ui1,jR,n
Dxt

2x
 Vxt

2x






ui,jR,n 1 
2Dxt

2 x


2Dyt

2x
 Kt








 

 ui,jR,n1         =       ui1,jR,n
Dxt

2x


Vxt

2x






 

 ui,jR1,n
2Dyt

2y







 (5.4) 

For the special case at the four corners, we have two boundary conditions to implement, as 
when 
 
 i = 1, j = jR  and  ui,jR,n  uo(t) 

 u1, jR,n1  uo(t  t)  

 

or in the case when 
u

x
 0 , and 

u

y
 0  

 
 at i = iR, j = jR 

 uiR, jR,n1      =     uiR-1,jR,n
2Dxt

2x
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  uiR, jR,n 1
2Dxt

2x


2Dyt

2y
 Kt








  uiR, jR-1,n
2Dyt

2y








 

 (5.5) 
 
Conceptually the boundary conditions are the same as for one dimension, but must be 
implemented along all four sides.  The number of boundary analogs becomes 2jR + 2iR-2. 
 
The stability constraints on the forward difference make it a poor choice for most problems.  
It is conditionally stable subject to the following constraint. 
 

 Dx
t

2x
 Dy

t

2y
 1/ 2  (5.6) 

 
 
5.2 Backward Difference and Crank-Nicolson in Two Dimensions 
 

Now let’s extend our one dimensional backward difference technique to two 
dimensions.  We use the following analogs: 
 

n 

i - 1  

i + 1 

j - 1 

j + 1 
i,j 

n + 1 

 
 

Figure 5.2 Backward Difference Extended to Two Dimensions 
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Figure 5.3 Crank-Nicolson Extended to Two Spatial Dimensions 
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We obtain 
 

 ui1,j,n1 
Dxt

2x


Vxt

2x





 

 ui,j,n1 1
2Dxt

2x


2Dyt

2y
 Kt







   =    ui,j,n  

 

ui1,j,n1 
Dxt

2x


Vxt

2x






ui,j1,n1 
Dyt

2y


Vyt

2y








ui,j1,n1 
Dyt

2y


Vyt

2y








 (5.7) 

 
We see that we have an implicit solution with five unknowns.  At first glance it seems that 
we can use the band algorithm. 
 
If we use a canonical form, with the i-1, i, i+1, j-1, j+1 terms corresponding to a, b, c, e, and f 
coefficients, we will obtain the following matrix.  Only one equation is shown from an 
arbitrary size matrix.  The dots represent other terms or zeros. 
 

 

      
      
 ai bi ci ei fi 
      
      
      
      























 


ui1, j

ui, j

ui1, j

ui, j1

ui, j1

























  =   




di




























 (5.8) 

 
 
Note that the ui-1,j, ui,j and ui+1,j terms are arranged in the u vector in ascending order of i.  If 
the next equation is written (i.e., incrementing i to the next grid point) in the same way as the 
equation shown, an error will result.  The ai, bi and ci terms will be multiplied by ui,j, ui+1,j 
and ui,j+1.   
 
It is not possible to order the terms in Equation (5.8) to produce a pentadiagonal matrix.  
Correct ordering results in either a sparse matrix or a matrix with 2 diagonals separated by 
zeros from 3 main diagonals.  In either case, matrix inversion is quite time consuming and 
not possible with existing computers for large problems. 
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The later case, with 2 diagonals separated from the 3 main diagonals, is easier to solve, and 
the there are proprietory super computer routine that can invert this matrix, for well behaved 
situation. 
 
We can extend Crank-Nicolson to two dimensions as we tried with backward difference, but 
we would still have a sparse matrix. 
 
 
5.3 Alternating Direction Implicit in Two Dimensions 
 

A technique which combines the properties of backward difference and forward 
difference exists, which is unconditionally stable, and procedures an easily solved tridiagonal 
matrix.  The method is called Alternating Direction Implicit (ADI) and was developed by 
Peaceman and Rachford (1955). The name arises because we write hybrid analogs that are 
implicit in one direction and explicit in the opposite direction.  We alternate the explicit and 
implicit directions at each new time level.  Usually we divide each time step into two parts, 
and integrate over each direction at t/2.  The analogs appear as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 5.4 ADI Analogs [Implicit X(i), then Implicit Y(j)] 
 
 
 
 
 
 
 
 
 

 
Figure 5.5 ADI Analogs [Explicit Y(j), Implicit X(i)] 
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The analogs are developed as follows, using t/2 as the basic time step. 
 
implicit x, explicit y 
 

ui1,j,n1/ 2 
Dxt

22x


Vxt

4x






ui,j,n1/2 1
Dxt
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Kt

4
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 (5.10) 

 
 
 
 
 
 
 
 
 

 
 
 

Figure 5.6 ADI Analogs [Implicit Y (j), Explicit X (i)] 
 
implicit y, explicit x 
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22x
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 (5.10) 

 
This procedure works well and is very widely used to solve 2-dimensional parabolic and 
elliptic PDE’s with regular boundaries.  The procedure requires that we divide our approach 
into two types of analogs.  We write our program as follows: 
 

i+
1

j+1

n+1

n+1/2

i,j

+
j-1

i-1
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Exchange Levels 
Uold = Unew (i=1,iR)

Print ???

Stop ???

Preliminaries

Call TA 
Explicit Y, Implicit X

Exchange Levels 
t = t +  t/2

t = t +  t/2

Calculate  
Right Hand Side

Calculate  
Right Hand Side

Call TA 
Explicit X, Implicit Y

 
 

Figure 5.7 
 
 
We can improve our implicit analogs in ADI by averaging them at the old time level.  The 
analogs for implicit x, explicit y would be written as follows: 
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Figure 5.8 Modified ADI Analogs [Explicit Y(j), Implicit X(i)] 
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 (5.11) 

 
We would develop similar analogs for the opposite direction. 
 
At first this appears to be an improvement over ADI, since the implicit analogs are second-
order correct.  Unfortunately the procedure is conditionally stable, and is generally inferior to 
ADI.  One might choose to use it for a stiff problem (very large K) where the required time 
step is so small that stability is assured. 
 
 
5.4 Improved Notation 
 

To see that this method ADI is more forward than backward, we can develop a 
shorthand.  We use the one dimensional diffusion equation for starters. 
 
Let 

 xui,n 
ui1,n  ui1,n

2x
 (5.12) 

 
Similarly 

+

i-1 

i+1

j-1

j+1
n

n+1/2

i,
j
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  tui,n 
ui,n1  ui,n

t
 (5.13) 

 
and finally 

 x
2ui,n 

ui1,n  2ui,n  ui1,n

2x
 (5.14) 

 
We can use this notation to “shorthand” our previous work.  For example, we can describe 
solution techniques for Equation (4.1) as follows: 
 
Forward Difference 

  tui,n  Dx
2ui,n  Vxui,n  Kui,n  (5.15) 

 
Backward Difference 

  tui,n  Dx
2ui,n1  Vxui,n1  Kui,n1 (5.16) 

 
Crank-Nicolson 

 tu i,n 
D

2
 x

2 ui,n 
D

2
 x

2ui,n 1 
V

2
xui,n 

V

2
xui,n1 

K

2
ui,n 

K

2
ui,n1  (5.17) 

 
or 

  tui,n  Dx
2ui,n1/ 2  Vxui,n1/ 2  Kui,n1/ 2  (5.18) 

 
We can also write Crank-Nicolson as a two step procedure.  We drop the advective and 
reaction terms for simplicity. 
 

  tui,n  x
2ui,n  (5.19) 

  tui,n  x
2ui,n1 (5.20) 

 
Summing 

 2 tui,n  x
2ui,n x

2ui,n1 (5.21) 

or 

  tui,n  1/ 2 x
2ui,n 1/ 2 x

2ui,n1 (5.22) 

 
It is easy to see that Crank-Nicolson is the alternating application of backward and forward 
differences. 
 
