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It is found that large-amplitnde plasma waves can cause dc particle drifts which can have a dele-
terious effect on plasma confinement during rf heating. A standing wave in an inhomogeneous plasma
is likely to cause convective cells with a periodicity equal to half the wavelength of the wave. As ex-
amples, ordinary and extraordinary electromagnetic waves and ion cyclotron waves are chosen for

detailed treatment.

I. INTRODUCTION

When plasmas are subjected to rf heating, it is
often observed that particles are lost rapidly during
the rf pulse. We have investigated the possibility
that this enhanced loss is caused by nonlinear
interactions of the large-amplitude waves. When
two waves of frequencies w, and w, interact, the
sum and difference frequencies are generated. If
w RS wg, the difference frequency is zero or nearly
zero. Such extremely low frequencies are especially
efficient for transporting plasma, and it iz these
de drifts arising from high-frequency waves that
we have studied.

The method we have followed is a straight-
forward quasilinear calculation of the second-order
corrections to zeroth-order guantities in the linear
theory of plasma waves. The mode-mode coupling
effects oecurring at harmonics and combinations
of w, and w, were treated in an earlier paper.' In
this paper, we eliminate these effects by averaging
over time and consider only w = 0. After the com-
pletion of this work, we became aware of a similar
calculation by Kotsarenko et al.? Our work differs
from theirs in the following respects: (1) Rather
than emphasizing the small quasilinear change
in the equilibrium profiles, we pay particular atten-
tion to the interesting stratified drifts which occur
in the presence of standing waves; (2) we follow
the development of quasisteady electric fields and
convective patterns when the plasma is nonuniform;
and (3) we pay particular attention to the case
of a strong magnetic field. In this paper, mathe-
matical detail and completeness are sacrificed for
gimplicity and eclarity of physical ideas. A more
detailed treatment of the cases in which a steady-
state solution exists, including the effects of cylin-
drical geometry, may be found in another paper.’

II. GENERAL RESULTS

The plasma is deseribed by the two-fluid equations
of motion and of continuity, together with Max-

well’s equations (in esu):

V. . = 4=
ot T Ve VVa m. (E + v. xB)
KT, a
_'—w: %1:— — vas(V. — Vo), 1
Be 4 Volrava) =0, a=ei, @
oB
VXxE = —77, (3

sz xB = é:.,_? + 47!'8(75,'7.' - nlvl)} (4)

where »,; is a collision frequency, and the rest of
the notation is standard. We write v = v@ + v'" +
v® 4 ..., and similarly for the other variables.
The simplest set of equations which will produce
the effects we wish to point out ean be obtained
by setting E® = 0, v,p = 0, T, = 0, v{"” = 0, and
B™ = B.2. We are considering, therefore, a cold,
collisionless, nonstreaming plasma ir a uniform
magnetic field. If ¥n, = 0, the solution of Egs.
(1}-(4) to first-order results in the waves of.the
Clemmow-Mullaly-Allis diagram.* These known
solutions, indicated by the superseript (1), will
be assumed to be loeally valid when ¥n, has a
scale length long compared with the wavelength.

The quasilinear correction to the linear solutions
is found by assuming [v'¥| <« |v'"|, ete., sub-
tracting the zeroth- and first-order equations from
Egs. (1)-(4), and neglecting higher orders than
the second (in the oscillation amplitude). From
Eq. (1) we obtain

av®
at

(1 (1)
= —v, Vv,

+ % (E® 4+ v’ xB™ 4+ v’ xB,).  (5)

In general, v will contain an oscillating part

and a de part. Since we are interested in the de
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part, we take a short-time average of Eq. (5) over
a few periods of the fundamental frequency. We
now have

N
%_ - % (E® + v¥ xB, + 8,), (6
S, = {Vf,” XB(U) . f;_h (VL”'VVE,”), (N

in which the second-order quantities are under-
stood to be quasi-de compared with the frequency
of the original escillation. For the ions, we must
keep the time derivative in Eq. (6) in order to
include the polarization current; otherwise, the
buildup of the field E*” will be found to cccur much
too fast. Usually, v*® will be different for ions and
electrons, hence the possibility of charge separation
and de electric fields.

Note that the nonlinear source term S, has
the dimensions of an electric field and will give
rise to an S xB, drift v'*. Equation (7) shows that
¢S is a force arising from (a) the Lorents force due
to first-order motion across the perturbed line of
force, and (b) the viscous drag due to motion along
the first-order velocity gradient. The terms in Eq.
(7) are mostly oscillatory, but there can be a nonzero
time average if, for instance, v'"' and B'” have an
in-phase component. Then, the source term S can
be nonvanishing and give rise to a secular drift v

Proceeding in a similar manner with Eqgs. (2)-(4),
we obtain

()

Q—:;T“- =N, — Vv —v7:Vn, (8
V2¢(2] = 41re(n£2’ _ n-f-”), (9)

where E® = — ¥¢" and
N,=— (Vv (10)

Equations (6)—(10) give the second-order quantities
in terms of the source terms S, and N., which
are known from the linear solutions. Equations
(6), (8), and (9) constitute a set of nine sealar equa-
tions for the nine unknown quantities v, v.2,
gy Ny, AN @,

