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An inhomogeneous plasma with finite resistivity in a straight or curved magnetic field is subject
to instabilities of electrostatic drift waves with small but finite k. The influence on these instabilities
of various factors such as finite g, resistive and viscous damping, and finite Larmor radius is in-
vestigated; and explicit, experimentally useful expressions for the frequency and growth rate are given.
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I. INTRODUCTION

N a previous paper' [hereafter called (I)], we
pointed out the existence of a ‘“‘universal” in-
stability, driven only by the pressure gradient, of a
plasma with finite resistivity. This overstability has
been found independently by Moiseev and Sagdeev®
and, recently, by Jukes.® However, neither of these
authors realized the experimental importance of this
effect. We believe that this overstability is responsi-
ble for low-frequency oscillations seen in cesium and
potassium plasmas®*™® and that these experiments
give the first direct verification of the theory of
drift waves in fully ionized plasmas. In another
paper’ we have examined the effect of end-plates on
the excitation of this overstability. Furthermore, the
“universal”’ nature of this overstability sets a limit
to the confinement time of a plasma in a nearly
uniform magnetic field; we have discussed this else-
where.* In view of its experimental application,
we have examined this overstability in some detail;
thus we have computed the effect of various perturb-
ing factors of possible experimental importance and
have shown its relation to the well-known resistive
gravitational instability when the magnetic field
is curved. In Sec. II we give an elementary derivation
of the “universal” overstability and indicate its
relation to previous work. In that derivation we
make the following 19 simplifications, which we either
remove or discuss in the remainder of this article:

! F. F. Chen, Phys. Fluids 7, 949 (1964). [A more extensive
discussion appears 1n Princeton Plasma Physics Laboratory
Report MATT-227 (1963)].

2 8. 8. Moiseev and R. Z. Sagdeev, Zh. Eksperim. i Teor.
Fiz, 44, 763 (1963) [English transl.: Soviet Phys.—JETP 17,
515 (1963)] and Zh. Tekhn. Fiz. 34, 248 (1964) [English
transl.: Soviet Phys.—Tech. Phys. 9, 196 (1964)]. This work
apparently preceded ours by about six months.

3J, D. Jukes, Phys. Fluids 7, 1468 (1964).

( 41\; D’Angelo and R. W. Motley, Phys. Fluids 6, 422
1963).

5 N. D’Angelo, D. Eckhartt, G. Grieger, E. Guilino, and
M. Hashmi, Phys. Rev. Letters 11, 525 (1963).

¢ H. Lashinsky, Phys. Rev. Letters 12, 121 (1964), 13,
47 (1964).

"7 F. F. Chen, Phys. Fluids 8, 752 (1965).

8 F. F. Chen, Phys. Fluids 8, 912 (1965).

(1) 8 = 0; (2) the waves are electrostatic; (3)_no
classical diffusion (y, = 0); (4) nearly perpendicular
propagation (kj/k’ < 1); (5) negligible ion motion
along B; (6) infinite heat conductivity; (7) zero ion
temperature; (8) zero ion Larmor radius; (9) zero
ion viscosity; (10) no gravitational field; (11) uni-
form B,; (12) negligible influence of higher-frequency
roots; (13) negligible z (or radial) dependence of the
perturbation; (14) constant density gradient; (15)
zero electron inertia; (16) no zero-order parallel
current; (17) no zero-order temperature gradient;
(18) no Landau damping; (19) plane geometry. In
Sec. III the single-fluid equations are used to find
the effect of finite 8 and resistive damping for the
case T; = 0. In Sec. IV the two-fluid equations are
used to generalize the theory to include finite Larmor
radius, ion viscosity, and gravitational fields. In
Sec. V the remaining effects are discussed. We
assume singly charged ions and employ cgs-esu
throughout. ‘

II. THE BASIC EFFECT

The “universal” resistive overstability can easily
be found from the usual single-fluid equations (in
standard notation):

Mn(?t’- + V-VV) =jxB — Vp — V=, )

E+vxB=1j+-GxB—Vp), (@

/ot + V-(nv) = 0, @)
V- =0. @

These equations are valid in the limit m/M = 0
and, with the exception of the viscosity term V.=
neglected in (I), are exactly equivalent to the two-
fluid equations used in (I) in this limit. To demon-
strate the basic effect we may set T, = 0, and there-
fore = =~ 0 and p, = p. In equilibrium we postulate
E, = 0 and Vp = p'é, with B = BZ = const, so
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that i = o = 0,j” = p'/B, andv® = —np'/B",
In first order we consider isothermal, electrostatic
oscillations of the form

Vp?" = KT.Vn,, n, =) expi(ky + ke — t),
EY = —Vs,, ¢, = ¢ exp iky + ke — wi).
If we neglect the classical diffusion term »$?, the

linearized form of Eqgs. (1) and (2) becomes
—twMnev, = j, xB — KT.Vn,
= eno(— V¢, + vi xB — njy). (5)

If 5 is sufficiently small, it may be neglected in the
z and y components of Egs. (5). We also assume low
frequencies, so that «’/w? < 1, where w, = eB/M,
and nearly perpendicular propagation, so that
ky/k << 1 and v, may be neglected. With the z de-
pendence of » and ¢ also neglected, Eqgs. (5) then
give

J» = —ik(KT./B)n,, (6)

ju = (KTo/B)(n:/A) — kno(w/wo)leg/B),  (7)
enj. = thy(KTy — ep), 8

v, = —ik¢/B, 9)

Uy = — (w/wc)(kd’/B); (10)

where A™' = n}/n,, the prime denoting 8/dz. Sub-
stituting (9) and (10) into the linearized form of Eq.
(3) and neglecting v,, we obtain

— (ko/B)[(1/Aw) + (k/w.)]. (11)

The linearized form of Eq. (4) is j. + 7kj, + ikyj. = 0.
When Egs. (6), (7), and (8) are inserted, there is a
cancellation of the j, term with the first term of j,,
since n{ = n,/A; and we are left with

h*no(w/w)e¢/B) + (ki/en)(KT» — e¢) = 0.  (12)

This cancellation is not a fortuitous one which de-
pends on the assumed z dependence of the perturba-
tion. It is the cancellation of two “fictitious’ electron
pressure-gradient drift terms which appear in the
fluid picture but which do not correspond to actual
particle motions. The determinant of Eqgs. (11) and
(12) in » and ¢ give the dispersion relation

y =

@)’ -&k_ﬁi( KTe’ﬁ)
(w) +"Lwc E? neen 1 eB w,
2 ’
+i_ﬂilﬂ.’9_7_’£=0. (13)

k> nen eB w,n,

Except for the small correction term in the coefficient
of w, this is exactly the equation found by Moiseev
and Sagdeev’ for T; = 0 and always has a complex
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root with Im w > O for any finite values of &, and 1.

