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The propagation of low-frequency electrostatic oscillations perpendicular to a density gradient in
a low-density, fully ionized plasma in a strong magnetic field B is studied from the point of view of
the linearized macroscopic equations. Two sets of waves are found in the limits where the electrons
move freely along B or not at all along B. Among these are waves which travel at the electron and
ion diamagnetic drift velocities, and a physical description of this phenomenon is given in terms of
microscopic motions. The transition between these two sets of modes occurs at angles of propagation
very close to 90° to B; to treat this region of angles one must take into account either the electron
inertia or the plasma resistivity. Dispersion curves are given for this transition region. In addition,
it is found that in a small range of angles one of the cyclotron waves and the wave traveling near the
electron drift velocity are unstable and can be excited by the pressure gradient, even if no longitudinal

currents exist in equilibrium.

I. INTRODUCTION

OW-FREQUENCY oscillations in an inhomo-

geneous plasma created by thermal ionization
have already been observed by D’Angelo and
Motley." These oscillations seem to propagate across
the magnetic field with the same velocity as the
pressure-gradient drift; that this should follow from
the macroscopic equations of a collisionless plasma
has been noted by D’Angelo.” However, it seems
at first paradoxical that a density perturbation
should propagate with the macroscopic drift when,
in the microscopic picture, the ions must gyrate
around fixed lines of force in the absence of collisions.
It is the purpose of this article to show that the
various electrostatic modes arising from the macro-
scopic equations have simple physical interpreta-
tions; that it is important to consider finite values
of the wavenumber k; parallel to the magnetic field;
and that, when finite resistivity is taken into account,
it is the wave traveling with the electron pressure-
gradient drift which is unstable, in agreement with
well-known results on ‘“universal” instabilities. To
achieve this we propose to study a particularly
simple system in which the physical character of
the pressure-gradient drift modes can be made clear.

II. FUNDAMENTAL EQUATIONS

For a fully ionized plasma, the first two moments
of the Boltzmann equation give, for each species,
the following fluid equations (in esu):

* On leave from Princeton University, Princeton, New
Jersey.
( tN. D’Angelo and R. W. Motley, Phys. Fluids 6, 422
1963).

2 N. D’Angelo, Phys. Fluids 6, 592 (1963).

s 1., Spitzer, Jr., Physics of Fully Ionized Gases (Inter-
science Publishers, Inc., New York, 1962), 2nd ed., p. 24.

mn(ov/dt + v-Vv)
= qn(E + vxB) — KTVn + Py, €))
/ot + V-(nv) = 0. 2)

Here P, is the force per unit volume exerted on
fluid 1 by collisions with fluid 2. We have neglected
the viscosity and assumed that the temperature of
each species is constant and uniform; if the plasma
is adiabatic instead of isothermal, a factor of §
should appear in front of the density-gradient term;
but this would not greatly affect the results. These
equations are valid® as long as collisions are frequent
enough to keep the velocity distributions Max-
wellian. In the cesium and potassium plasmas with
which this paper is primarily concerned, this assump-
tion is probably closer to the truth than the assump-
tion of no collisions for the low frequencies of interest.
Of course, the condition on the collision frequency
is relaxed if we restrict our attention to certain
types of phenomena; for example, to those in which
the parallel wave velocity is much larger than the
thermal velocity and the Larmor radii are smaller
then the scale of macroscopic gradients. In particular,
we shall avoid considering zero-order drifts along B,
since this would lead to excitation of waves with a
growth rate which can be computed accurately only
by including the effects of Landau damping.

We take the density n to be the same for ions
as for electrons, and the charge ¢ to be +e¢ for ions
and —e for electrons. We shall further assume that
the density is so low that V xB = 0 and that
the frequencies are so low that V xE = 0; then
B is constant and uniform, and E can be written
—V¢. If only frequencies much less than the ion
plasma frequency are considered, we may omit
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Maxwell’s equations altogether and use only Eqs. (1)
and (2). In neglecting gradients in B we miss waves
associated with the ¥ B drifts; however, these occur
at extremely low frequencies if the vacuum field
is uniform, and there has been no experimental
evidence that such waves are important.