Now lets apply our shorthand to ADI.  We first need to define derivatives in two spatial 
directions 
 

  tu i, j,n 
ui, j,n1  ui,j,n

t
 (5.23) 
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 x
2ui,j,n 

ui1,j,n  2ui,j,n  ui1, j,n

2x
 (5.24) 

 y
2ui,j,n 

ui, j1,n  2ui,j,n  ui,j1,n

2y
 (5.25) 

 
Next we can write the two step ADI procedure as follows: 
 

  tui,j,n  x
2ui,j,n1/ 2  y

2ui,j,n (5.26) 

  tui,j,n1/ 2  x
2ui,j,n1 / 2  y

2ui, j,n1 (5.27) 

 
The location of the time derivatives can be determined by averaging the time indices of the 
spatial derivatives on the right hand side, e.g., (n) and (n + 1/2) averages to n + 1/4 for the x 
direction, and (n + 1/2) and (n + 1) averages to n + 3/4 for the y direction.  Averaging the two 
analogs (1/4 and 3/4) gives 1/2.  We see that the time derivatives are located at exactly the 
half-way point between the old and new time levels.  ADI is analogous to Crank-Nicolson in 
this case. 
 
Now let us examine the modified ADI which we noted was conditionally stable. 
 

  tui,j,n  x
2ui,j,n1/ 4  y

2ui,j,n  (5.28) 

  tui,j,n1/ 2  x
2ui,j,n1 / 2  y

2ui, j,n3/ 4  (5.29) 

 
We average to find the x derivative at 3/8, and the y derivative at 3/8.  This indicates that the 
procedure is more forward than backward, and this causes conditional stability. 
 
 
5.5 Three Dimensional Problems 
 

We now apply our techniques to three dimensional problems.  Consider three 
dimensional diffusion equations.  Extrapolation of ADI to three dimensions gives the 
following: 
 
  tui, j,k,n

  x
2ui,j,k,n1/ 3

  y
2ui,j,k,n  z

2ui,j,k,n  (5.30) 

 2 2 2
, , , 1/3 , , , 1/3 , , , 2 /3 , , ,t i j k n x i j k n y i j k n z i j k nu u u u     

      (5.31) 

  tui,j,k,n2 / 3
  x

2ui,j,k,n1/ 3
  y

2ui, j,k ,n2 / 3
  z

2ui, j,k ,n1
  (5.32) 

 
The increasing number of asterisks denote implicitly calculated analogs. 
 

Now we average our spatial derivatives and discover that x
2 is centered at 1/3, y

2 is 

centered at 4/9 and z
2 is centered at 1/3.  Therefore our extrapolation of ADI to three 
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dimensions is more forward than backward, and we should expect conditional stability.  In 
fact this procedure is conditionally stable.  We must look for other methods. 
 

Rachford proposed a modified ADI for three dimensions which is unconditionally 
stable by only first-order correct.  We can describe it as follows: 

 

  tui,j,k,n1
  x

2ui, j,k,n1
  y

2ui,j,k,n  z
2ui, j,k,n  (5.33) 

  tui,j,k,n1
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2ui, j,k,n1
  y

2ui,j,k,n1
  z

2ui, j,k ,n (5.34) 

  tui,j,k,n1
  x

2ui, j,k,n1
  y

2ui,j,k,n1
  z

2ui, j,k ,n1
  (5.35) 

 
The technique requires that the new time level, n+1, be calculated three times.  It is 
calculated implicitly, using the x-direction derivatives in Equation (5.33).  It is again 
calculated implicitly in Equation (5.34), using y-direction derivatives.  In Equation (5.34), 
the results for u calculated in (5.33) are used as “knowns” in the x-direction derivatives, 
while the z-direction derivatives are still represented using the known values of u at the n 
time level.  In Equation (5.35), the values of u are calculated a third time and final time, 
using the z-direction derivatives.  The results for u from Equations (5.33) and (5.34) are used 
to represent the known values in the x and y directions, respectively.  In all three equations 
the time derivative contains a   u n1 unknown, which is calculated implicitly the unknowns in 
one spatial derivative. 
 

Only the last values of n+1 are remembered for the next time step.  That is to say, 
only the results of Equation (5.35) are stored and they become the old time level at the next 
time step.  The time derivative is represented by the shift from left to right in the paper, since 
we cannot draw in four dimensions. 

 
To further improve upon the Peaceman and Rachford three dimensional ADI, Brian 

(1961) developed a modified set of analogs which are unconditionally stable and 2nd order 
correct.  They are written as follows: 
 

  tui,j,k,n1/ 2
  x

2ui,j,k,n1/ 2
  y

2ui, j,k,n  z
2ui, j,k ,n (5.36) 

  tui,j,k,n1/ 2
  x

2ui,j,k,n1/ 2
  y

2ui, j,k,n1/ 2
  z

2ui, j,k,n  (5.37) 

  tui,j,k,n1/ 2
  x

2ui,j,k,n1/ 2
  y

2ui, j,k,n1/ 2
  z

2ui, j,k,n1/ 2
  (5.38) 

  tui,j,k,n1  x
2ui, j,k,n1 /2

  y
2ui, j,k ,n1/2

  z
2ui,j,k ,n1/2

  (5.39) 

 
The values of u are calculated three times just as in the Rachford ADI.  Equations 

(5.36 through 5.38) implicitly calculate u using a different set of spatial derivatives.  The 
final value of u is calculated in Equation (5.39). which is completely explicit.  In practice 
Equation (5.39) can be combined into Equation (5.38) to save computer time, and is shown 
here for clarity. 
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The computational requirements for multi-dimensional problems increase 
exponentially.  It is easy to see that a one-dimensional problem required one use the Thomas 
Algorithm to solve for the new time level.  For ADI with an even number of grid points in 
each direction, the Thomas algorithm is called iR times for each new half level, or 2jR times 
to advance one time level.  For three-dimensional problems with an even number of grid 
points, the Thomas algorithm is called 3 iR2 times for each new time level.  To see this 
impact on computer time, a 100 grid point problem, which is a frequently used number of 
grid points for a one-dimensional problem, would require 1, 200, and 30,000 uses of the 
Thomas algorithm for one, two, and three-dimensional problems, respectively.  We can see 
that the computational requirements for three-dimensional transient problems are quite 
severe, which explains the dearth of three dimensional problem solutions, especially with 
large numbers of grid points. 
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6.  ELLIPTIC EQUATIONS 
 
 

The most common occurrence of elliptic PDE’s for us is steady state diffusion 
problems.  Consider non-steady state diffusion in two dimensions. 