The first term in Eq. (12) ecomes from the diver-
gence of the current j,. This current is carried entirely
by ions, since the electron Larmor radius has been
taken to be zero, and electrons cannot move in the
y direction in the absence of an E,. Indeed, the
second term in Eq. (7) is just neev,, given by Eq.
(10). Equation (12) therefore says that the diver-
gence of charge caused by v, is cancelled by a flow
of electrons along B; this requires finite %, and, if »
is finite, requires v = e¢/KT,. This phase shift be-
tween the perturbed density and potential distribu-
tions then gives rise to the growth rate. This is the
reason for the physical interpretation of the phe-
nomenon presented in Ref. 8. This overstability did
not appear in the work of Furth, Killeen, and Rosen-
bluth® on resistive instabilities because compressibil-
ity, and hence v,, was neglected. It also did not
appear in the paper of Rosenbluth, Krall, and
Rostoker'® on finite Larmor radius effects because
resistivity was neglected. The velocity component
v, arises because of finite ion inertia, as can be seen
from the factor w/w, in Eq. (10). In the two-fluid
treatment, ion inertia is simply taken into account
by retaining the term Mdv/ot in the ion equation
of motion. In the equivalent one-fluid treatment, one
must also retain all the terms in Ohm’s law, Eq. (2).
Johnson, Greene, and Coppi'' treated ion inertia
inconsistently in neglecting the last two terms of Eq.
(2) while retaining the M ov/dt term in Eq. (1).
With the same approximations as above, this gives
rise to the same j, as in Eq. (9), but now v, = 0;
hence, j, would exist although neither ions nor elec-
trons can move in the y direction. The equations
used by Coppi'* and Kulsrud'® were general enough
to give the “universal” overstability, but it was not
pointed out because attention was focused on the
modes of Ref. 9.

Note that the question of finite Larmor radius
does not arise here because the jons have been as-
sumed cold. The phenomenon depends only on ion
inertia. When finite Larmor radius is taken into ac-
count via the viscosity tensor =, we find that for
T, = T, the growth [rate is twice that found from
Eq (13) for T; = 0 but is half that found in (I)
for Ty = T, with = neglected. For brevity we hence-

® H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys.
Fluids 6, 459 (1963).

10 M, N. Rosenbluth, N. A. Krall, and N. Rostoker, Nuel.
Fusion Suppl. Pt. 1, 143 (1962).

1 J. L. Johnson, J. M. Greene, and B. Coppi, Phys.
Fluids 6, 1169 (1963).

2 B. Coppi, Phys. Fluids 7, 1501 (1964).

® R. M. Kulsrud, Princeton University Plasma Physics
Laboratory Report Matt-258 (1964).
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forth use dimensionless units in which time is meas-
ured in units of w;' = M/eB, velocities in units of
v, = (KT./M)}, and hence lengths in units of ¢ =
v,/w,.. Note that r, = (2\)!a, where A = T:,/T, and
ry i8 the ion Larmor radius. Wherever possible we
denote normalized quantities by a suitable Greek
letter; thus, « is a normalized k, v a normalized v, €

a normalized resistivity », etc. Equation (13) then
becomes simply

@+ i1 4+ Y2+ ixkY =0, (14)
where
= w/w,, k = ka, 3 = anl/n,,
Y = ki/e, "= noen/B, aj = KT,/Mo’.

For T; = T, it will be shown in Sec. IV that the

corresponding equation is, with the neglect of the
small term «%, '

V' 4 8k + iY)¥ + 266xY = 0, (15)

where ¢ = @ — 3« is the frequency in the frame of
the jon fluid. By introducing z Re Q/6«, 2
Im Q/8x, and y* = Y/é«, we can obtain a parameter-
less equation which can be solved easily by hand
computation. The resulting dispersion curves, z and
z as functions of y, are shown in Fig. 1. The wave
traveling in the jon drift diriction is damped, while
the wave traveling with the electrons' is unstable

5
o

1
T
LR
Ky ‘:
4 | =— Re(w/k;)
“ === Im{w/k;)
|
i
!
|
3r \
1
|
0) \\@ ®
2f \
\
Vno Il Vi
} P
i
s /
! Tl /
@™, /
\\ /
N aky —|
o 1 1 1 L
~I [+ [} z

Fie. 1. Dispersion curves for low-frequency drift waves
in an isothermal, inhomogeneous, resistive plasma. The
“‘universal” overstability is labeled 1. vp, and vp; are the
electron and ion diamagnetic drift velocities. The meaning
of the numbers on the scales is given in the text.

1 This is the mode DE, of (I); the inclusion of finite
Larmor radius effects has moved the k, = 0 frequency from
w = kvp; to w = 0. The point & = 0, 1 = 0 corresponds to
a static density perturbation which cannot propagate because
no electric ﬁelg's can develop which maintain charge neutrality,
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for any finite value of y. The maximum growth rate
is approximately 0.4 kvy,. Note that this growth rate
is independent of 5 if k is allowed to adjust itself so
that y ~ 1.3 is maintained. As 9 is decreased, the
wavelength of the most unstable mode increases to
keep the number of collisions per parallel wave-
length, and hence the frictional drag on the electrons,
sufficient to cause the instability. To avoid this
instability experimentally, one must set a lower
limit on k; by means of end-plates or sheared mag-
netic fields. The value of y is then limited to the
upper region of Fig. 1, where the growth rate can
be found by expanding the solution of Eq. (15) to
second order in (4x/Y). One then obtains, for large
Y/é«, a growth rate proportional to :

Im 0~ 28%/Y, or Im (w/w,)
= 2(k/ky)*(ka)*(an} /no)*(noen/B).

