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That ions arriving at a sheath on a negative electrode or wall

must have energy greater than or equal to 3kTe was shown by

1)

Langmuir( in 1929. In 1949 Bohm(z) gave an unconvincing proof of

this theorem, which has since been known as Bohm's Criterion for

(3,4)

Stability of a Sheath. Recently several authors have made use of

this criterion, although there is some doubt as to, its v-a:h-&a-tay-( . Itis )
—‘M

the purpose of this note to show-that the sheath criterion is valid fesa.

wide-range-of-conditiens. That the ion velocity near a boundary should
be given by the electron, rather than the ion, temperature is physical-
ly reasonable when kT, > > kTj, since the force driving the ions into
the wall is provided by the plasma pressure no kT,.

Consider a one-dimensional semi-infinite plasma in which
kTe > > kTj and A > > h, where h is the Debye length (kTe/41rne2)% and
A is the collision mean free path between ions and neutrals or electrons.
We seek a time-independent solution of Poisson's equation in the
region within a distance A of the boundary, where the particles are
assumed to suffer no collisions. The wall is assumed to be negative
relative to the plasma, and the potential V will look somewhat as
depicted in Fig. 1. Let us choose a point approximately 3\ away from

the wall to be the origin x= 0, and define the value of V there to be 0,



2.
The exact location of this point is immaterial; what matters is that the
equations of motion for free-fall are obeyed for many lengths h on
either side of this point.
The electron density is assumed to follow the Boltzmann rela-
tion:

ng = nege®’/XTe (1)

The subscript o will denote quantities at x = 0. If the ions are assumed

to arrive at x = o with a uniform energy eV, directed toward the wall,

their density will be given by

1
-2

n; = njo (1 + vv, 1) (2)

In terms of the natural variables 7) = -eV/kTe and £ = x/h, Poisson's

equation becomes, for a perfectly absorbing wall,

1

Nt =a (4t nn )7 e (3)
where the prime indicates d/d§, nj= -eV,/kT is the initial ion energy,
and a = nio/neo: so that a - 1 is the value of ", or the charge imbalance,

at £ = 0, Eq. (3) can be integrated to obtain
.13 - 2
int2=2ani[(+ 0% -1 + e -1+307, (4)

where b is the value of 7' at § = 0.

The behavior of the density terms as a function of 17 is shown in
Fig. 2a, for various values of 17;, for the case a = 1. Since an electron
excess produces a concave-downwards curvature of the 1 - § curve, it is
clear that if n, > n; for small positive 7, the n - £ curve cannot start

with zero slope, since it would then have to be concave upwards and



3.
downwards at the same time. This difficulty does not arise if 77; > n, for
positive 7. The critical condition is that the slopes of the n; and ng
curves be equal at 77 = 0. By differentiating (1) and (2), one sees that
(2)

this is just the sheath criterion, 7; = 3. For a=1 and b=0, Bohm

showed that the expression (4) for 7 12 is negative unless 17 > 1.

However, a =1 and b = 0 cannot be strictly true, since if 5"

0

n' = 0, all derivatives would vanish, and only the trivial solution 7
is possible. We now investigate the effect of the boundary conditions on
the minimum wvalue of UFE Consider first the case b= 0, a > 1. As one
varies 7); the curves of 7 vs ¢ behave qualitatively as shown in Fig. 3,

It is now possible to decrease n; until the nj curve dips slightly below

the n, curve, as shown in Fig. 2b. If 77; is too small, however, the
solution becomes oscillatory. The critical 77; is reached whenn'=7"=0
for some value of 7. By setting Eqgs. (3) and (4) equal to zero, one has
two equations for the critical 77; and 17 for any given a. These can be

solved by substituting from (3) into (4) to obtain

"M = 2an; (ae - 1) (5)

l-e

Denoting the left hand side by f(7) and the right hand side by g(7n7), we
see that f_and g behave qualitatively as in Fig. 4 for various 17{. For
large mi there is no solution, since 7)' is never zero except at the origin.
For small 17;, there are two solutions, corresponding to a negative value
for n 12 and an oscillatory behavior for 17. The critical value of 773 is
that which makes the f and g curves tangent. Setting f = g and {' = g',

we obtain



a-1.3,2
=)

n;= zl1-¢

This gives the reduction in the sheath criterion when a > 1.