 

 Dx
2u

x2  Dy
2u

y2 
u

t
 (6.1) 

 

at steady state 
u

t
 = 0 

 Dx
2u

x2  Dy
2u

2y
 0  (6.2) 

 
recalling our classifications 
 

 a
2u

x2  b
2u

xy
 c

2u

y2  0  (6.3) 

 
so A = Dx, and C = Dy, and B = 0 
 
Since Dx  0 and Dy  0 
 

 B2  4AC  4DxDy  0  (6.5) 

 
Therefore this equation is always elliptic for all values of Dx and Dy.  The problem is 

parabolic when 
u

t
  0. 

 
There are a number of possible solution techniques.  One method is to use the parabolic 
method, integrating to steady state.  ADI is popular to use.  A second method, altogether 
different from parabolic methods are a class of methods, called relaxation or iteration 
techniques. 
 

Consider 2nd order correct analogs for 
2u

y2  and 
2u

x2  for Equation (6.2) with a source or 

sink term, b. 
 

 Dx
ui1,j  2ui,j  ui1,j

2x






 Dy

ui,j1  2ui,j  ui, j1

2y







 b  (6.5) 
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j + 1

j

j - 1

i i + 1i - 1
 

 
Figure 6.1 Elliptic Analog 

 
for the convenient case of  
 
 Dx = Dy = 1.0, and x = y,  we get 

 ui,j 
1

4
(ui1, j  ui1, j  ui,j1  ui, j1)  bi, j

2x

4
 (6.6) 

 
Consider the following grid 
 
 

 
 

Figure 6.2 Grid of Points Showing Analog Placement (filled circles are known 
boundary points) 

 
 
Note that there are  no initial values! 
 
We have a problems with five unknowns.  As with the direct extrapolation of Backward 
Difference to two dimensions, we have a set of equations that are not convenient to solve 
conventional tools for solving simultaneous equations.  The analogs lead to a sparse matrix.  
Consequently we develop iterative methods, whereby we guess for some of the unknowns 
and use these guesses to solve for other unknowns.  By comparing solutions to guesses to 
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create new guesses we obtain better and better solutions, until we eventually converge.  
There are five popular methods, often called relaxation techniques or iterative methods. 
 
 1. Jacobi 
 2. Gauss-Seidel 
 3. Line Relaxation 
 4. Sucessive Over Relaxation (SOR) 
 5. Sucessive Line Over Relaxation (SLOR) 
 
We develop techniques for each. 
 
 
 
6.1 Jacobi and Gauss-Seidel 
 

j + 1

j

j - 1

Calculated�
Old Guess (p)

 
 

 Figure 6.3 Jacobi Analog 
 
Write the equation as  

 
  
ui, j 

1

4
(ui1, j  ui1, j  ui, j1  ui, j1) 

2x

4
bi,j  (6.7) 

 
We superscript the variables to differentiate between the guess and calculated values, as 
follows: 
 

 
  
ui, j

p+1 
1

4
(ui+1, j

p  ui1,j
p  ui,j1

p  ui, j1
p ) 

2x

4
bi, j

p1 (6.8) 

 
where  
 p denotes initial guess or estimate for u or b 
 p+1 denotes calculated value for u or b. 
 

By iteratively applying the above equation we can eventually produce solutions.  We 

solve for all values of up+1 at i,j, and then substitute ui,j
p1 for ui,j

p . 

 
The problem is that Jacobi is very, very slow to converge.  We can improve the Jacobi 
technique by using a coarse grid early in the problem, then refining it.  In general, the finer 
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the grid, the longer it takes to converge.  Now if we pay attention to our grid, we get a little 
smarter.  
 
 
 
 
 
 Grid moves across and then up 

 
X

Y

 
 
Figure 6.4 Grid of Points Showing Analog Placement (filled circles are known boundary 

points) 
 
 
We note that we have p+1 values for other analogs. 
 
We can improve the Jacobi method as follows: 
 

 
  
ui, j

p+1 
1

4
(ui+1, j

p  ui1, j
p1  ui,j1

p  ui,j1
p1 ) 

2x

4
bi,j

p  (6.9) 

 

Note that we have already calculated ui1,j
p1  and ui,j1

p1  when we wish to calculate 

ui,j
p1.  We will always know two of the terms no matter which way we progress through our 

grid points.  This modification of the Jacobi method is called Guess-Seidel or successive 
relaxation.  Gauss-Seidel converges twice as fast as Jacobi. 

 
We always choose to use Gauss-Seidel over Jacobi if we are able to do so (usually 

you can).  If Jacobi converges, so will Gauss-Seidel.  These two methods are often called 
Relaxation methods because they compute the data in a successive manner, and “relax” to a 
solution. 
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6.2 Line Relaxation 
 

We note that for Jacobi we were only using one point at the new iteration level, p+1.  
With Gauss-Seidel we used two more new points, for a total of three.  What about using four 
new points? 

 

 

j + 1

j

j - 1

i i + 1i - 1

Calculated�
Old Guess (p)�
New Guess (p+1)

 

Calculated�
Old Guess (p)�
New Guess (p+1)

j + 1

j

j - 1

i i + 1i - 1  
Figure 6.5 Gauss-Seidel Analog Figure 6.6 Line Relaxation 
 
We see that we no longer have an explicit problem.  (For the sake of simplicity we assume 
that we have no souce or sink terms).  We no longer can calculate new guess, i.e.,  
 

 
1

4
ui1,j

p1  ui,j
p1 

1

4
ui1, j

p1 
1

4
ui, j1

p1 
1

4
ui,j1

p  (6.10) 

 

We have three unknowns.  We can obtain ui1,j
p1  or ui,j1

p1  (not both!) from previous steps. 

 
Recall that with Jacobi or Gauss-seidel we had two unknowns at the new level, and 

we eliminated one using the boundary conditions.  Now that at the boundary we have at least 
two unknowns.  

 

 ui,j
p1 ui,j1

p1  and/or ui,j1
p1  (6.11) 

 
So we can never get started! 
 
We need to solve this problem by using an implicit procedure.  We arrange the equation as 
follows: 

 1 1 1 1
1, , 1, , 1 , 1

1 1 1
( )

4 4 4
p p p p p

i j i j i j i j i ju u u u u   
         (6.12) 

 
By writing our problem in matrix form we see our problem better. 
 

 coefficients  ui,j
p+1  ui, j1

p1  ui,j
p  (6.13) 
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1 1/ 4 0 0 0

1/ 4 1 1/ 4 0 0

0 1/ 4 1 1/ 4 0
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 (6.14) 
 
where bI and bE are inlet and exit boundary values, and are equal to the points at u1,j and un,j.   
 
We see we have a linear algebra problem with n-2 unknowns.  The matrix is tridiagonal, and 
we can use the Thomas Algorithm. 
 
