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Numerical computations are given for resistive drift instabilities of a plasma in a conducting
cylinder, for cases where the usual WEKB analysis fails because the waves are not localized radially by
shear in the drift velocity. The finite boundary conditions are found to have a stabilizing effect on flute
modes (k; = 0) and a destabilizing effect on drift modes (k; > 0). The growth rate for drift waves is
more than three times larger than that given by “local” dispersion relations. These computations are
particularly relevant to oscillations in cesium and potassium plasmas.

N the usual treatment of universal drift insta-
bilities of an inhomogeneous plasma in a mag-
netic field," the phase-integral method is employed
for approximating the solution to the radial wave
equation. This approximation is a good one when
the radial wavenumber #n is large and when there
are turning points lying within the plasma, so that
the waves are localized to a layer inside the plasma.
In the laboratory, however, drift waves are generally
found to have a weak radial dependence; and the
wave amplitude satisfies the radial boundary condi-
tion not by an exponential decay towards the bound-
ary but simply by having a node there. It is our
purpose to examine the growth and propagation
characteristics of such nonlocalized modes; this
necessarily involves numerical solution of the wave
equation.

Localization of drift modes in the usual treatments
comes about because the gradient in the drift ve-
locity Vs = —(kT/eB) (0 In n/or) is assumed to be
nonvanishing.” Then drift waves are localized be-
cause they cannot stay in phase over a large range
of radius r. However, these localized waves, which
have large growth rates, can quickly wipe out the
gradients in V,, leaving a plasma in uniform rota-
tion, subject only to the nonlocalized perturbations
discussed here.

Consider, then, an infinitely long cylindrical plasma
column rotating uniformly in a homogeneous mag-
netic field. If resistive excitation is dominant, the
wave equation describing drift and centrifugal in-
gtabilities in such & system is that given in a previous
paper’
.

1 For instance, N. A. Krall and M. N. Rosenbluth, Phys.
Fluids 8, 1488 (1965).

3 Here n is plasma density, not to be confused with the

radial wavenumber used elsewhere in this paper.
3 F, F. Chen, Phys. Fluids 9, 965 (1966),%3qs. (43) and (44).
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Here T; = T, has been assumed; W is the wave
amplitude, varying as exp #(mf + k¢ — wf) in
the cylindrical coordinates (r, 8, {); 2 is a radial
variable z = (r/r,)?, ro being the density-gradient
scale distance; ¥ = (w0 — muw,)/w* is the frequency
in the ion frame in units of the electron diamagnetic
drift frequency «* = (m/r)Vs, = mp’e,, where
p = rp/r,, ro and @, being the ion Larmor radius
and cyclotron frequency; 8 = mwo/w* is the “spin”
of the plasma column, the ion rotation frequency
in units of w* (note that mw, # — «* whenever the
zero-order radial electric field is finite); y = (kyr./p") -
(2me)~t is a suitably normalized k,; and ¢ =
neen/B is the normalized resistivity » on the axis.

When k, = ¥y = 0, N(2) is independent of z;
and Eq. (1) reduces to Whittaker's equation. If
the radial boundary is taken at infinity, one obtains
the Rosenbluth-Krall-Rostoker* result for gravita-
tional flute instabilities driven by the centrifugal
force
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where N = 2n 4+ m,n = 0, 1,2, - - being the radial
wavenumber. When y # 0, the local dispersion
relation can be found by neglecting the derivative
in Eq. (1) and solving numerically the resulting
complex algebraic equation for ¥. When y is suffi-
ciently large, the wave becomes a drift wave; and
the local dispersion relation can be approximated by"
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“ F. F. Chen, Phys. Fluids 9, 965 (1966), Eq. (31); M. N.
gosexlxb}}ltthl, 11\143Ai9(1."{2mu' and N. Rostoker, Nucl. Fusion

uppl. Pt. .
¢ F. F. Chen, Phys. lzluids 9, 965 (1966), Eqs. (49) and (50)
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Fia. 1. The growth rate ¥4, in units of the drift frequency,
for the m = 1 mode as a function of %, which is })roportional
to k&, for various values of normalized rotation requency 8.
Du{\ed curves are the “local’’ approximation. The curves are
computed for the lowest radial mode with the boundary at
Z = (R/rst) = 2.
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F1a. 2. Growth rate ¥¢ for the m = 2 mode.
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Fi16. 3. Growth rate ¥° for the m = 3 mode.
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F16. 4. Growth rate ¥* for the m = 10.mode.
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where k, is the local value of the radial component of
k. For the lowest radial mode we have set $k%rj ~~ 1.
For small values of m, however, the exact radial
dependence becomes important, and Egs. (4) and
(5) cannot be expected to give accurate results.

