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IN several recent experiments'™ in cesium and

potassium plasmas, low-frequency oscillations
propagating primarily in the azimuthal direction
with the electron diamagnetic drift velocity have
been found to be self-excited under certain condi-
tions. In uniform magnetic fields, excitation requires
the plasma to be ion-rich, so that ion sheaths exist
near the cathodes. In curved magnetic fields, the
oscillations are more easily excited and occur even
in electron-rich plasmas. We believe that the
criterion for excitation is determined by the conduc-
tivity of the sheaths: for electron sheaths, the
conductivity is relatively high, and the plasma is
stabilized at the metal end plates; for ion sheaths,
the conductivity may be so low that the plasma
does not see the end plates. Then a drift instability
characterized by long axial wavelengths N\, may
grow even though A\, is larger than the length 2L
of the machine.

Consider a cylindrically symmetrie, thermally
ionized, isothermal plasma created between two hot
cathodes in a strong magnetic field. Assume that
perpendicular diffusion and volume recombination
are negligible compared to losses at the end-plates’;
then the parallel velocities v,; and v,, of the ion and
electron fluids may be set equal to zero in equi-
librium. The plasma potential ¥V and density n are
then constant (V = 0) in the body of the plasma
but change abruptly in thin sheaths next to the
cathodes (V = V,). The sheath drop V, determines
the fluxes nv; and nv, of the two species in or out
of the sheath, according to the sheath conditions
given below. In equilibrium V, is such that ny; =

nv, = 0. When a perturbation V occurs in the
plasma, the sheath drop V — V, will be locally
changed, resulting in nonvanishing ny; and nv, along
that line of force. We require that the values of
(nv)). and (nw.). found from the perturbation
analysis of the plasma region be consistent with
the functions of V — V, given by the sheath con-
ditions. We assume that the potential always
varies monotonically from the cathode to the
midplane, and that the frequency of oscillation w is
much smaller than the ion plasma frequency, so
that the sheath changes adiabatically.

In a thermionic plasma, electrons lost to the
cathodes are replenished by thermionic emission
from the cathodes, and ions which recombine at
the cathodes are reionized by contact ionization.
The small fraction which is not reionized is re-
plenished by ionization of a flux j, of neutral atoms
impinging on the cathodes. To change from ion-rich
to electron-rich plasmas, one may either decrease
jo or increase jr, the electron flux emitted at a
temperature 7" according to Richardson’s equation.
In ion-rich plasmas (V, < 0), the Coulomb barrier
of the sheath reflects the plasma electrons trying to
escape to the ends and accelerates the emitted
flux jr. In eleetron-rich (V, > 0) plasmas, the
opposite is true. Thus -the sheath conditions at

2 = ==L are

V. <0: =+nv, =nv, exp (eV./KT) — jr @
Ve>0: 4w, =nmw, — jr exp (—eV./KT), 2)
where v, = n(KT/2xm.)? is the random electron

flux in the plasma. A similar but more complicated
pair of equations obtains for the ions. However, we
shall not need these, since the frequencies involved
are so high and A, is so long that the ion parallel
motions may be neglected during an oscillation.
In equilibrium, V. is such that nv, = 0. We now
replace n by ny, + n, and V, by V, — V,, where
n, and V, are the perturbations in density and
potential at the sheath edge, and linearize about
the equilibrium. The resulting first-order boundary
condition at +L is

:!:(nvez)l = :I:novez = nOU,(V - X){LT) 1}) (3)

where v = n,/n,, x = ¢V,/KT, and v = jr/nw,.
The quantities enclosed by { } are for V, < 0
and V, > 0, respectively.

We must now specify the instability which is to
satisfy this boundary condition. In the plasma under
consideration there is neither an electric field nor
a parallel current in equilibrium, and only the
radial pressure gradient is available to drive the
instability. It is well known that the ‘“universal”’
instability of a collisionless plasma can occur under
such circumstances. However, the effect depends



on the existence of resonant particles, and we do
not think that it oceurs in the experiments,' ™ where
the collision frequency is larger than the oscillation
frequency. Instead, the observed effect is more
likely the overstability we reported earlier,”® which
depends on both finite resistivity # and finite k.
This overstability (wave 3 of Fig. 1 of Ref. 5) was
obtained from a linearized treatment of the ion
and electron fluid equations and the equations of
continuity for perturbations of the form exp (tky +
tkyz — iwt) and for an exponential density profile
in the a-direction. If we now restrict our attention
to the drift waves (w << w,) but allow the z-depend-
ence to be arbitrary, the electron continuity equation
corresponding to Eg. (44) of Ref. 6 becomes a
differential equation in z:

Yo — Y — x) — 1€ 1@/ —x) =0, @)
where

5 =ny' dny/ox,

¢ = Z/TLJ

W, = eB/mi,

= kTL,
wdbe =w — kvt(amr
ro = (KT/m;)}/w,.