III. EFFECT OF FINITE-8 AND
RESISTIVE DAMPING

(16)

We now remove simplifications (1)-(6) of Sec. I
for the case of zero ion temperature and straight
magnetic fields. The appropriate equations are Egs.
(1) to (3), with = = 0, and Maxwell’s equations with
no displacement current:

V xE = —§B/t, 17

¢V xB = 4rj. (18)
To these must be added an equation of state. If heat
conductivity is infinite, the plasma is isothermal; and
we may replace Vp by KTVn. This is a good ap-
proximation in thermionic plasmas, where electrons
rae in good thermal contact with the end-plates; and
we shall henceforth make this simplification. On the

other hand, if heat conductivity is poor, one must
use the adiabatic equation

d [_p_._:l =0

dt L(Mn)*? ] — ™
This is satisfied in equilibrium because d/dt = d/0t +
Vo* Vo & 0. In first order, we have

d 5
[Pl‘gpo :|=O;

dt
which is satisfied if p, = $pon,/n, = §K Tqyn,. Hence,
the adiabatic result can be obtained from the iso-
thermal one simply by replacing Boltzmann’s con-

n,

T

‘stant K by $K in the final answer. For intermediate

heat conductivities the result will lie somewhere in
between, since the phenomenon is not sensitively
dependent on temperature gradients; and it is not
worthwhile to use the heat equation.
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Equilibrium

Instead of the usual approximation that the
sources required to maintain a steady state in the
presence of collisions may be neglected because the
rate of classical diffusion is much slower than the
frequencies of interest, we prefer to imagine that
the steady state is maintained not by sources of
particles, but by an electric field E,, produced in an
unspecified way, which keeps v{” = 0. If, for in-
stance, E, is produced by a slowly increasing mag-
netic field, the neglect of this increase is equivalent
to the usual two-time-scale formalism. In dimen-
sionless notation the zero-order equations are:

v Vvg = v % (2 xh,) — Vny/ng, (19)
& + vx (2 +hy) = ep + v Vv,  (20)
V- (nove) = 0, (1)
V x& = —oh,/dr, (22)
V xh, = 3B, (23)
where
B, = By[z + ho(x)],
Vo = Vo/Usy %o = jo/Ncls,
&, = E,/By., € = ngen/Boo,

8 = 8mn,KT./c’B},,

and V isin (& 1, ¢) space, so that V; = aV,. The

quantities v,, w,, and a are as before, but with By,
replacing B. In the steady state we assume Vno/n, =
8%, V = 20/0%, v.0 = vs0 = Lo = 0, s0 that vo- Vv, =
0. From Eqs. (19) and (23) we then obtain i, =
hso = hy = 0 and

hio = —3B8 + 08",
8/(1 + ko).
From Eq. (20) we obtain
&0 = 0,
&0 = —vo(l + ho)y
etyo T Vao(l + Troo) = etyo.

This gives the E, necessary to maintain a steady
state; the time-varying B field necessary to produce
this is given by Eq. (22). We shall work in the frame
in which &,, vanishes, so that », = 0. Since all
components of v, vanish, Eq. (21) is satisfied identi-
cally.

by =

& =

Perturbation
Since v, is zero and h, is small, Egs. (1), (2), (17),
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(18), and (3) in first order become

—iQu = 1x% + 1, xh — Vv — »8%, 24
&+ uxz=@a — iQ, (25)

V x& = igh, (26)

V xh = i, 27

—i + dv, + Vv =0, (28)

where v = n,/no, h = B;/By, v = V1/V,, v = J1/Moels,
& = E,/Byw,, and we have used Vv = Vn,/n, —
6. Note that &, has dropped out, that ¢ and 8 are
functions of £ and that V-1 = —é&, # 0 since
V(8 = 0. We look for solutions », v, 1, & of the
form exp i(kn + ¢ — Qr) with a negligible de-
pendence on £. Then for consistency we must give
h the same £ dependence as n,, so that h’ = sh. The
first four equations above in the four unknowns
v, v, & and h may be solved to give v(v). This can
then be inserted into Eq. (28) to give the dispersion
relation. After some algebra, we obtain without
further approximation

v, = Q' [¢v,(1 — 1QDe) — Dewr],
8C) [k + T(v, — 1Qv,)],
—

. 56° 4+ ikCGDe + Y*(1 4 iDeQ ™)
G2+ &'Q° +iV*(1 — Q%) + DeY* — iCGQ)’

v, =

Uy =

where
0 =x/x, G=1+86, Y* = 6°/CDe,
C=1=—1I, T = fiu/2GDex,
D =1 — iA, A = BQ/2Ge’.

Inserting this into Eq. (28), we obtain the exact
local dispersion relation
LUCD® — «*6%) + Dex(CQ6 + ixT'6%)]
JGQ 4+ 671+ i V*(1 — Q) 4 DeQ(Y* — 1CGQ)]
= —iQ[86° + kCGDe + i Y*(1 + iDeQ™ )]
JQ%(C — iT6) 4+ (1 — 1QDe)(6CQ + ik T6%)]. (29)
Results
This dispersion relation can be studied in various
limits. If we set 8 = ¢ = 6° = 0 but let Y* remain
finite, so that ¢ = D = G = 1 and Y* = Y, we
recover the elementary equation (14) if high-fre-
quency roots are neglected (@° < 1, € < [x/8]). The

effect of finite 8 [effects (1) and (2) of Sec. I] can be
seen by setting ¢ = 6* = 0 and again retaining paral-
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lel resistivity in Y* and neglecting high-frequency
roots. Equation (29) then becomes

QQ + iY*) + wV*@Qx + 8) = 0. (30)

This is identical with Eq. (14) except that Y is re-
placed by Y*. Thus the only effect of finite 8 is to
shift the ordinate of Fig. 1 by a factor CD. Since T
is of order 0.02 for typical stellarator conditions and
0.04 for cesium plasma conditions even for the
smallest value of x, and since A is of the same order
of magnitude, the effect of 8 is entirely negligible in
these devices. In the upper region of Fig. 1 the effect
of B is even smaller, since @ & — 6k, and hence ' =
—A; then CD differs from unity only by a term of
0(8%).