 
6.3 Over-relaxation 
 

We observe after solving many examples using any of the three previously described 
relaxation techniques that the solutions monotonically progress from the initial guess to the 
final solutions.  It is natural to take advantage of this information, and we do this by making 
guesses of the unknown values as opposed to simply using the last calculated value.  The 
procedure is an extrapolation or acceleration, and is most commonly called overrelaxation.  
The procedure can be applied to both Gauss-Seidel and Line Relaxation.  Consider the 
previous equation for Gauss-Seidel: 
 

 ui,j
p1 

1

4
(ui1,j

p  ui1,j
p1  ui,j1

p  ui,j1
p1 ) 

1

4
bi,j

p  (6.15) 

 

At the time we perform this calculation, we also know the value of ui,j
p .  To extrapolate we 

can use the difference in ui,j
p  and ui,j

p1, as follows: 

 

 ui,j
p1  ui,j

p1  (ui, j
p1  ui,j

p ) (6.16) 

 

where ui,j
p1 is the guess we would have made without extrapolation, and ui,j

p1
 is an 

improved guess.   is an extrapolation factor if it is greater than zero.  Solving for ui,j
p1 we 

obtain 
 

 ui,j
p1  (1  )ui, j

p1  ui, j
p  (6.17) 
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letting  = 1 + 
 

 ui,j
p1  ui, j

p1  (1 )ui, j
p

 (6.18) 

 
and finally 

 ui,j
p1 

1


ui, j

p1 
(1  )


ui, j

p  (6.19) 

 
Substituting Equation (6.17) in (6.8), we obtain 
 

 ui,j
p1 


4

(ui1, j
p  ui1,j

p1  ui,j1
p  ui, j1

p1 ) 

4

bi, j
p  (1 )ui, j

p
 (6.20) 

 

We can drop the bar above ui,j
p1.  Equation (6.18) will converge much faster than Jacobi, 

Gauss-Seidel or Line Relaxation.  The same technique can be applied to Line Relaxation to 
obtain an even faster converging routine.  Equation (6.20) shows the LSOR form. 
 

The value of  must be greater than 1 to obtain increased convergence.  If it is too 
large the solution will oscillate and will converge more slowly.  Optional values of  can be 
obtained by determining the eigenvalues of the coefficient matrix. 

 
Typical convergence terms to obtain solutions with 10-6 of the final solutions, for 

Equation (6.2), for 5 grid points in Table 6.1. and the trend shown is typical for most 
problems. 
 

Table 6.1 Typical Number of Interaction to Obtain 10-6 Error. 

Jacobi 70 
Gauss-Seidel 38 
Line Relaxation 21 
Successive Over-relaxation 15 
Line Over-relaxation 12 
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7.  HYPERBOLIC METHODS 
 
 

Hyperbolic equations are among the most difficult to accurately solve.  This results 
because of the rigid requirement to place grid points in specific locations.  The information in 
a hyperbolic equation flows along lines, called characteristic lines.  We shall see how to 
manipulate the location of the grid points to place them on the characteristic lines. 
 
 
7.1 First-Order Equations 
 

The single approach to solving a hyperbolic equation would be to try the parabolic 
methods.  Consider this equation: 
 

 
u

t
 V

u

x
 Ku (7.1) 

 
We would use an analog like this for a forward different or explicit approach: 
 

n-1

n

i-1 i i+1
 

 
Figure 7.1 Forward Difference Technique Applied to a Hyperbolic Equation 

 
 
We see that the spatial and time derivatives have no common points.  This method fails to 
provide a solution.  Backward difference and Crank-Nicolson fail as well.  Alternative 
approaches might be constructed as shown in in Figure 7.2. 
 

+

 
 
 

Figure 7.2  Alternative Analogs 
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The approach that works and works well is shown in Figure 7.3. 
 
 

+

n+1

n

i-1 i
 

 
Figure 7.3  Centered Difference Analogs 

 
This method is called centered difference and is a convenient and practical method.  If we 
substitute the analogs into Equation (7.1) we obtain the following: 
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V
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ui,n1  ui1,n1
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K

4
ui,n1  ui,n  ui1,n1  ui1,n  

 (7.2) 
 
The reaction term can be represented in two ways.  Equation (7.2) shows a four point 
average.  A two point average is also possible, using the terms ui,n+1 and ui-1,n. 

 
The method is second-order correct in both time and space, and is unconditionally stable.  
The second-order correctness results because the two time derivatives and two spatial 
derivatives average to a common point, shown by the "+" in Figure 7.3.  Figure 7.4 shows 
how the analog would be placed at the entrance boundary. 
 

+

n+1

n

i-1 i  
 

Figure 7.4  Inlet Boundary Condition 
 
If we know the boundary condition the method is explicit.  The exit boundary condition is 
interesting, as shown in Figure 7.5. 
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+

i-1 i

n+1

n

 
 

Figure 7.5  Exit Boundary Condition 
 
We see that we can calculate the exit point, and we do not need an exit boundary condition.  
A first-order hyperbolic equation only has an entrance boundary condition.  A second-order 
hyperbolic equation will have two boundary conditions.  
 

To solve Equation (7.2) we average it to solve for u i,n+1, as follows: 
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 (7.3) 
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Note that the "2" in each term canceled.  Equation (7.3) can be readily programmed and the 
final result is no more complicated that a forward difference program for parabolic equations. 
 

It is interesting to consider Equation (7.3) when V = x/t and for K = 0.  We can 
substitute x = V t as follows: 
 

 ui,n1
1

t


V

Vt





 ui,n

1

t


V

Vt





 

 ui1,n
1

t


V

Vt






 

 ui1,n1 
1

t


V

Vt





 (7.4) 

 
The equation simplifies to 
 

 ui,n1
1

2t





 ui1,n

1

2t






 (7.5) 

 
The ui-1,n+1 and ui,n terms vanish, and we can conclude that 
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 ui,n+1  =  ui-1,n (7.6) 

 
Equation (7.6) is the solution to Equation (7.1) when K = 0 and for the condition V = x/t.  
In fact this is the only correct solution to Equation (7.1).  Solutions when V  x/t are 
incorrect.  This incorrectness is sometimes call numerical dispersion.  Now we should 
investigate the case when K  0. 
 