The ion continuity equation does not involve z if
ion parallel motions are neglected; it is therefore
an algebraic relation between » and x, given by
Eq. (31) of Ref. 6, and for y* < 1 can be written
as follows:

v —x =av, 0 = [(1 +2¢)¢ + 28]/(°¥ + &7), (B)

where w.¢ = @ — kv{®; v and v = —v{ are
the zero-order diamagnetic drifts. Equation (5) can
then be inserted in Eq. (4) to give an equation for ».
Since only » depends on {, the symmetric solution
is » = a cos v,{, where vy, is given by

vi = teo (Yo — yo). ©)

We interpret v, to be the normalized propagation
constant k,r. and require it to be real. Equation (6),
when written out with the use of Eq. (5), is simply
the dispersion relation, Eq. (18) of Ref. 5, for waves
with arbitrary v,. However, v, is now restricted to
those eigenvalues satisfying the boundary con-
dition (8). By Ohm’s law, the first-order v,, is
approximately v., = — e "(KT/m,)*8/30)(» — x).
Replacing » — x by o», using the known form of
v, and equating v., to that given by Eq. (3) at
¢ = £L/r;, we find the boundary condition

v tan (v, L/r.) = 5(27rme/mi)_i{‘-7': 1}. )

The right-hand side of this equation is fixed by
the operating conditions of the machine. If the
right-hand side is large, the argument of the tangent
must be nearly an odd multiple of 3. The perturba-
tion is then effectively tied at the ends, as if the

€= eno"]/B;

sheaths did not exist; normally this implies such a
large value of v, that drift instabilities cannot
arise. If the right-hand side is small enough, the
left-hand side is approximately vi{L/r.. Thus one
can easily find the eigenvalue of v, for any given
machine condition. One then looks at the dispersion
relation for arbitrary v, to see if this value of v, can
give an instability for the measured density gradient
o and a value of ¥ corresponding to a given azimuthal
mode. This dispersion relation is given by Egs. (6)
and (5); we quote here the generalization of this to
include field curvature and finite Larmor radius
stabilization:

WA hGs— o+ 5YIY—p—nY)=0, @8

where p = r./R, Y = ¢ 'v}/y”, ¥ is the normalized
frequency in the frame moving with the ions, and
R is the radius of curvature of B. For Y > |8y,
p = 0, we have approximately

VR =28y + 260 Y )

If the field is slightly curved, there is an additional
growth rate

Im y &~ —260Y7", (10)

which is positive on the side where n, increases
toward the center of curvature.

As a numerical example we have considered the
lowest azimuthal mode of a 2300°K potassium
plasma 3 cm in diam and 60 cm long, with n, =
3 X 10" em™ and B = 4 kG. For electron sheaths,
we use the “1”7 in the { } of Eq. (7); we then find
Y =~ 150. The growth rate in Eq. (9) is so small for
such a large value of Y that one would expect that
the overstability would be damped. We have
computed the damping due to electron diffusion
and collisional ion viscosity; these effects turn out
to be too weak to be important. The lower limit on
the growth rate is probably set by the ion lifetime
7 in the plasma; for ¥ = 150 the growth time is
longer than the ion lifetime, and the perturbation
cannot grow. For ion sheaths, we use the “ ;" in
Eq. (7), and we can ask the question the other way:
If we require Im w >> 27/7, how small must ¢ be?
Taking = to be 7 = N/(p dN/dt), where N = 2Ln,
dN/dt = %n,0, and p = probability of recombining
in a collision with the cathode, we find = 20 msec
for p = 0.05. Then we find that .r must be less
than 3.8 X 107* Since :¢r = exp (eV,/KT), this
implies |eV,] > 1.6 V for the oscillations to be
produced. This is in reasonable agreement with
observations." If B is curved, Egs. (9) and (10)
show that r,/R must be greater than 1.5 8y® before
the destabilization due to the curvature becomes
noticeable. Published data® are not sufficiently
detailed to check this point.

Physically, it is clear that with large ion sheaths



only a small fraction of the plasma electrons can
reach the cathode through the sheath barrier, and
therefore the sheath is an effective insulator.
Perturbations with Ay > L can exist because E,
does not have to vanish at the sheath edge although
it does vanish at the cathode surface. V x E = 0
is maintained by a difference in E, in the sheath at
different azimuths. The study of drift instabilities
is basic to the understanding of anomalous diffusion
of plasma across a magnetic field. The end-plate
stabilization discussed here makes cesium and
potassium plasmas valuable for such studies because

an initially stable plasma can be obtained and the
onset of drift instabilities can be observed. Details
on these calculations will be published.

1IN, D’Angelo and R. W. Motley, Phys. Fluids 6, 422
1963).

( 2 N. D’Angelo, D. Eckhart, G. Grieger, E. Guilino, and
M. Hashmi, Phys. Letters 11, 525 (1963).

8 H, Lashinsky, Phys. Rev. Letters 12, 121 (1964); 13,
47 (1964).

¢ 8. v. Goeler, Phys. Fluids 7, 463 (1964).

5 F, F. Chen, Phys. Fluids 7, 949 (1964).

¢ F. ¥, Chen, Princeton University, Plasma Physics Labo-
ratory Report Matt-227 (1963).