1. Equilibrium

In zero order we assume that the electric field and
all time derivatives vanish, and that all quantities
vary only in the z direction. With P;, neglected
temporarily, Eq. (1) for ions becomes

mav” Vv = en,v'® xB — KT, Vn,. (3)

For clarity we shall use Cartesian coordinates; the
case of cylindrical symmetry is considered elsewhere.*
With B = B% and a prime denoting d/dz, the z
and y components of Eq. (3) become

= (B/mw,” — (KT:/m;)no/ne)  (4)
0.”[v,”" + (eB/my)] = 0, ®)

and Eq. (2) becomes

s + np® = 0. (6)

If v{” vanishes, Eqs. (5) and (6) are automatically
satisfied, and Eq. (4) gives the diamagnetic drift
velocity :

(0 0)’
p{"pl®

’ 2
o = EL Va0, ™)

where
w, = eB/m;, \z) Evné/no, va = KT:/m)t. (8)

If v does not vanish, Eqgs. (4)-(6) are three
differential equations for the two quantities »{* and
v{”; and therefore a condition is imposed on the
equilibrium density gradient A(z). This condition
is not satisfied in general, and in particular is not
satisfied for A constant, the case with which we
are especially concerned. Thus we henceforth assume
that »® vanishes and »{” is given by Eq. (7). A

similar equation for electrons gives
Voo = —(L'e/Ts)v0. ©)

The equilibrium configuration, then, contains a
uniform magnetic field in the 2z direction, a density
gradient in the z direction, and oppositely directed
drifts of ions and electrons in the y direction. These
drifts, of course, refer to a fluid element; the in-
dividual particles gyrate about fixed lines of force
and do not drift.°

4F. F. Chen, Princeton Plasma Physics Laboratory
Report MATT-227 (1963).
5 Reference 3, p. 32.
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2. Perturbation

We now wish to consider waves propagating per-
pendicular to the zero-order density gradient; that is,
with a propagation vector k lying in the y—z plane
such that the primary component k, is in the y
direction, with a small component %, in the z direc-
tion. Assuming that all perturbed quantities vary
as exp (—iwt), we linearize Eq. (1) by writing
n=mnFn,v=v"+v" andE = 0 — Vo,
dropping higher order terms, and subtracting
(1 + n,/n) times Eq. (3). Again specifying ions,
we have

mino(""l:wv“) + V(O) .vv(l) + V(1) 'VV(O))
= —en,Vo + env'’ xB — KT {(Vn, — ning Vno).
(10)

It will now be convenient to measure times in
units of w;' and velocities in units of v, and thus
lengths in units of v,,/w,. We thus introduce the

following dimensionless quantities, denoted by
Greek letters:
v="0, v =V Q= 0/,
b= Nu/w, = M1/ V2 K1,
¥ = kwa/o, = ki / V2 K 1,
vi = kwa/o, = kiru/ V2 <1,
x = ep/KT;, v = Ny /N, 1)
y=Q— 1w, Y= Q-+ By,
g="T,/T, po= me/m, 0 =n/v
k= kwo/w, =y =78, B=1+86,
A =148/,
where r, = A/2v./w, is the ion Larmor radius.

Note that v is simply the velocity in units of v,
while v and & are essentially the wavenumber and
density gradient in terms of the Larmor radius.
Also, x and v are the perturbations in potential
and density, and « is the Doppler shift of the zero-
order ion drift, so that ¥ and ¢, are the frequency
measured in the ion and electron drift frames,
respectively. We are interested in waves propagating
nearly perpendicular to B; that is, in small values
of 6, which is then essentially the angular deviation
from perpendicularity.

To take resistivity into account we now retain
the term Py, in Eq. (1) and relate it to the resistivity
n by the well-known expression

Pei - _Pie = 3”’75 = eznzn(vi - ve)- (12)
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If the parameter ¢ defined by
(13)

is much smaller than unity, as we shall assume,
it can be shown that the effect of resistivity on
the perpendicular components of v is negligible.
‘We therefore make the basic approximation that
the term P;, need be included only in the z compo-
nent of Eq. (1). We also neglect the small velocity
component v{* introduced into the equilibrium solu-
tion by the collisions.