We first observe that when we use a four-point average that the ui-1,n+1 and ui,n terms 

do not vanish.  Therefore we shall try a two-point average.  Equation (7.4) for this case 
becomes: 
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t
 K




 ui1,n

2

t
 K




 (7.7) 

 
If we rearrange as follows: 
 

 ui,n1  ui1,n 
K

2
t ui,n1  ui1,n  (7.8) 

or 
 ui,n1  ui1,n  Ktui1/ 2,n1/2  (7.9) 

 
This is a second-order correct ordinary differential equation.  We can write ordinary 
differential equations along the characteristic lines.  Each initial grid point is connected to 
additional grid points - as many as you wish to write, along lines with slope 1/V = t/x.  
Figure 7.6 shows the characteristic lines. 
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t

t

x

 
 

Figure 7.6  Characteristic Lines and Slope 
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7.2 Method of Characteristics for First-Order Equations 
 

The method of characteristics (MOC) is a powerful but sometimes difficult to use 
procedure to solve hyperbolic equations.  Centered difference, with V = x/t, can be 
considered a special case of MOC.  We begin MOC by recalling the procedure for 
classifying equations.  Consider Equation (7.1) with directional derivatives: 
 

 
1 V

dt dx






u
t
u
x
















Ku

du





 (7.10) 

 
We calculate the determinant of the coefficient matrix and set it to zero to obtain: 
 
 dx  Vdt = 0 (7.11) 
or 

 V 
dx

dt
 (7.12) 

 
We now substitute the forcing vector into the coefficient matrix as follows: 
 

 
1 Ku

dt du






 (7.13) 

 
The determinant becomes: 
 
 du + Ku dt = 0 (7.14) 
or 

 
du

u
 Kdt  (7.15) 

 
Equation (7.15) is easy to integral analytically, to obtain 
 

 
u

uB
 eKt  (7.16) 

 
where uB is the initial condition [uB = u(x, 0)].  In the analytical solution it is introduced as 

an integration constant.  This is also the analytical solution to Equation (7.8).  Note that 
Equation (7.16) is valid only when x and t are selected so that V = x/t.  If we do not 
follow this constraint, we obtain an erroneous solution.  We call Equation (7.12) the 
characteristic equation, and we call Equation (7.15) the integration equation.  You can also 
think of Equation (7.12) as telling you where you can calculate a solution, while Equation 
(7.15) tells you the value of the solution. 
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Both centered difference and MOC provide solutions to Equation (7.1).  For K = 0 

and V = x/t, both techniques are exact, which means the solution they provide has zero 
truncation error.  The two point average should for the reaction terms be used when V = 
x/t.  In some cases it may not be possible to use V = x/t, and under these circumstances 
numerical dispersion will occur, and it may be better to use a four point average. 
 

We now define the Courant number.  For hyperbolic systems, a stable solution is 
possible when the Courant number, Vt/x is less than 1.0. 
 
 
7.3 Method of Characteristics for Second-Order Equations 
 

For second-order hyperbolic equations, MOC can still be used and provide a 
mechanism for keeping track of grid points.  We return to Equation (2.7), which is two 
simultaneous first-order equations which could represent the second-order hyperbolic PDE, 
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 (2.7) 

 
We set the determinant to zero and obtain the following equation 
 

 
dy

dx






2

(ce  ah) 
dy

dx
(ai  de  bh  cg)  dg  bi  0  (7.18) 

 

This equation is hyperbolic if Equation (7.18) has two real roots for
dy

dx
.  We make the 

following assumptions and we can use the quadratic formula, as follows: 
 
 A = ce  ah 
 B = ai  de + bh  cg 
 C = dg  bi 
 

 
dy

dx 1
  

B B2  4AC

2A
 (7.19) 
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dy

dx 2
  

B B2  4AC

2A
 (7.20) 

 
Note that if B2 - 4AC  0, then the Equation (7.17) is not hyperbolic and we must seek a 
different solution technique.  The results of Equations (7.19) and (7.20) are direction 
equations.  We can pick a dx and calculate dy, or vise versa. 
 
Next we define the integration equation, by substituting the forcing vector into one of the 
columns of the coefficient matrix, and then setting it to zero, as follows: 
 

 

a b c f1
e g h f2

dx dy 0 du

0 0 dx dv

 0  (7.21) 

 
We expand along the bottom row to take advantage of the two zeros, as follows: 
 

 dx

a b f1
e g f2

dx dy du

 dv

a b c

e g h

dx dy 0

 0  (7.22) 

 
We expand to obtain 
 
 dx a(gdu  f2dy)  b(edu  f2dx)  f1(edy  gdx)  
 dv dx(bh  cg)  dy(ah  ce)  0  (7.23) 
expanding 

 dxduag  dxadyf2  bdxedu  d2xbf2  dxf1edy  f1gd2x 
 dvdxbh  dvdxcg  dvdyah  dvdyce  0  (7.24) 
 
Now collecting terms by dv and du 
 
 du(dxag bdxe)  dv(dxbh  dxcg  dyah  dyce)  

 dxadyf2  d2xbf2  dxf1edy  f1gd2x  0  (7.25) 
 
We divide by dx to obtain: 
 

 du(ag  be)  dv(bh  cg 
dy

dx
ah 

dy

dx
ce) 

 adyf2  dxbf2  f1edy  f1gdx  0  (7.26) 
 
We substitute  and  into Equation (7.26) to obtain two new equations, as follows: 
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Let p1 = ag  be 

 p2 =  bh  cg 

 p3  adyf2  dxbf2  f1edy  f1gdx (along  direction) 

 p4  adyf2  dxbf2  f1edy  f1gdx  (along  direction) 
 
 p1du dv(p2  ah  ce)  p3  (7.27) 
 p1du  dv(p2 ah  ce)  p4  (7.28) 
 
Note that p3 and p4 are different because the value of either dx or dy will be different along 
the different characteristic lines. 
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8.  NONLINEAR METHODS 
 
 

The purpose of using numerical methods for solving PDE's is to solve nonlinear 
equations, for which there are no analytical solutions.  When we introduce reaction terms, 
such as biological reactions or adsorption terms, we often make the equations quasi-linear.  
Consider this equation: 
 

 
u

t
 D

2u

x2  Ku2  (8.1) 

 
This is a quasi-linear equation.  The introduction of the second-order reaction term creates 
the nonlinearity.  If we think about solving this equation using forward difference, we 
envision these analogs. 
 

n

n+1

i+1ii-1  
 

Figure 8.1 Forward Difference Analogs 
 
 
If we write the nonlinear term at the old time level, n, it can be calculated from ui,n, no matter 
what sort of nonlinear term it is.  For forward difference, with the nonlinear term is written at 
the old time level, the numerical solution is about the same complexity as a linear solution 
except that the time and distance steps will need to be much smaller.  For this reason, 
"canned" or "packaged" programs use the forward difference technique. 
 

When we use a technique that requires the nonlinear term to be represented at the 
new time level, we introduce difficulties in solving the resulting system of algebraic 
equations.  For example, with backward difference, the second-order reaction term will 
appear on the left-hand side of the algebraic equations, in the "B" term of our canonical form, 
as follows: 
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 (8.2) 
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We see that we have a u2 term in the unknowns and our linear algebra solutions fail.  
Therefore, we have no way of solving the equations for all our implicit methods, such as 
Crank-Nicolson and ADI.  For explicit methods we have a nonlinear equation for each 
analog, which may or may not be directly solvable, depending upon the nature of the 
nonlinearity.  It may be required to use an iterative method at each point. 
 

To solve the nonlinear PDE's we introduce two techniques to retain the linear 
algebraic equations.  The first is to project the nonlinear term, so that it can be replaced by a 
known value.  The second is iteration, which is a technique to determine how well we 
projected the nonlinear terms, and to improve the projection. 
 