The effect of resistive damping is found by setting
B = 6 = 0in Eq. (29). We also neglect terms in
¢’ since e is usually less than 107*. For low frequencies
we obtain

—1e2” + (1 + V)@ + Q1 + )Y + &

+ kY (1 + dexd™) = 0. (31)

For large Y, the growth rate can be approximated by
setting @ = — &« in the first two terms. For §° < 1,
k* < 1, we then obtain approximately

Im Q = /Y — e’ (32)

Comparing this with half of Eq. (16) (because T; = 0
here), we see that perpendicular diffusion decreases
the growth rate by a factor (1 — €¥/¢&°).

The effect of ion motion v, along B and of large
angles of propagation 6 is found by setting 8 =
e = 0 in Eq. (29). We then obtain approximately

Y[QN(Q° — 1 — «°) — 8k
+ 0°(1 — @] = Q1 + 87'Q), (33)

which is essentially Eq. (68) of (I). The effect of the
extra term in 6° is to turn the drift waves into ordi-
nary ion acoustic waves (Q° = «’6° = «}) in the
limit of large-angle propagation in a homogeneous
plasma (6 — 0, ¥ — ). A spurious root at @ = 0
[mode DI, of (I) corrected for finite r.] also appears
at small Y. For v, to be negligible, the third term in
the square brackets must be smaller than the second
term; thus the drift-wave approximation is valid
for K’6° << |6xQ| & 8°%®, or §° < &°. In order for this
to hold near the condition for maximum growth rate,
which, from Fig. 1,is y = 1.3 or ¥ = 1.7« we re-
quire 1.7¢ << 8/«. This is usually well satisfied experi-
mentally, except possibly near « = 1, where the
theory breaks down anyway. Equation (33) also
contains the effects of high-frequency roots near
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0 = 1and @ = —«/8. In (I) these effects, as well
as the effect of finite v,, were included exactly by
numerical solution of Eq. (33); these effects [Nos.
4), (5), and (12) of Sec. I] are generally negligible.

Note that two other low-frequency roots which
turn into torsional Alfvén waves at large ¥ appear
in other analyses but do not appear here because
these roots correspond to velocity fluctuations with-
out perturbations in density. Since density fluctua-
tions are always found experimentally, we have used
a method which depends on the finiteness of ».

IV. EFFECT OF ION TEMPERATURE,
VISCOSITY, AND CURVED B

The Two-Fluid Equations

We now wish to remove simplifications (7) to (11)
of Sec. I. For simplicity, we assume 8 = 0,E = — V¢
at the outset; in this case it is somewhat more con-
venient to use the two-fluid equations:

Mn(ov,/dt + v,-Vv,) = en(—V¢ + v, xB)
— v:KT;Vn — V= + n26277(Ve - V)

+ (n/R)KT; + vai)i, (34)
0= —en(—Ve¢ + v,xB) - v KT.Vn
+ n’*y(v; — v.) + (n/R)KT X. (35)

We have assumed quasi-neutrality and neglected
the electron mass. As discussed in Sec. ITI, we con-
sider only the isothermal case and set v; = v, = 1.
The last term on the right-hand side is the effective
gravitational force, taken to be in the positive z
direction, due to a curvature of radius R in B,.
Note that in addition to the terms in KT; , due to
the outward component of pressure in a U-bend
we have included a term nMv?; /R due to centrifugal
force of mass motion around a U-bend. The corre-
sponding term for electrons, as well as the m,v,- Vv,
term are negligible unless a large v,, exists in equilib-
rium; this will be considered in Sec. V. As shown in
(1), the m, dv./dt term is negligible if m,/M < e

Since we now consider finite ion thermal energies,
we must include the effects of finite Larmor radius.
These effects have a simple physical interpretation®
and can be included in a macroscopic theory by the
use of the viscosity tensor =;, as shown by Roberts
and Taylor.'® The simplest form of =; consistent
with the accurate computations'® of the transport

15 K. V. Roberts and J. B. Taylor, Phys. Rev. Letters 8,
197 (1962).

16 J. P. Shkarovsky, 1. B. Bernstein, and B. B. Robinson,
Phys. Fluids 6, 40 (1963).
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coefficients is that given by Bernstein and Trehan'’
with the coefficient given by Kaufman.'® To put
=; into dimensionless units, we define

II = ﬂi/nKTi, Q& = WeTij,
=BV + V) — ¥V -w),

M*(KT )
81r ne*ln A’

Tii

where Y is the symmetric, traceless velocity gradient
tensor in units of v,/a, as defined preceding Eq. (14).
For o” >> 1, IT takes the comparatively simple form

=1L, = a(T.. + Tw) + T:w)
—1L,, = M. + 1) — Ta,

—Hu = Ml‘) (36)
_II:W = —Hﬂz = %(T Tu + ——ITzu)l

_'st = —Hn = 2(Tu: + a_lT:u)7

—Hul = _H:u = 2(a_lTyt - T;u)-

The terms not containing « are independent of col-
lisions and contain the finite Larmor radius effects.
The terms containing « are due to collisional viscos-
ity. For the last three components in Eq. (36), the
collisionless limit is correctly given by taking ¢ — «,
as shown by Thompson.'® The first three components
diverge, however, for « — = because the method of
computation of = breaks down for long mean free
paths in the z direction. Roberts and Taylor'® obtain
the collisionless limit by simply ignoring the « terms
without proof; Stringer’® has shown by including
inertia in the derivation of = that this procedure
indeed gives the correct result. We avoid any un-
certainty by considering large but finite values of
o’ and keeping all the terms in Eq. (36) including
the collisional ones.