Since the zero-order quantities are independent
of y and z, we can perform a further Fourier analysis
and assume that », x, and v vary as exp i(k,y + ky2).
The algebra becomes appreciably simpler if we now
make the assumption that v,, and hence ¢ and ¥.,
is constant; that is, that A\ is constant and the zero-
order density gradient is exponential:

ne ~ €~. (14)

¢ = enon/B

This is a physical assumption made for convenience;
it also happens to be approximately fulfilled in
certain experiments.’

III. RESULTS

Following standard procedure, we can with this
approximation solve Eq. (10) and its electron
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counterpart for the components of v; and v,. These
are then inserted into the linearized form of the
equations of continuity (2) to obtain a pair of
coupled differential equations for »(z) and x(z).
It can be shown® that when these equations are
solved for the lowest mode, the effect of the x depend-
ence is negligible on the drift modes and gives a
frequency shift of order 1(8/v)* on the cyclotron
modes. We shall therefore neglect the z dependence
and assume that v and x are constant. The compo-
nents of the velocity perturbations then become:

-1

Vg = ¢2Z1 [t v = WE‘—‘LI By — x),
Vi = ¢2¢Z [ t), v = ;5“1%%7 By — x), a5
Vg = D_I’Yn[l“//e(x +») + Be],
vee = D7 [¥(B — x) + Be],
where
D = pdy, + iy + uy). (16)

When these expressions are inserted into the equa-
tions of continuity, one obtains a pair of algebraic
equations for x and ». The condition that the
determinant vanish then gives the following disper-
sion relation:

In obtaining this result we have assumed u < 1.

If the resistivity e vanishes, one obtains the
disperson relation for finite &, when the electron
velocity along B is limited only by the electron
inertia. We shall omit the discussion of this case,
which is given elsewhere,® and proceed to the
physically interesting case u < ¢ < 1. A simpler
expression which still retains all the essential features
of Eq. (17) can be obtained if we assume, in addition,
6° < 1 and e < &y}, as is reasonable in most
physically interesting situations; Eq. (17) then
becomes
_ Yoy ly + 1) .
T YW — A) — By + B

Numerical results for the relation (17) are shown in
Fig. 1 for the case =2, p=1.4 X 107% ¢=8 X 107",
which corresponds to a 2000°K potassium plasma.
In Fig. 1 the real and imaginary parts of 2/«, which
‘is the wave velocity in units of the ion pressure-
gradient drift velocity, are plotted against e 6%,
which is a measure of k,, for the cases § < ¥ and

. —1 2
1€ 0

(18)

VW = A) = B+ (F — Ddd — Br°0) — Berd(oy v + 1)’

7)

8 > . Since § and v, and hence «, have been
chosen positive, positive values of Im (Q/x) cor-
respond to growth and negative values to damping.

IV. THE NORMAL MODES

1. Perpendicular Propagation

If &y, and hence 6, is strictly zero, the numerator
of Eq. (17) or (18) must vanish. This gives the
five roots on the Q/x axis of Fig. 1; four of these
roots appear in the approximate formula (18). The
real part of w is given by:

V=0 or w=kw (DI,), (19)
v = —v/8 or w=~Fkw, — (k. /Nw. (CE,), (20)
Y. =0 or w =k, (DE,). (21)

(a) The Ion Drift Mode. The triple root (19) is
the one discussed previously by D’Angelo.” It is a
wave traveling at the zero-order ion pressure-
gradient drift velocity. This mode is designated by
DI,, the subscript indicating the limit of per-
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Fi1a. 1. Variation of normalized wave velocity with angle
of propagation 6 for a given wavelength v and two values of
the density gradient 6, in the case of finite (normalized)
resistivity e. The value y = 0.05 corresponds, for example, to
the m = 1 mode of a thermally ionized potassium plasma
1.5 em in radius, in a field of 4 kG, and the values of ¢ and u
used correspond to a 2000°K plasma of density 3 X 101° cm™3.
Note that the scales are linear near the axes and logarithmic
elsewhere, causing the abrupt changes in slope.

pendicular propagation. We shall try to understand
this mode physically from both the fluid and the
single-particle points of view.