To treat these experimentally interesting cases,
we have numerically solved the differential equation
(1) with the boundary condition that W = 0 at
¢ = 0 and 7 = R. In the laboratory, the radial
boundary is usually defined by a conducting annulus
of internal radius R which acts as an aperture limiter.
Such a limiter has a short-circuiting effect on po-
tential fluctuations outside the aperture, and gen-
erally the level of oscillation is much lower there
than inside; hence our condition W = O for r > R
is a good approximation. On the other hand, the
density at r = R does not have to vanish because
it takes a finite time for ions which have diffused
to the edge to travel along B to the aperture limiter,
where they recombine. In the computations we have
taken Z = (R/ro)" = 2 or 3, corresponding to
density ratios n(R)/n, = 0.135 and 0.050, respec-
tively. These are in the range of what is commonly
found experimentally.

The results for the normalized frequency ¥" and
growth rate ¥* as functions of y (normalized k)
for various values of m and s are presented in Figs.
1-8. To obtain a pair of eigenvalues (¥*, ¥°), we
started with a large value of y and guessed ¥’
and ¥* from the local approximation, Eqs. (4) and
(5). Equation (2) then gave N(z). The complex
equation (1) was then iterated inward from r = R
with initial slope —1. In general, |W| would be far
from zero at r = 0. A new trial pair (¥, ¥') was
then found by a method described by Fox® and
adapted to complex eigenvalues by Goldberg, and
the process was iterated until |W| at r = 0 was less
than a prescribed value. For subsequent values of
y, the initial trial pair (¥", ¥*) was found by ex-
trapolation from the previous three values of .
Each of the curves in Figs. 1-8 was traced from
more than 20 computed points.

Also shown in Figs. 1-8 are dashed curves in-
dicating the “local” approximation obtained from
Egs. (4) and (5). Consider first the growth rates ¥*
shown in Figs. 1-4. The case s = —1 corresponds
to the pure resistive drift mode with no radial’
electric field; the case s = 0 is the case of zero-mass
rotation occurring when the ion diamagnetic drift
is cancelled by an E/B drift. The y = 0 flute mode

8 L. Fox, in Boundary Problems in Differential Equations,
R. E. Langer, Ed. (University of Wisconsin Press, Madison,
Wisconain, 1960), p. 243.
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is stable between these values of s. For m 1,
the flute mode becomes unstable when the rotation
frequency s goes outside these limits. This is the
centrifugal instability discussed in Ref. 3, where it
was pointed out that the asymmetry between posi-
tive and negative values of s is due to the Coriolis
force. For m = 2, 3, and 10, the region of stability
for the flute mode progressively widens as finite
Larmor radius stabilization becomes more effective.
As y is increased, the growth rate reaches a uxi-
mum and then falls again as the wave becomes a
drift mode at large y. In the drift region the growth
rate increases as m is increased because finite Larmor
radius effects excite drift oscillations rather than
damp them, at least in the kjr <« 1 regime as-
sumed here. It is seen that the local dispersion rela-
tion underestimates ¥* by at least a factor of 3 in
all cases but is a better approximation for m = 10
than for low m, as expected. Note that all the curves
for m 10 are nearly identical. This is because
finite Larmor radius stabilization has quenched the
gravitational instabilities caused by the centrifugal
force (proportional to §°), and what is left is the
universal growth rate (independent of s).