Dividing Eqgs. (34) and (35) by Mnw,, we obtain
their dimensionless forms

ov/or + v-Vv = —Vx — \Vn/n
+ vx(z+h) + 4 )k

+ (v, — v) — NM(V-II 4+ IO-Vn/n), 37
= Vx — Vn/n — v, x(i';h)
+ p% + v — v,), (38)

7], B. Bernstein and 8. K. Trehan, Nucl. Fusion 1, 3
(1960) This paper contains several misprints in =.
A. Kaufman, Phys. Fluids 3, 610 (1960).
1 W. B. Thompson, Reports on Progress in Physics (The
Physical Society, London, 1961), Vol. 24, p. 363.
20 T, E. Stringer, private communication.
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where
)\ = Ti/Te,

v = Vi/v,, Ve =

x = e¢/KT.,,
Vo/Vs)
B = Boo(i + h),

and the other quantities are as previously defined
in terms of the field By, at ¢ = 0.

p = a/R,

T = w,l,

Equilibrium
In a steady state with no driving current we as-
sume v, = v,, = 0, x¢ = 0, and Vn,/n, = 6%. The
field B, is assumed to be slightly curved but uniform

in the y and 2z directions. The curvature implies a
small inhomogeneity in B,

B, = 2B,/(1 + z/R),

Neglecting v+ Vv and I for the time being, we ob-
tain in zero-order

ho = "'pfi.

Mo — p)f = vx2b + (v, — v), 39
(3—pt=—v,x2b+ (v —v,), (40
with
b= (14 pt)".

As in Sec. IIT we neglect the inhomogeneity in B,
due to plasma diamagnetism, but we retain the
factor b to study the effect of inhomogeneity due to
curvature. Equations (39) and (40) give

Vey = ""b—l(6 - P) = Vg,
—eb™(1 + N(6 — p).

For simplicity we consider density distributions such
that v, is & positive constant; deviation from this
will be discussed in Sec. V. For small pf, constant
v, implies a nearly exponential density distribution:

Mo = Moo €xp &[—vo + p(1 + Fued)].

Neglecting the small curvature p and noting that
€ = Je/dt = O¢, we see from Eq. (42) that v,ul =
0(¢*6*) and hence, the v- Vv term is of 0(8°) smaller
than the resistence term. Similarly, our neglect of
IT, is justified since the dominant term in I, is
al,, = O(aw!) = O(aed®), which gives a contribu-
tion of O(8") smaller than the pressure gradient
term if o is not as large as ¢*. The steady state is
supposed to be maintained by a small source term
in the equation of continuity.

(41)
(42)

v, = —MAuv,

UZ = veZ =

Perturbation

In applying perturbations of the form », x, v, v, «
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exp i(ky + kyz — of), where v = n,/nq(z), to Egs.
(37) and (38), we make use of the fact that v,, is
constant and v, is small, so that Vv, can be neg-
lected. We note, however, that e is proportional
to m, 50 that ¢ = ve¢,. Similarly, « is proportional to
7™, so that II, contains terms of the form «,Y, as
well as ogY';. The former vanish with the neglect of
YV vo, so that II, is given by Eq. (36) with o = ao
and v = v,. This approximation amounts to neg-
lecting cross terms involving both ion-ion and ion-
electron collisions. With the subscripts on ay, €, x1, v1
and II, suppressed, the linearized equations become

—iyv = —Vx — A\V» + vx2b + (v, — v)

+ ve(l + Nuve§f — MV -II + - 8%),
0=Vx— Vr— v.x2b ,
+ (v — v) — ve(l + Nw§.  (44)

The Doppler-shifted frequencies ¥ and ¢, are de-
fined as

43)

Q- KUy =

Y=
Yo =

with the use of Eq. (41). Note that the terms in
p% are unperturbed if v,, = 0 and drop out in first
order; therefore the gravitational overstability is
trivial to include, and p makes it appearance only
in the evaluation of ¥ and v, in the final answer.

We can now write out the separate components
of Egs. (43) and (44) with the help of Eq. (36). Be-
cause of the complexity introduced by the coupling
of these components via the viscosity tensor, we
make the approximation v, = 0 at the outset, so
that the z components of Eq. (43) need not be solved:
The effect of v, is well understood from (I) and from
Sec. III. It is important only in the mode DI, of (I),
and we can expect that the effect of IT in the equa-
tion for v, is to damp this physically unimportant
mode. With v, = 0, the components IT,, and II,,
appearing in the z and y components of V-II are
multiplied by 6” compared to II,, and IT,, and there-
fore can be neglected. Thus none of the 2 components
of IT needs to be considered. For the z components
we thus have

Q 4+ Nkvg, (45)

Q — xevg, = £ — kv,

v, & 0, Vso & TKyeg (X — ). (46)

If for simplicity we assume v’ = v, = 0, so that the
£ derivatives in IT are zero, the use of Eq. (36) yields
the following perpendicular components of Eqgs. (43)
and (44):

_i'pva: = "(X + )‘V), + bU,, + e(v.‘::e - vz)
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+ kG, + dav) — (v, + w/22),  (47)
—iyy, =k(x + W)
— by, + e(ve — v) + 1 + Nvp
+ nék(v, + v./20) — MGav, — 3v.), 48)
0= (== bue + elv — ),  (49)
0 = ik(x — ») + bu,,
+ (v, — ve) — €l + M.  (50)

From Egs. (48) and (50) it is seen that if v and v,
are independent of £ x and » must vary with &
because b, ¢, and « depend on £. However, since b, ¢,
and « represent small effects which we wish to esti-
mate, no great error in the local (in ¢) dispersion re-
lation will be made by neglecting x' and », even
though this is strictly consistent with v' = 0 only
in the absence of these small effects. With this ap-
proximation, Egs. (47) to (50) can be solved to lowest
order in ¢ to give

Csv, = —ikCh(x + W)
+ eColvgy — eb kulx — v), (51)
Civ, = —xi(x + )

— tegihvy + 1eb T Curlx — »), (52)
bu,, = —ik(x — ) + v + e Ci(x + W),  (53)
bu,, = b le(x — ¥) — 1exC,C5 (x + W), (64)
where