In the fluid picture, we note that the first-order
velocity for the ion fluid vanishes. This follows
from the fact that for v, = 0 and u << 1, the electron
continuity equation is simply

(22)

For this mode, we have ¢y =  — v, = 0, and
hence » -+ x vanishes; and, by Eq. (15), v; is iden-
tically zero. It appears that a density perturbation
in the ion fluid will be carried along with the zero-
order drift in the y direction.

In the microscopic picture, each particle gyrates
about a fixed line of force since the effect of collisions
on perpendicular motions has been neglected, and
density perturbations cannot be ‘“‘carried along”
with the zero-order drift. However, density perturba-
tions can still propagate because the guiding centers
can drift along the zero-order density gradient. To
see this more clearly, we must first recognize that
the x terms in the expressions (15) for the velocities

Yox = — M.

represent the E xB drift due to the first-order
electric field, while the » terms represent the Vp xB
drift due to the density perturbation. This is il-
lustrated in Fig. 2. According to the physical picture
given by Spitzer,’ the density perturbation in the
y direction gives rise to a macroscopic velocity v,
which does not exist in the microscopic picture.
The perturbed electric field E, (¥, being zero by
assumption) gives rise to a drift of the guiding
centers in the z direction. For the ions these two
drifts exactly cancel so that the macroscopic velocity
perturbation is zero, while for the electrons the
two drifts add. A density perturbation propagates
in the y direction by virtue of the E xB drift of
both the ion and the electron guiding centers in
the z direction, bringing in alternately regions of
higher and lower density in the zero-order distribu-
tion. It is clear from this picture that if the ion
inertia had been neglected along with the electron
inertia, the ions and electrons would respond exactly
the same way to the electric field, and there would
be no charge separation to perpetuate the electric
field; it is the lag of the ions in setting up their
E xB drift that makes this wave possible.

From Eq. (15) we see that in the limit y — 0
the only nonvanishing velocity component is v,.;
the electrons drift back and forth in the = direction
with a negligibly small Larmor radius. This wave
is therefore longitudinal only in the sense that E is
parallel to k; it is transverse in the sense that the
fluid velocity is perpendicular to k. In the micro-
scopic picture it is easy to see intuitively why the
wave velocity should be proportional to the ion
drift velocity. The frequency should be proportional
to the rate at which the density can change; that
is, proportional to the drift speed E/B times the
density gradient A\. Now, E is —tk,¢, and ep must
be proportional to KT;, since it is the ion inertia
which creates the potential; thus we have that

Fig. 2. Pictorial rep- 4Y
resentation of the
density-gradient wave
DI, traveling with the
ion drift velocity. The
shaded region repre-
sents a density per-
turbation propagating
in the negative y
direction, and the
thickness of the ion
Larmor orbits repre-
sents the relative local
density. In this wave
Ex B drifts in the
z direction exactly
cancel the macroscopic
velocity due to the
density perturbation.

o8
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w/ky « KTNeB =.v,, Why the constant of
proportionality should be exactly 1 seems to be
fortuitous; indeed, one finds that w/k, differs slightly
from v, if v, is not constant. Although we have not
considered propagation in the z—y plane, it is clear
that the wave velocity will be fastest in the y
direction, since then the E xB drifts are parallel
to the zero-order density gradient.

(b) Modified Ion Cyclotron Wave. We now turn
our attention to the root (20) of the dispersion
relation (18); this mode is labeled (2) in Fig. 1.
This is a modified ion cyclotron wave in which
electrons do not stream along B in order to preserve
charge neutrality, as in the usual case, but rather
drift in the z direction along V7, This mechanism
of charge neutralization does not exist in a uniform
plasma. We note that the first term in Eq. (20)
is usually small compared to the second, so that
the wave almost always travels in the direction of
the zero-order electron drift; it is therefore denoted
by CE,, the “E” indicating the direction of the
wave velocity. The frequency can be larger or
smaller than w, depending on the relative size of the
wavelength and the density gradient. In wave CE,
both the ion and the electron velocity perturbations
are finite.