There are four common ways of projecting nonlinear terms: using the old time level, 
forward projection, backward projection, and central projection.  All involve "factoring" the 
nonlinear term into a linear portion and a projected portion.  The term in Equation (8.1), u2, 

would be factored into uu, where u is a projected value.  The "B" term in the canonical 
form, shown in Equation (8.2) would become 
 
  

 
1

t


2D

2x
 Kui,n1






ui,n1 

1

t
ui,n  

  
 
This equation is linear and the Thomas Algorithm can still be used to solve the resulting 
system of equations.  Any nonlinear term that we can envision can be factored in this way.  
Here are a few examples: 
 

Nonlinear term  Linearized term 

u2  uu 
u

Ks  u
  u

Ks  u
 

eu  eu 
 
 
In the case of the last term, eu, the linearized result would be transposed to the right hand 
side of the canonical form (placed in the "knowns"). 
 

The easiest form of projection is to use the old time level.  In our example case we 

would use ui,n  ui,n1
 .  If the solution is not rapidly changing, then the change with each t 

is small, and ui,n  ui,n1
  is a relatively good assumption.  Note that we make the project for 

each point at the new time level.  For more rapidly changing solutions, we could use smaller 
t.  Such a procedure could work for almost any quasi-linear equation, but may not be the 
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fastest.  Also we have no way, other than a sensitivity analysis, to determine how accurate 
we are. 
 

The second method is forward projection.  This method uses a forward difference 
program within the main program (e.g., Crank-Nicolson, ADI, etc.) to calculate the value of 

ui,n1
 .  The forward difference program uses the old time level to approximate the nonlinear 

terms.  The improvement of forward projection over using the old time level are mixed.  The 
t and x for the forward difference program must be selected so that the solution is stable.  
It is difficult to selected a x that is different than the primary technique.  Therefore, one 
must pick smaller t 's, or accept the instability.  The forward difference program is only use 
for one time step, since the n time level for the forward difference program is always the n 

time level in the primary program.  The projected values (ui,n1
 ) are always discarded after 

they are used for linearization; therefore, the error with each time step does not build up.  
Nevertheless, the error associated with forward projection with Dt/2x > 1/2 can be 
significant. 
 

A better alternative is to use backward projection.  In this technique the nonlinear 
terms are written at the n time level.  An implicit solution is required and the Thomas 
Algorithm works for this purpose.  Stability is not a problem.  Central projection is similar to 
backward projection, except that Crank-Nicolson analogs are used.  Backward difference is a 
large improvement over forward projection or using the old time level.  Central projection 
takes almost as much computer time as the primary technique, and usually does nor provide 
enough improvement to warrant its use.  Figure 8.2 shows how a linear Crank-Nicolson 
program would be modified to include projection. 
 

The next question that arises is "what if the projected value, even with the best 
projection, is inaccurate?"  An obvious remedy is to decrease the time step which reduces 
truncation error and also reduces the length of the projection (e.g., short t as opposed to 
long t).  This technique works but may produce excessive computer time, especially if there 
is a requirement to maintain V = x/t, as in the near hyperbolic case.  A better approach is 
to use iteration. 
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Preliminaries.  Dimension, initialization, opening 
and  closing of files, reading input parameters, 
initial conditions, etc.

Set Unew to the initial conditions

Exchange levels 
uold = Unew (i=1,iR)

Calculate A, B,C arrays 
(left hand side)

Calculate D array 
(right hand side)

Call TA to calculate 
unew

t = t + t

Print ???

Stop ???

Predict u*

 
 

Figure 8.2 Block diagram of a program that uses prediction to solve a quasi-linear 
equation. 
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There are three basic types of iteration: direct, modified and using a convergence 
technique such as regula-falsi, the secent method, or Newton-Raphson.  The first two are 
often called Picard and modified Picard, respectively. 
 

In direct iteration the first projection is the same as discussed previously.  The old 
time level or other methods of projection can be used.  The primary method is next used to 

solve for ui,n+1.  After solution we have three set of u's: ui,n+1, ui,n1
  and Tui,n+1.  The 

Tui,n+1 is called a trial value of ui,n+1.  We have not yet decided to accept it.  Presumably, if 
it is accurate, we should accept it and increment time.  If it is inaccurate then we should 
estimate new and more accurate values of ui,n+1, then solve for new values of Tui,n+1.  We 

should check to see if the difference between ui,n1
  and Tui,n+1, as follows: 

 

   ui,n1
  Tui,n1

i1

IR

  (8.3) 

 
We use the absolute value in Equation (8.3) because it is usually faster than summing the 
squares.  We select an  that is sufficiently small to insure an accurate solution.  A sensitivity 
analysis can be performed to determine the impact of  on the ovearll accuracy. 
 

If the difference between ui,n1
  and Tui,n+1 is too large (e.g., > ) then we select a 

new value of ui,n1
 .  The different methods of selecting ui,n1

  give rise to the different 

iteration techniques.  With direct iteration, we substitute ui,n+1 = Tui,n+1.  The trial values 
become the projected values.  It may be necessary to iterate many times, so we need to 

number our trial values, such as Tui,n1
1 , Tui,n1

2 , etc., and our projected values, u1, u2, 

etc. 
 

If the summation is less than , then the trial u values are accepted and they become 
ui,n+1.  Execution proceeds, time is incremented, and the program can stop or continue 
depending upon the value of t, or other criteria. 
 

If the summation is greater than , then a better estimate of ui,n1
  is required.  With 

direct iteration, the new estimate of ui,n1
  is set equal to the trial values, Tui,n+1, for all 

values of i. 

 ui,n1
  = Tui,n+1 (8.4) 

 
The trial values are discarded.  Execution proceeds until convergence is obtained.  For some 
problems the solution will not converge - it diverges.  A counter should be placed in the 
iteration loop to insure that you do not have an infinite loop. 
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For modified iteration the value of ui,n1
  is calculated from the new trial value and 

the old projected value, as follows: 
 

 ui,n1
2  wfTui,n1

1  (1  wf)ui,n1
1  (8.5) 

 

where f is a weighing factor that ranges between zero and 1.0, and the ui,n1
  on the right 

hand side are the projected values used to produce the trial values.  We begin to number the 

u's since we have more than one set.  Figure 8.3 show how iteration can be incorporated into 
a Crank-Nicolson program. 
 

For problems that do not converge with direct iteration, modified iteration is more 
likely to converge.  Problems that converge with direct iteration will also converge with 
modified iteration, but more slowly.  Modified iteration should not be used unless you are 
relatively confident that direct iteration will not converge. 
 

In cases where modified iteration does not converge, or is very slow to converge, a 
third option is likely.  You can use a convergence technique.  Using such a technique, a 

better guess for ui,n1
  is made using old projection for ui,n1

  and the trial values they 

produced.  Figure 8.4 shows how such a technique could work. 
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Preliminaries.  Dimension, initialization, opening 
and  closing of files, reading input parameters, 
initial conditions, etc.

Set unew to the initial conditions

Exchange levels 
uold = unew (i=1,iR)

Calculate A, B,C arrays 
(left hand side)

Calculate D array 
(right hand side)

Call TA to calculate 
Tunew

t = t + t

Print ???

Stop ???