C, = b — IN® — iN&k/da, (55)

C, = b — NG 4+ 3\da, (56)

Y = ¢ + Ik + ile + W), (67)

Vo = ¥+ o+ ie + W), (58)
A=14+\ W,=Illa, W, =ia, v (59)
C; = C,C; — . (60)

In Eq. (53) the last term is generally negligible with
respect to the preceding term.
The equations of continuity will contain terms in

v'® and v'?. If one uses a simplified form of Eq. (42)

in these terms, namely, v = v¥ = —e\§, the

linearized continuity equations become
W — 2ieNd™ + 16v, — kv, = 0, 61)
Yoy — 20eN8™ + 16v,, — (62)

We now insert Eqgs. (46) and (51) to (54) into (61)
and (62), setting b = C, = C, = C; = 1, ¢, =

KUyo — KjUe = 0.
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V. = ¢ in all terms which already contain . We then
obtain two equations for x and »:

Ca'//V + (025K -+ szl/l)(x + )‘V)

— 1€[38° + (x — »)] = 0, (63)
(Yo + 1eh( — 36"y
+ (867 — ik Y)x — ») = 0, (64)

where ¥ = ¢6”. The determinant of these equations,
with ¥, and ¢ given by Eqgs. (45) and (41), then gives
the required dispersion relation. The ¢ which appears
explicitly is ¢, ; parallel resistivity is contained only
in Y.

Results

(1). Effects of T; and p. Simplifications (7), (8), and
(10) of Sec. I can be removed by settingb = 1, e, =
W, = W, = 0in Eqgs. (63) and (64), and thus neg-
lecting the magnetic field inhomogeneity and resis-
tive and viscous damping. With the use of Egs. (55)
to (57), the continuity equations take the form

Cayw + (8 + P)(x + )\?) = 0, (65)
Yo + (6 — i’Y)x —») = 0. (66)

Expressing ¢, in terms of ¢y by Eq. (45) (thus rein-
troducing p) and using Eq. (60) for C;, we obtain the
determinantal equation

YL+ N* + &'y — iV (\6k + ¥)]

+ YINok — Xox + i(L + #°) Y] + Ro(ixY — p) = 0.
(67)

For ¢ < [«k67Y|, [6xY| < 1, & < 1, this simplifies to
our principal dispersion equation

VP4 ok — Aok + iY)Y + Xo(ixY — p) = 0. (68)

This is just Eq. (15) if p = 0, A = 1. Comparing this
with Eq. (14) for T; = 0, we see that finite T; has
three effects: A Doppler shift @ — ¢, a finite Larmor
radius term Aoxy, and an increased growth rate
through the factor X = 1 4+ T,/T.,. For p = 0 the
first two of these effects cancel each other to maintain
Q=20atY =

For Y > |8«|, |8 > p, ¥ >> 2|8p|}, we can expand
the square root in the solution of Eq. (68) to obtain
the ‘“large”’-angle frequency for the unstable root:

Y = —Xoéx + AY(8°" — 8p) (large 6°/¢). (69)

The ‘“gravitational” overstability occurs only for
8p < 0 and is given by the last term in Im . The
“universal” overstability, given by the first term,
is independent of the sign of 8. The frequency is

FRANCIS F. CHEN

given by Re @ = —«(8 + Mp) = xv,. Note that the
8°x® term comes from second order in the expansion
of Y and may pass unnoticed if one is concerned only
with curved systems. It is clear that the ‘‘universal”
growth rate dominates for p < |8/«*. In contrast to
“screw’” instabilities which are driven by longitudinal
currents, these overstabilities are independent of the
gign of the pitch angle.

Setting A = 1, ¥ = 0 in Eq. (68), we recover
identically the result of Roberts and Taylor'® and
Rosenbluth et al.'® for finite Larmor radius stabiliza-
tion of the ordinary (k, = 0) gravitational instabil-
ity. In this case the frequency is given by

= —L(\& — Xp) &= [I(\6 — Np)® + 4Xsp)t.  (70)

The finite-r;, stabilization term in the square root
makes ¢ real even for §p < 0 if « is large enough; this
does not happen if ¥ 5 0. The maximum growth
rate, occurring at small «, is Im € = (X|8|p)}, and the
wave travels at approximately half the ion diamag-
netic drift velocity:

Re @ = 3k(8 — p) + 3up =~ 1)ks.

In the intermediate range of Y, the solution of Eq.
(68) can easily be computed from the equations

142 — N
=y A+ O — Dr — 2z

_ [ZG@+n0+N—2)+ X "IN (A —1)r— 2.70]

(71)'

y* A+z— )1 +r—z—7)

(72)
where y* = Y/6k, x = Re Q/dx, 2 = Im Q/6«, and
r = —p/é. Representative results for z and 2z as

functions of y for A = 1 are shown in Figs. 2 and
3. Note that « is now a parameter in addition to p
because the effect of finite-r;, stabilization depends
on «. Because of this effect, the gravitational in-
stability has a larger growth rate for small «, as
seen in Fig. 2. By contrast, the overstability at large
Y has a larger growth rate for large «, as seen from
Eq. (69). A further point of experimental interest
is that the wave travels in the electron-drift direction
when p = 0 or when ¥ 3> |é«|, but in the ion-drift
direction when p > p, and ¥ < |8|, where p, is
extremely small.