(¢) Electron Drift Wave. The mode labeled (1) in
Fig. 1 and described by Eq. (21) is a wave DE,
traveling with the electron pressure-gradient drift.
This wave does not appear in the approximate
dispersion relation (18), and it is an entirely different
phenomenon from the wave DI,. Its nature can
be seen from the expression for v,, given by Eqs. (15)
and (16) if we neglect e for the moment. If v, had
been set equal to zero at the outset, this wave
would not have appeared. But if we allow v, to
approach zero from finite values, v,, may become
infinite if D = uyy, approaches zero faster than v,.
The root ¢, = 0 therefore corresponds to infinite
parallel velocities of the electrons. When collisions
with ions are taken into account, one would expect
this wave to be damped; and indeed it is clear from

- Fig. 1 that this mode always has a large negative
imaginary part. This mode is therefore physically
unimportant.

2. “‘Large” Angle Propagation

We now consider the opposite limit of propagation
in the y— plane with a component k&, of the propaga-
tion constant along B sufficiently large that electrons
can move freely in the z direction. The quantity
€ '6° then becomes large and the denominator of
Eq. (17) or (18) must vanish. We then obtain the
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four waves near the top of Figs. 1(a) and 1(b).

(@) Ion Cyclotron Waves. When « = &y is finite,
two of the roots of the denominator of Eq. (18)
occur around ¢ ~ A ~ 1. For v} K€ 7* < 1, we
may neglect the last term in this denominator and
obtain, approximately,

‘/’2 =1+ E’Y(’Y + 5); (CIB: CEe)

or
(w - kﬂ’o)2 = wf + (1 + Te/Ti)ki(vih + Uf))‘ (23)

When v, vanishes, we recover the Motley—D’Angelo®
oscillations near the ion cyclotron frequency. When
vo is finite, the frequency is modified by the density
gradient perpendicular to the direction of propaga-
tion. The correction occurs because electrons can
cancel charge imbalance by drifting in the z direction
as well as by streaming in the z direction. These
modes will be labeled CI, and CE,, the subscript
denoting the limit of “large’ angle propagation.

(b) Electron Drift Wave. The drift waves, for which
¥? < 1, are found by neglecting ¢* relative to A
and to 1. We then have

AY' + By — By = 0 (24)
Furthermore, if we neglect the term By{, we find a

wave traveling near the electron diamagnetic drift
velocity — Bug:

A -8 _ _ B+B
Q = A = 1 + --72 ~ _6K,
or
o = kv, (DEy). (25)

For this wave to exist, we obviously require §y] <
B x| &~ B’ or 6 < B6°. On the other hand,
the large-angle approximation required ° >> edy™".
Thus this wave exists for a range of angles 8 provided
that € < Bk, a condition which is easy to satisfy
in practice.

For larger values of 4 or for small density gradients
such that vi > |x|, we may neglect the middle
term in the denominator of Eq. (18) and obtain

' =BATW or (0 —kwo)’ (1 + To/Tke. (26)

Thus for sufficiently large ¢ both the wave DE,
and the wave DI, discussed below turn into acoustic
waves with a parallel phase velocity nearly equal
to the sound velocity. Using the result (26), we see
that the drift waves turn into sound waves for
0 > B*A™%. This is seen in Fig. 1, where the drift
waves, labeled (3) and (4), are shown to deviate
at large angles from the velocities Q/k = =+1.

(19663%. W. Motley and N. D’Angelo, Phys. Fluids 6, 296
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When ¢ '6° is large, the electron continuity equa-
tion becomes simply

@7)

in contrast to Eq. (22). A physical interpretation
of the electron drift wave may be obtained by
computing the fluid velocities from Eq. (15). For
x = PBv, we see that v,, and v,, vanish, and v.; is
the main component of ion velocity, the components
v,; and v,; being Bk and 6/Bk times smaller, re-
spectively. DE, is therefore the counterpart of mode
DI, ; it is now the electrons whose E xB and Vp xB
drifts cancel to give a zero macroscopic velocity,
while the ion drifts add to give a large ion drift
velocity in the z direction. Because of the ion inertia,
there is also a small but finite component of v; in
the y direction which gives rise to a charge separation
which is cancelled by electron streaming along the
magnetic field. It is intuitively reasonable that the
mode DE, should propagate in the direction opposite
to the zero-order ion drift, since the roles of the ions
and electrons are interchanged as compared with
mode DI,.