Consider now the real frequencies ¥” shown in
Figs. 5-8. We have displaced the curves by plotting
¥’ + s, which is the normalized frequency in the
laboratory frame. ¥° = 2 corresponds to a wave
propagating at the electron drift velocity Va. The

- drift wave at large y approaches this value as-
ymptotically in all cases. The flute mode at y = 0
always propagates in the ion drift direction in the
E = 0 frame. This can be seen from Figs. 5-8 by
realizing that ¥ in the E = O frame is (¥" + 8) —
(1 + 8). For m = 10, this velocity is small, so that
the curves in Fig. 8 are almost equally spaced.
For m 1, the flute velocity can exceed Vi,
causing the bunching of frequencies at the bottom
of Fig. 5.

Figure 9 shows the effect of the finite boundary
condition on the flute modes. The solid lines are the
predictions of the remote-boundary result, Eq. (3),
for n = 0. The points are the y = 0 points of Figs.
1-8, computed for Z = (B/r)’ 2. For m =
-2, 3, and 10, it is seen that the flute mode is made
more stable by the boundary. This is in general
agreement with a calculation by Lehnert” on this
special case of y = 0. For m = 1, however, Eq. (3)
predicts absolute stability, whereas the growth rate
is actually larger than for m = 2 if the boundary
is taken into account. The problem does not arise

7 B. Lehnert, Phys. Fluids 9, 1367 (1966),
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Fia. 5. The frequency ¥* + ¢ in the laborato frame, in
units of the drift frequency, for the m = 1 mode. Other notes
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F1a. 6. Frequency ¥* + s for the m = 2 mode.
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F1a. 9. Frequencies ¥ and growth rates ¥ as a function of
spin s for the m = 1, 2, 3, and 10 modes of the centrifugal flute
instability with &y = 0. 8olid lines are from remote-boundary
theory; points are finite-boundary computations.
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Fig. 10. Dependence of the
radial mode number n, for m

g = -2
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Fra. 11. Dependence of the ¥ — y dispersion curves on the
boundary position Z, form = 1,n = 0,and s = — 2

in Lehnert’s paper because plane geometry was
used. This result has several experimental implica-
tions. An explanation by Rostoker and Kolb® for
the appearance of an m = 2 instability in a f-pinch,
without m = 1, would appear to be fortuitous.
Secondly, the observation of m = 1 oscillations in
cesium plasmas does not necessarily imply & drift
wave. In view of the finite-boundary result, these
oscillations could also be centrifugal flute modes,
and k, or the velocity of propagation in the 6 direc-
tion has to be measured to tell these apart.

Figure 10 shows the effect of the radial wave-
length; computations for the lowest (n = 0) and
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Fig. 12. Radial amplitude distribution for them = 1,n = 0;
m=1n=1;andm = 10, n = 0 modes for s = 0. The dashed
line shows the zero-order &ensity profile.

¢ N. Rostoker and A. C. Kolb, Phys. Rev. 124, 965 (1961).
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next higher (n = 1) radial mode are compared.
Just a8 the finite Larmor radius effects were increased
by increasing m in Figs. 1-8, the same finite Larmor
radius effects come into play with increasing n. As be-
fore, we see that the flute modes (y = 0) are stabilized
by finite Larmor radius effects, whereas the drift
modes (large y) are destabilized by them.

Figure 11 shows the effect of changing the bound-
ary position from Z = 2 to Z = 3. Since finite
Larmor radius effects are stronger when the radial
wavelength is diminished by decreasing Z, we see
again that the finite Larmor radius stabilizes flute
modes but destabilizes drift modes, as pointed out
earlier.” The parameters of Fig. 6 have been chosen
to be useful for experiments in @-machines, where
the radial electric field'® corresponds to 8 = —2.
Note that the frequency of the flute mode seems to
be sensitive to the radial boundary conditions.

’ F. F. Chen, Phys. Fluids 8, 912 (1965).
10 B, F, Chen, Phys. Fluids 9, 2534 (1966).
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In Fig. 12 we show the radial variation of am-
plitude for three cases. It is interesting that the radial
width of the lowest radial mode for m = 10 is
much smaller than for m = 1. This supports the
assumption, made by many theorists on plasma
turbulence, that the radial and azimuthal wave-
lengths are of the same order of magnitude. For the
Gaussian density distribution assumed, Va/n is
largest at the boundary; and indeed we see that the
m = 10 peak is shifted outwards.
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