It is characteristic of the sheath equation (3) that when 17 becomes
of the order of 1, the curve develops catastrophically in a distance of
the order of h. Hence if A > > h, the value of a must be very close to
unity to enable 7] to stay close to zero for such a long distance. Beyond
a mean free path from the wall, collisions can alter the equation of
motion so that (3) no longer has to hold. An upper limit to a can be
obtained by assuming that 7' = a-1 throughout. With b = 0, the potential
will then be n(£) = 3 (a-1)& 2. This is an underestimate of 7 since in
practice "' is not constant but increases with 7. If we require that n
be less than 1 when £ = 3 A, then a-1 < S/AZ. For almost all laboratory
plasmas of interest, h lies between 10-2 and 10-3 cm. If A =1cm, we see
that a-1 < 8 x 10-4. Putting this into (6), we see that the correction to
T]ii% is less than 6%, usually much less. Thus for neutral densities
below about 10 microns, the sheath criterion is valid. When the ion-
neutral mean free path becomes comparable to h, however, the free-
fall equations do not hold over a large distance, and the sheath criterion
may be significantly changed by the boundary condition at the '""sheath
edge''. Jon-electron mean free paths are usually greater than 1 cm.

It is apparent from Eqs. (3) and (4) that the - £ curve must
be symmetric about some £. If § > 0, the curve has a minimum there.

Ifa=1butb# 0, we can shift the origin to this point, where 7' = 0

and 7" > 0, and recover the previous case, since by our original choice
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of the origin the free-fall equations must hold for a long distance on either
side of x = 0. In particular, if b > 0, it is apparent from Fig. 2a that if
one went to suﬁiciently negative 77, the ion excess must eventually become
large for any 774, and hence the 7)- { curve must reach a minimum, b is
go small that this minimum is not reached for a distance greater than $X,
and ‘T]‘ < 1 there, it is easy to see that the formal solution must be the
one we have considered as the actual solution, with a-1 < < 1, and therefore
N4 R 1. A similar argument for the case a¥ 1, b ¥ 0 will show that we have
already covered the most general Loundary condition. Thus by the time {ons
reach the region of free-fall, they must have somehow or other acquired
energy greater than or equal to 1 kTe. The acceleration mechanism is not
considered here. The solution for the collision-dominated region far from
the sheath, whatever it may be, must join smoothly onto this free-fall
solution at some point where 7, 7', and 7" are not zero.

ng> 3, the n{ and ne curves are no longer almost parallel at 7 = 0,
and the boundary conditions a = 1 and b = 0 must be very closely satisfied in
order for 7} to stay close to zero for many lengths h. Although it is possible
in principle for 774 to be grea'ter than 4, it is unlikely for energetic reasons.

So far we have only considered cold ions. If the ions have a velocity
spread, those having more than the mean velocity will contribute more than
average to the density in the sheath and vice verlﬁ. There is, however, a
second order effect in the velocity spread which decreases the ion density.
Thus if the ions are not cold, the critical value of 7; is greater than i, if Ny

is computed from the mean velocity. In particular, if the ions are Maxwellian
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with a streaming velocity v,, Eq. (2) will have to be replaced by an integral

of the forin
o0 2 2
n,-Ag et Ly -2t vl (7)
a

If the wall potential 7}, is so low that a large number of plasma

electrons escape to the wall or electrode, Eq. (1) can be corrected to read

nec‘i—neoe‘n [1+ erf (D - 7))} (8)

This will decrease the critical value of 74, If Plectrons are emitted from the
wall, the density n, of emitted electrons will behave like the dotted curve
in Fig. 2b. This addition to n, Will increase 7§, but the effect is usually very
small, even for space-charge limited emission.

Provided that the effects of the last two paragraphs are small, the

sheath criterion should be valid whenever A > > h.
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FIGURE CAPTIONS

The assumed geometry

Behavior of the ion and electron densities as functions of the
potential, for various initial ion energies. (a) a= 1. (b) a> 1.
The potential distribution as the initial ion energy is varied.

Behavior of the functions f and g as 774 is varied.
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