(¢) Ion Drift Wave. Finally, there is a solution
of Eq. (24) for ¢ & 0. In this case we may neglect
the first term of Eq. (24) and write

v =7k or w = ko + (kph/kwo) (Dlo). (28)

The condition for the existence of this wave is
that By >> Ay® in Eq. (24). Using the result (28),
we find that we require §° < FA~'6°, which, for
A ~ 1, is essentially the same condition as found
above for the electron drift wave. Although the
mode DI, travels at very nearly the ion drift
velocity, it is physically an entirely different phenom-
enon from the mode DI,. Referring again to the
velocities in Eq. (15), we see that for the wave
DI, the electron velocities v,, and v,. still vanish
by virtue of Eq. (27), and the ion velocities v.;
and v,; are essentially the same as in the previous
case (DE,), but that v,; is now very large: v,; = 86~ Bv.
This diverges as 8 goes to zero, and it appears that
charge cancellation via Zon streaming along B is a
characteristic of this mode. Indeed, if parallel ion
motions had been neglected originally, this mode
would not have appeared. DI, is therefore the
large-angle counterpart of DE,, in which electrons
preserved quasineutrality by streaming along B.
From Fig. 1 it is seen that this mode, labeled (4),
maintains its identity even for small values of ¢ 6"

When the resistivity e is finite, one would expect
this mode to be damped. Surprisingly, the imaginary
part of Q/x for the mode DI, vanishes almost

x = B,
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everywhere, The reason for this can be seen from
the expressions (15) for the parallel velocities. The
second term in the brackets of v,; and v,, represents
the effect on v, of the drag due to the other species.
For u < € and ¢ < ¢ this term is dominant in
both equations and we find v,; & v... Apparently
the electrons are entrained by the ions because of
the collisions, and both species stream along z with
approximately the same velocity. The damping,
which is proportional to v,; — v, appears only
for extremely small values of 6°, of order eu.

Although v,; can be finite as § — 0 if » vanishes,
it is not possible to interpret this mode as an initial
perturbation in v,;, with no perturbation in n, which
is propagated along with the ion drift. This is because
the method by which we derived the dispersion
relation depends on the fact that » is finite. Since
the large values of v,; which are necessary for the
existence of this mode at small values of 6 cannot
be reconciled with the microscopic picture, we con-
clude that DI, is not adequately described by this
simple theory. At large values of 6, as we have
already noted, this wave becomes an acoustic wave
and no longer possesses the phase velocity vo.

3. Intermediate Angles

From Fig. 1 we see that as ¢ '6° is increased from
zero, the mode DI, splits into three waves which
become the modes DE,, DI,, and CI, at large values
of ¢€'6*; this change in the character of mode DI,
occurs at extremely small angles 8. The mode CE,
however, maintains its identity for a larger range
of 6. Turning our attention to the imaginary part
of Q/k, we note that the cyclotron waves (2) and
(5) tend to become real as ¢ '6° approaches 0 or « ;
but for finite values of ¢ *6° the “forward’’ cyclotron
wave CI is always damped, while the “backward”’
cyclotron wave CE is damped if § < v and unstable
if 8 > +. The maximum growth rate is of the order
of Re (w), at least in the framework of a theory
which neglects cyclotron damping. The author knows
of no experimental evidence for this instability; it is
not the same as that observed by Motley and
D’Angelo,® because k is perpendicular to V7, in
this theory.