(2). Physical interpretation. The picture of the
finite Larmor radius effect given in Ref. 8 can be
justified by considering Egs. (65) and (66). For
simplicity let p = 0. The deviation of ('; from unity
contains the effect of the collision-independent terms
in w. The terms in dx» come from the pressure-gra-
dient drift due to dn,/dz; these terms are cancelled
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0
—— =p/8E5XI07

05=x

0

Fra. 2. Dispersion curves for the electron drift mode in
a field with curvature p, for various values of the wavelength «.
The effect of finite Larmor radius stabilization on the gravita-
tional instability is clearly shown with the increase in «.
The dashed curve is the p = 0 curve of Fig. 1; this is not
stabilized by an increase in «.

by the Doppler-shift terms in ¢ and ¢, and therefore
disappear when € is substituted for ¢ and .. The
terms in dxkx give the density change due to the
ExB drifts along Vn,; these give no separation of
charge because the same term occurs in both the
jon and the electron equation. The term in «*y in
the jon equation is essentially the density change due
to v,, as can be seen from Eq. (52) for v,. This term
is due to ion inertia and has no counterpart in the
electron equation; therefore, the terms in Y, rep-
resenting electron motion along B, are necessary to
balance the effect of v, and maintain quasineutrality.

or

x=.05
(/8 =.0005
@ =00
8t @ =002
@ =005
® =0

1

1 ]
I Q/8c —2

1 1 1 ]
o-I (o]

Fie. 3. Dispersion curves for various values of the curva-
ture p for a fixed value of « Symbols are defined in the
text.
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The »-dependent part of the v, term is a pressure-
gradient drift which only appears in the fluid veloc-
ity but does not represent a guiding-center drift;
this part is cancelled by a term in =, as can be seen
when C; is approximated by C; &~ 1 — \«". When
Y = Q — \ox, ¥, = @ + 8« is substituted and all the
“fictitious” pressure-gradient drifts cancelled out,
one obtains from Eqgs. (65) and (66) two equations
essentially describing the motion of guiding centers,

(73)
(74)

Q + k8(1 — M)x + Qx = 0,
Q + kdx — i’Y(x — v) = 0.

The effect of finite Larmor radius appears in the
factor (1 — A«%), which shows that the ExB drift
in an inhomogeneous electric field is smaller than
that for r, = 0, as can easily be verified for a single
particle.? This effect adds to that of the v, term «’Qx,
since @ &~ — é«; and therefore, a larger value of x — »
is necessary in the electron equation to cancel the
increased charge separation. This increased phase
shift between x and v ultimately leads to an increase
in Im  over the A = 0 value. Note that although
the guiding center drift is slowed down by an in-
homogeneity in E, the fluid velocity v. is actually
speeded up, as can be seen from Eq. (51). This is
because of the way the complicated orbits are aver-
aged to give the fluid velocity. When p # 0, there
is an additional drift and charge separation due to
the effective gravitational field; the physical inter-
pretation of the p term is trivial.

(3). Effect of viscous damping. We now include
collisional viscosity by retaining the W terms in
C., Cy, ¥4, and ¢, while setting e, = 0 and b = 1.
With the assumptions «* < 1, §* < 1, W, > W,, Eq.
(60) gives the following approximate form for Cs:

s~ 1 — M + 16k W, (75)
Using this in Eqgs. (63) and (66), we obtain the dis-
persion relation

¥+ YNk — Npx + (Y + W) — Yo W]
+ Ro(ikY — p)[1 + k6 W, + & 'W1)] = 0. (76)

If o > 877, still more terms must be taken into ac-
count in C;. The effect of W on the growth rate can
be estimated by making the usual ‘“large”-Y ex-
pansion. Keeping up to second order in W and Y,
we obtain, after another bout with algebra,

2 Actually, the correction term is twice as large as one
obtains for a single particle because the distributions of

particles and of guiding centers are different, as pointed out
to the author by G. Schmidt.



As might have been expected, the terms in W,, due
to the terms proportional to « in XL, and IIL,,
largely cancel out; and the damping comes from the
small term W,, proportional to a~', coming from
IL,. For 6 > o® > 1, which we have assumed,
the collisional terms in II generally have less effect
on the growth rate than the collision-independent
terms. Extension of these results to x > 1 has recently
been reported by Mikhailovskii and Pogutse.?

(4). Effect of resistive damping. As a check on the
approximations made in this section, we can com-
pute the effect of ¢, by setting W, = W, = 0,b = 1
in Eqgs. (63) and (64) and comparing with the result
of Sec. ITI. In Sec. III it was imagined that v,, was
kept zero by a slowly increasing B. In this section,
v Was allowed to be finite; and equilibrium was
provided by sources, which were neglected. These
two approaches would give the same result if the
time scale of resistive diffusion were long compared
to frequencies of interest; however, resistive damping
has the former time scale, and one would expect
some difference in the two ways of computing the
damping. Putting ¢, = C, = 1 — I\, C; =~ 1 —
MC, ¥ = ¢ + Iékinto Eqs. (63) and (64), we obtain

¥+ Nk — Xox + (Y + H)ly
+ X8(ixY — p) — HY =0, (78)

where H = Xe(x* — 348°). Comparing with Eqgs. (31)
and (68), we see that aside from the effects of A and
p, the resistive damping is the same as in Seec. III
except that «* is replaced by «* — 35, This gives rise
to the possibility of an instability if ¥* < 34°. This
is not a real instability but simply a density per-
turbation which is carried outward by v,,, and it
results from the difference in model used for the
equilibrium.

(6). Effect of field inhomogeneity. Finally we evalu-
ate the effect of the inhomogeneity in B, arising from
the curvature. Wesete, = W =0,b =1 — p¢, Cy &
b(d — %), and neglect second and higher order in
pé. From Eqgs. (63) and (64) we then obtain approxi-
mately

V' 4 e — Xox(1 + 88) + Y (" + )]

+ bAkY — Xso(l + 6¢) = 0. (79)

2 A, B. Mikhailovskii and O. P. Pogutse, Dokl. Akad.
Nauk SSSR 156, 64 (1964) [English transl.: Soviet Phys.—
Doklady 9, 379 (1964)].
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Comparing with Eq. (68), we see that Y is shifted
a negligible amount by the factor b or b* but that p
is multiplied by a factor (1 + &¢), 8¢ being negative
when 8p is negative. Hence, the “universal” over-
stability is relatively unaffected, but the growth rate
of the gravitational mode can be appreciably affected
by the field inhomogeneity. In obtaining this result
we have neglected a term v/ in the equation of con-
tinuity, as well as in II; these terms can change the
magnitude and even the sign of the correction given
in Eq. (79), but they do not affect our conclusion in
the preceding sentence. Our purpose here has been
to show the relation between the “universal’” and
gravitational overstabilities; more accurate treat-
ments of the resistive-g mode in curved and sheared
systems have been given by others.®*'171