Predict u*

(Tunew - u*)

Yes

Calculate 
u* 

(iteration)

No

 
 
 
Figure 8.3 Block diagram of a program that uses prediction and iteration to solve a quasi-

linear equation. 
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ui,n1
1 ui,n1

2

Tui,n1
2

Tui,n1
1

 
 

Figure 8.4 
 

There are two lines on Figure 8.4.  The first is an identity: we wish Tu = u, and the line with 
a slope of 1, crossing the origin describes this equation.  The second line is defined by the 

results of the first two iterations.  On the first solution, we projected a value of u, either by 
using the old time level, backward, forward or central projection.  We then calculated the 

first trial value, Tui,n1
1 , and we then make a new projection for ui,n1

  using either direct or 

weighted iteration.  Finally, we calculate a second trial value Tui,n1
2 .  At this point we have 

four variables: two estimates for ui,n1
  and two estimates for Tui,n+1.  These points are 

plotted on Figure 8.4.  Note that we can think of the PDE solution as a function relating 

ui,n1
  and Tui,n+1.  We provide a projected value, and we calculate a trial value.  We can 

represent this as follows: 

 Tui,n+1 = f(ui,n1
 ) (8.6) 

 
We can represent this function as a straight line on Figure 8.4.  The slope of the line is 
defined as  

 m = slope = 
Tui,n1

2  Tui,n1
1

ui,n1
2  ui,n1

1  (8.7) 

 
The intercept is calculated from one pair of the trial and projected values, as follows: 

 b  Tui,n1
2  mui,n1

2  (8.8) 

 
We now have two equations relating projected values to trial values, as follows: 
 

 Tui,n1
p  Tui,n1

p  (8.9) 

 Tui,n1
p  mui,n1

p  b  (8.10) 

 
where m and b are the slope and intercept, as calculated in Equations (8.7) and (8.8), and p is 
the iteration (trial) number.  Equations (8.9) and (8.10) can be solved simultaneously to 
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obtain a new projection, ui,n1
p .technique can be applied as many times as necessary to 

obtain convergence, The p counter is increased with each iteration. 
 

There are other methods which can be used to quicken convergence.  The secant 
method can be used, as well as a method called Regula Falsi.  The disadvantage of the 
methods is that additional values must be stored.  With direct iteration in a nonlinear 

problem, we stored only two levels of u (ui,n and Tui,n+1) and one projected value, ui,n1
 .  

With the described convergence, five levels of u must be stored (ui,n, Tui,n+1, Tui,n1
p1  , 

ui,n1
p  and ui,n1

p1  ).  This storage requirement could be significant with many grid points as 

in two-dimensional problems. 
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9.  STABILITY ANALYSIS 
 
 

A solution is stable if the truncation error remains finite with increasing time.  To 
determine if the solution is stable we look at the difference between the real solution, ui,n , 

and the truncated solution, wi,n , as n goes to infinity.  This will be demonstrated using the 

forward difference for the heat equation. 
 

 
u

t
  

2u

x2




 


 (9.1) 

 
The exact solution uses the forward difference analogs before the higher order terms have 
been truncated.  Substituting these into (9.1) gives 
 

 
ui1,n  2ui,n  ui1,n

2x

4u

x4
i,n

22x

4!
 HOTs











ui,n1  ui,n

t

2u

t2
i,n

t

2!
 HOTs









 

 (9.2) 
 
The approximate solution that is second order correct in the spatial derivative and first order 
correct in the time derivative yields the equation 
 

  
wi+1,n  2wi,n  wi1,n

2x








wi,n1 wi,n

t
 (9.3) 

 
If z is the truncation error, then zi,n  ui,n wi,n .  Substracting (9.3) from (9.2) and 

substituting zi,n  for ui,n  wi,n  an equation for the truncation error is obtained. 

 

  
zi+1,n  2zi,n  zi1,n

2x
 HOTs








zi,n1  zi,n

t
 HOTs







 (9.4) 

 
Neglecting the higher order terms of the error we can now ask if z becomes infinite or 
remains finite as n  .  Suppose that there are two fixed boundaries 
 
 ux0  a  
 ux1  b  (9.5) 
 
because there is no truncation error at fixed boundaries 
 
 zx0  0 
 zx1  0  (9.6) 
 
Using the shorthand notation, the equation for z is  
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  x
2 zi,n   t  zi,n  (9.7) 

 
To solve this equation, we will use the separation of variables technique and assume a 
solution of the form 
 z  ni  (9.8) 
 
where 
 n is a function of time only and 

 i is a function of distance only 
 
Substituting (9.8) into (9.7) we obtain 
 

  x
2 (ni )  t  (ni )  (9.9) 

 
Because n is not a function of x, it can be taken out of the parentheses on the left hand side 

of the equation.  Similarly, i is not a function of t, so it is constant with respect to the time 
derivative.  Removing the shorthand notation for the time derivative (9.9) becomes 
 

  n x
2 i  i  

n1  n

t






 (9.10) 

or 

 2 1
x i

i

   n n n

t

    


 



 (9.11) 

 

N 
n1

n
 is called the time amplification factor.  If N  is less than 1, then the time portion 

of the error decreases as n  .  This is called the von Newmann condition.  Substituting N 
in (9.10) and rearranging we obtain 
 

 x
2 i 

1 N

t
i  0  (9.11) 

 
with boundary conditions 

 
i  0 x 0

i  0 x1

 

Now assume a solution for i 
 i  Asin(pxi)  Bcos(pxi) (9.12) 
 
Applying the boundary conditions 
 
 at x = 0 i = B = 0 
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 at x = 1 i  Asin(p)  0  
 
From the first condition there are only sine terms in the solution and from the second 
condition p must be an integer.  Substituting the trial solution, i  Asin(pxi), (9.11) 
becomes 
 

 x
2 Asin(pxi) 

1  N

t
Asin(pxi)  0  (9.13) 

 p = 0,  1,  2,  
 
Substituting  

 x
2 Asin(pxi) 

4

(x)2 sin2  p
x

2




 Asin(pxi)  

 
into (9.13), rearranging and dividing by Asin(pxi) we obtain 
 

 sin(p
x

2
)

4

(x)2 sin2 p
x

2






1 N

t







 0  (9.14) 

or  

 N  1
4t

(x)2 sin2 p
x

2




  p  0, 1,  2,      

 

We can cancel the sin(
x

2
)  since it will generally be non-zero. 

 
Recalling that the criterion for stability is N   1 
 

  1
4t

(x)2 sin2 p
x

2




  1 (9.15) 

 
The absolute value signs can be removed by converting (9.15) to the joint constraint 
 

 1 
4t

(x)2 sin2(p
x

2
)  1 (9.16) 

and 

  1 
4t

(x)2 sin2 (p
x

2
)  1 (9.17) 

 

Since sin2 is always positive and 
4t

(x)2  is positive for   0, (9.16) is met for all x and t.  