The mode labeled (3) in Fig. 1 changes from the
mode DI, to the DE, and finally to an acoustic
wave as @ is increased from 0. In an intermediate
range of 6, this wave is unstable, with growth rate
of the same order as Re (w). We can offer the
following partial explanation of the instability of
the DI,~DE, wave. When 6 equals zero, we saw
in Eq. (22) that for the ion drift wave the density
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and potential perturbations are 180° out of phase:
v = —x. This means that the electric field E, and
hence the E xB drift of guiding centers in the =z
direction are 90° out of phase with n,. Similarly,
we saw in Eq. (27) that for the wave DE,, » and x
are exactly in phase. Again, this means that the
E xB drift is 90° out of phase with n,. In an inter-
mediate range of 6, the streaming of electrons along
B is neither nonexistent nor infinitely efficient, and
this mechanism can change the phase relation be-
tween » and x. It turns out that the phase is shifted
in such a direction as to make the E xB drift of the
guiding centers (of both species) be in the direction
of decreasing n, when n, is positive, and vice versa.
Thus when the perturbed density is already greater
than n,, the E xB drift brings in guiding centers
from a region of larger n, to increase n further;
the perturbation therefore grows at the expense
of the zero-order density gradient. This would appear
to be a sort of ‘“universal” instability which is
driven only by the density gradient. This instability
disappears when the conductivity is infinite.

When this problem is solved in cylindrical geom-
etry, it is found* that the centrifugal force causes
the mode DI, to be unstable even for § = 0. This
is related to the destabilizing effects of centrifugal
force previously noted by the author.”

V. DISCUSSION

We have considered the propagation of low-fre-
quency electrostatic waves in an inhomogeneous
plasma in directions nearly perpendicular to the
magnetic field. Particular attention was given to the
physical interpretation of waves traveling with nearly
the ion and electron diamagnetic drift velocities.
This treatment is limited by the accuracy of the
linearized fluid equations with an isotropic pressure
term and by the electrostatic and low-8 approxima-
tions. Since we have neglected Landau and cyclotron
damping as well as zero-order drifts along B and
anisotropies of the pressure tensor, this theory cannot
give accurate results for the excitation of these waves.
However, we note that even in the absence of all
sources of energy other than the zero-order density
gradient the wave DE, is found to be unstable in
this theory. This may be one of the fundamental
mechanisms which cause the low-frequency, long-
parallel-wavelength fluctuations observed in plasmas
subject to anomalous diffusion.

Dispersion curves for a thermally ionized plasma,

7F. F. Chen, “Low-Frequency Instabilities of a Fully~
Tonized Gas,”” in Proceedings of the 6th International Conference
on Ionization Phenomena in Gases, Paris, 1963, Vol. 11, p. 435.
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are given in Fig. 1. One concludes that the mode
DI, discussed by D’Angelo® is not likely to be the
mode observed by D’Angelo and Motley," since the
former can exist only for values of #° smaller than
about 1077, corresponding to parallel wave velocities
greater than 8 X 10° em/sec. To excite this mode
by means of a relative drift between ions and
electrons, one would need a longitudinal current
far in excess of what could have been present in
the experiment. ,

On the other hand, the mode DE,, propagating
in the opposite direction to DI, not only maintains
a velocity near the diamagnetic drift velocity over
a large range of 6 in the neighborhood of 107% but
also can be excited without longitudinal currents
if the resistivity is finite. We therefore suggest that
it was probably the mode DE, which was observed,
and that its apparition at low electron emission
from the end plates is connected with the insulating
properties of an ion sheath, which can permit long-
parallel-wavelength disturbances to exist without
being short-circuited at the end plates.

Finally, the observed wave may have been the
mode DI, which has the proper velocity for all
angles 6 smaller than about 107°. However, this
wave is not excited in the absence of longitudinal
currents, and no such currents were deliberately
imposed in the experiment. The modes DE, and
DI, can easily be distinguished by measuring the
direction of propagation.

Since the completion of the original manuscript,
two publications have appeared which have relevance
to the present work. A finite-resistivity instability
reported by Moiseev and Sagdeev® appears to be
the same as that found here. A measurement by
Lashinsky® confirms our conjectures both as to the
direction of propagation and as to the insulating
effect of ion sheaths. Whether the instability is the
usual “universal’”’ instability of a collisionless plasma
or the finite-resistivity effect discussed here is yet
to be determined.
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