V. OTHER EFFECTS

(1). Radial dependence. We have made the ap-
proximation &k, = O throughout this work. When
the = or radial dependence is taken into account,
one obtains a second-order complex differential equa-
tion for »(z) or x(z),whose eigenvalues give the disper-
sion relation. This problem has been solved by the
phase-integral method by Moiseev and Sagdeev® and
by Jukes,® and we have not repeated this calculation.
Inasmuch as their results are identical with ours,
we have used the simpler algebraic method. How-
ever, it is not obvious from the electron continuity
equation (66) why the z dependence should be so
weak, since in Eq. (66) all quantities are independent
of z except Y, which is proportional to 3!, so that
the equation apparently cannot be satisfied at all
x by perturbations » and x which are constant with
2. The reason is that in Eq. (66) the 6« term is gen-
erally much larger than the ix*Y term, so that the
variation of ¥ with z does not greatly affect the
solution. The growth rates given here are local ones
valid in a region of z in which 7, and n!/n, do not
change appreciably; as long as r, is small compared
with such a region, the exact treatment gives es-
sentially the same result. If v, is a function of z, or
if there is shear in B, so that k, is a function of z,
then the radial equation must be solved. By doing
this, Stringer® has recently shown that the “univer-
sal” overstability cannot be localized and therefore
will be slowed down by shear. In effect, an average
ky (x) must be taken; and if this is made large enough
by shear, the growth rate will take on the small value
associated with a large value of Y.

2 T. E. Stringer, Princeton Plasma Physics

Laboratory
Report Matt-320 (1965).
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(2). Electron inertia. If the resistivity e is reduced
sufficiently, the motion of electrons will be controlled
by inertia rather than by collisions with ions. As
shown in (I), this occurs when ¢ << |uf,|, where
u = m,/M. To see whether or not the electron drift
wave is unstable in the collisionless limit, we use
Eq. (65) for the ions and Eq. (67) of (I) for the elec-
trons, which amounts to replacing Y in Eq. (66)
by iY,/¥., where ¥, = 6°/u. With the usual ap-
proximations we then obtain the dispersion relation
¥ — (1 + Ny,

+ &% — Y, )¢, + N&’Y, = 0. (80)
It can be shown that this cubic has three real roots
for any value of )\, and hence, the wave is stable in
the absence of collisions. However, it is not consistent
to include electron inertia without also considering
electron viscosity. By including the components of
=, parallel to B, one can recover the so-called
inertial instability.

(8). Longitudinal current. When a uniform zero-
order field E,, exists, so that v, and v,,, are nonzero,
a number of additional terms in Egs. (37) and (38)
must be taken into account. We have considered the
case T; = 0 neglecting perpendicular resistivity.
Then the centrifugal terms give first-order contribu-
tions 2pvg,v,% and 2upv,.v..X to Eqgs. (43) and (44),
respectively; the latter term has a larger effect, since
Vo, RY —Ugey A0d v < v,e. A term in e (v, —
Vo.e)z Must also be added to both equations, where
€1 = ve. Furthermore, ¢ will now contain a Doppler
shift — «v,,. It can be shown that the v, Vv, term
_ is still negligible. Proceeding as before, we find that
the dispersion relation is again given by Eq. (60)
for A = 0, but with Y replaced by Y(1 — 2upt8™")
and p replaced by p(1 — 2ui), where 1, = —vp,, =
&o./€ = Jo/nev,. The change in p is a stabilizing effect,
and the change in ¥ may be stabilizing or destabiliz-
ing, depending on the sign of /6. Since both cor-
rections are extremely small, we conclude that a
parallel current has no appreciable effect on the
resistive overstabilities. This is in contrast to the
collisionless case, where a longitudinal current has
a great effect on the growth rate® on account of the
resonant particles. In a resistive plasma no such
resonant interaction is possible.

(4). Temperature gradient. A zero-order perpendi-
cular temperature gradient also does not greatly
alter our results, since this would only change the
z dependence of ¢, a dependence which is negligible.
On the other hand, when such a gradient is coupled

% B, B. Kadomtsev, J. Nucl. Energy, Pt. C 5, 31 (1963).
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to a longitudinal current, instabilities with large
growth rates are known to be excited.”® A tempera-
ture gradient is also maintained by longitudinal
currents. These effects would dominate over those
considered in this paper when a large current is
present.

(5). Landau damping. In order for Landau damp-
ing to be negligible, the ion thermal velocity Av,
must be much smaller than the parallel phase veloc-
ity w/k, = vp/6. Hence, we require A6 < vp/v, = 8.
For N = 1 this is the same condition as that obtained
in Sec. III for the validity of the drift wave approxi-
mation: §° =~ 0, v, & 0.

(6). Cylindrical geometry. These calculations can
be extended easily to the case of cylindrical geome-
try; however, the result will be unaffected as long
as the radius » is < r, as shown in (I). The main
effect is that of the centrifugal force nMvi/r. When
vy is due entirely to the pressure-gradient drift,
Rosenbluth et al.'® have shown that no instability
occurs. When v, is due to a large zero-order radial
electric field, the centrifugal force can cause a slow
instability in the presence of resistivity or viscosity.*®

(7). Energy considerations. We have seen that the
growth rate of the universal overstability is not
greatly affected (only a factor of 2) when T'; is
varied from Ty = 0 to T; = T.. On the other hand,
the wave does not exist when T, = O and T; # 0,
although one would expect that the ion pressure
would then drive the instability. The reason for this
is given by Fowler,”” who shows that in the frame
moving with the ion fluid no free energy is available
to drive any instability if n, = T, = 8 = 0.

(8). Resonant particles. It is well known that res-
onant electrons can also cause a “universal”’ in-
stability in a collisionless plasma. The relation be-
tween the resistive and collisionless instabilities has
been discussed by Stringer,”® who shows that they
are limiting cases of the same phenomenon. Since a
resonant electron must be in phase with the wave
for at least one oscillation before it makes a collision
with either an ion or an end-plate, we know of no
experimental application of the resonant-particle
theory.
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