The maximum value for sin2 (p
x

2
) is 1, so (9.17) becomes 
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 1 
4t

(x)2  1 (9.18) 

or 

 
 t

(x)2 
1

2
 (9.19) 

This is a necessary condition for stability of the forward difference method.  The 
conditions for stability of other methods can be determined from the same procedure.  Recall 
that the differential equation was first written using the complete Taylor series expansion.  
Second, the equation was written using the analog approximations.  An equation for the 
truncation error was then obtained by substracting the approximate equation from the 
complete Taylor series equation.  A solution consisting of a time dependent component and a 
spatially dependent component was assumed and substituted into the error equation.  For 
stability we required that the magnitude of the ratio of the time component at one time step to 
the time component at the previous time step be less than 1.  This is necessary for the 
truncation error to remain finite.  Note that stability does not guarantee an accurate solution 
because the truncation error may be very large even though it is finite. 
 

The stability of the backward difference method will now be demonstrated using 
(9.1).  The differential equation is first written using Taylor expansion around the point 
ui,n1.  The backward difference analog equivalent of the equation is then substracted.  After 

truncating higher order terms this leaves the following equation 
 

  
zi+1,n+1  2zi,n1  zi1,n1

2x








zi,n1  zi,n

t
 (9.20) 

 
Again assuming a solution of the form z  ni  (9.20) becomes 
 

  x
2(n1i )  i

(n1  n)

t
 (9.21) 

 

Taking n1 outside of the spatial derivative and substituting in N 
n1

n
 yields 

 

 x
2 i 

i

t

N 1

N
 (9.22) 

 
Since the boundary conditions are the same as in the derivation of (9.19), we assume a 
solution of the form i  Asin(pxi).  After substitution and rearrangement, (9.22) becomes 
 
 

 N 
1

1
4t

2x
sin2 px

2

 (9.23) 
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For   0 and 
t

(x)2  finite, 0 < N  1.  Therefore, the von Newmann condition is met for 

any choice of x and t, and the method is unconditionally stable. 
 

If this procedure is repeated using Crank-Nicolson analogs, the following equation 
for N is obtained 
 

 N 
1  2 

t

2x
sin2 px

2






1  2 
t

2x
sin2 px

2






 (9.24) 

 
In this case -1  N  1 for   0 and any choice of x and t.  This method, then, is also 
unconditionally stable. 
 

For the final example for stability analysis the stability condition for the two 
dimensional advection-dispersion equation will be derived for the explicit analogs.  The 
governing equation is  
 

 
u

t
 Dx

2u

x2  Dy
2u

y2  Vx
u

x
 Vy

u

y
 (9.25) 

 
Expressed using the Taylor series expansion using j, k and n as the indices for x, y, and t, this 
becomes 
 

 

 Dx
u j1,k,n  2uj,k,n  uj1,k,n

2x
 2

2x

4!

4u

x4
j,k,n

 HOTs










  Dy
u j,k1,n  2uj,k,n  uj,k1,n

2y
 2

2y

4!

4u

y4
j,k,n

 HOTs










  Vx
uj1,k,n  uj1,k,n

2x
 2x

3!

3u

x3
j,k,n

 HOTs










  Vy
uj,k1,n  uj,k1,n

2y

2y

3!

3u

y3
j,k,n

 HOTs










 (9.26) 

 
 
Substracting the forward difference analog (5.3), substituting z = u - w and truncating the 
higher order error terms we obtain 
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 Dxx
2(zj,k,n)  Dyy

2(z j,k,n )  Vxx(z j,k,n )  Vyy(z j,k,n )   t (z j,k,n ) 

 (9.27) 
 
We will assume a solution of the form 
 

 z j,k,n  nei p j x ei q k y  (9.28) 

 
where i  1  and n is again a function of t only.  In general, the constants p and q can be 
complex.  Substituting (9.28) into (9.27) the governing equation and taking terms that are 
constant outside the derivatives we obtain 
 

 

Dx n ei kqy x
2(ei j px )  Dy n ei j px y

2 (nei kqy)

Vx n ei kqy x(ei j px)  Vy n ei j px y(nei kqy)

 ei j px ei kqy n1 n

t






 (9.29) 

 

Taking the derivatives and dividing by ei j px ei kqy n , (9.29) becomes 
 

 

-4t Dx

2x
sin2 px

2





 4

t Dy

2y
sin2 qy

2







i
t

x
Vx sin px  i

t

y
Vy sin qy  1 N

 (9.30) 

 
Thus, N is a complex number so its magnitude can be expressed as 
 

 

N  1 4
t Dx

2x
sin2 px

2
 4

t Dy

2y
sin2 qy

2




 




2




  
t

x
Vx sin px

t

y
Vy sin qy



 




2 




1/ 2
 (9.31) 

 
While it is tedious to do, it can be shown that N   1 reduces to the stability condition 
 

 Dx
t

2x
 Dy

t

2y
 1/ 2  (9.32) 

 

In general, the lower derivatives, such as 
u

x
, do not effect the stability condition. 
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Appendix A.  Tridiagonal Matrix Solution 
 

The tridiagonal matrix is the “heart” of finite difference problems.  It occurs in 
implicit parabolic problems, elliptic line relaxation, and certain types of hyperbolic problems. 
 
The problem is how to solve for the unknowns without performing calculations on the off 

diagonal zero’s.  Gaussian elimination generally takes 
 

(ST)3

3
 calculations, where S and T are 

the array dimensions.  The tridiagonal matrix solution, or Thomas Algorithm, which is a 
special case of Gaussian elimination, take much less. 
 
Here’s how we start. 
 
At the boundaries we must eliminate two unknowns.  We seen unknowns and n-2 equations 
less than we need.  We adopt the notation using  ai  for the  ui1, n1 terms,   bi  for the  ui, n1 

terms,   ci  for the   ui1, u1 terms, and  di  for all other terms.  We eliminate the inlet and exit 

boundary terms, which insures that  a1 and  ciR  = 0. 
 
For the case of five interior grid points we have 
 

 

  

b1 c1 0 0 0

a2 b2 c2 0 0

0 a3 b3 c3 0

0 0 a4 b4 c4

0 0 0 a5 b5























 

u1

u2

u3

u4

u5

























d1

d2

d3

d4

d5























 (A.1) 

 
Now we need to solve for u. 
The following Gaussian elimination procedure is suggested. 
 
First perform the forward substitution, calculating intermediate variables b and g for i = 2, iR 
 

 
  
i  bi 

aici1

i1
 (A.2) 

 
  
 i 

di  ai i1

i
 (A.3) 

 
for i = 1 
   1  b1 (A.4) 

 
  
1 

d1

b1
 (A.5) 
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Next calculate u as follows: 

 
  
ui   i 

ciui1

i
 (A.6) 

   uiR   iR  (A.7) 
 

The following code solves the tridiagonal matrix resulting from Crank-Nicolson or 
Backwards Difference.  The code is written assuming that the inlet boundary, u(1) is known 
and need not be calculated by the routine.  The exit boundary point u(iR) is calculated by the 
routine.  This implementation is most convenient when using a false point for a zero flux exit 
boundary.  Be very careful when using this code or others to solve the tridiagonal or band 
matrices.  The vast majority of programming errors are associated with incorrect handling of 
the boundary conditions. 

 
The following techniques are available for other frequently occurring band matrices. 

They are copies form the out of print book, Numerical Methods for the Solution of Partial 
Differential Equations, by Dale U. Von Rosenberg.  
 