The solution of Eg. (6} is

v = BiY[(E™ + 8.) xBy + (m./g.)EL],
- (2) —= (qu/mu)(Ef) + Sﬂa),

Yy
where the dot indicates 9/6. In obtaining Egs.
(11) and (12), we have assumed that the time
variation is slow compared with a cyclotron period
and have made use of the fact that §, = 0, since
S is a time-averaged quantity. We may now insert

(1)
(12)
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Egs. (11)-and (12) into Eq. (8) and use the latter
in the time derivative of Eq. (9). After a little
manipulation, we obtain

(1 + 3 wiew + vis® + BT w4

B? B =n,
_ ’ N Ly . (Vno )
4’“’3[1\ . A i + Br;» o 7, + V

x(S, — 8,) + n V0 — vﬁ"] , (13

where p = nom,. If the dielectric constant 1 +
4xp/B? is 3> 1, as we shall assume, we may neglect
V%® on the left-hand side. This amounts to re-
placing Poisson’s equation (9) with the quasi-
neutrality condition n/® = n{’. We then obtan

the following equation describing the development

of the quasisteady potential distribution ¢

L(Ym 4 g,)v.e®

Weik Mg

“B (I g)us - 8)

Ny

B, - 3
+ 7’-7:0_ (.N, - N{) + B 6—2 (vﬁ] - ”:ﬁj), (14)

where w,; = eBy/m;,. We must now distinguish
several cases. )

(1) k, = 0. If k, = 0, the last term on the right-
hand side vanishes; and the remaining terms are
independent of time. The potential ¢ [we may now
omit the superseript (2)] then grows linearly with
time i:

(—V—”‘2 + v)-w - m,.:t[]—sﬂ-(@—“ + v)

Mg B, T
B[) i T =
x(Sl' - SG) + n—[) (h e N t)] ) (1’3)

(2) k, = 0. In this case, we can take the time
derivative of BEq. (14) and use Eq. (12) for #,..
Since the source terms S,, N, are independent
of time, we obtain
(yﬂg + Vl)-Vﬁﬁ

Tig

) _ 3 _ a_dz)]
= Get by [N“(S"‘ 6‘2) + w”(S“‘ az {16)

(2% ky #0,8,.=8,=0.1In this case, a possible
solution is 8¢/9z = 0. The quasisteady eleetric
field is then perpendicular to B, and is deseribed
by Eq. (15) for the k;, = 0 case. Neglecting V7/10
for the moment, we sec that another solution is
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given by ¢ = — (k,/k:)’w..0..¢, Where we have
replaced 9/9z by ik, and V¥V, by ik,. This is an
oscillation at the lower hybrid frequency which
we shall ignore, since we are interested in secularly
growing fields.

(2") &y # 0, 8y, #£ 0. In this case, the large coeffi-
cient w., in Eq. (16) requires a¢/9z =~ §,.; and it
is 5,. that determines ¥, at all times. %, cannot
grow secularly, but E; is still given by Eq. (15)
and can inereagse with time.

(2" ky £ 0, 8y, = 0, 8;; # 0. In this case, for
Weo 2 o,y we have

=

o

@61’).

m, oz

+ V;)-Vm'b' &= W?.‘ Giz (Slli - (17)
The source term S;;, therefore, requires d¢/dz =
(m,/m;)8,.;. However, this case is rather complicated,
because the effect of the perpendicular source terms
may be of comparable magnitude; and the problem
may not be easily separable.

IIT. APPLICATION TO MICROWAVE HEATING
A. Ordinary Waves

1. Traveling wave

As specific examples, we consider electromagnetic
waves propagating perpendicular to B,(k; = 0).
Figure 1 shows the E and B veectors of a plane-
polarized ordinary wave propagating in the y direc-
tion. We investigate the seli-interaction of this
wave at large amplitudes. If E* is taken to have
the form 28 cos (ky — «t), the linear solution of
Eqs. (1)-(4) yields

E™ = 28 cos &,

B = £8&(k/w) cos @,

vi" = 28(e/mw) sin B, (18)
vV = —28(e/Mw) sin &,
At =0,

where ® = ky — wi. The source terms defined by
Egs. (7) and (10) can now be evaluated for this
solution. Since {(sin ® cos ®) = 0, we find N, = 0,
8, = 0. The quasilinear effects identically vanish
in this particular case.

L

Fic. 1. A traveling ordinary
WAavE.
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2. Slending waves

We next consider two ordinary waves of the type
shown in Fig. 1, traveling in the +y and —y diree-
tions. The real part of the first-order quantities
from the linear solution are as follows:

EY = 28(cos ® + cos $),

1y _ — 4
BY = £8(k/w){(cos & — cos &), (19
ViV = 28e/m)(sin & + sin &) = —(M/m)vi",
At =9

where & = ky — wt and & =
this and Egs. (7) and (10),
source terms:

— ky — wi. From
we can computfe the

Ni = A.rc = 0;
- 2 ek - . ;
S, =¥%¢ g {{sin & + sin &)

{eos @ — cos B)) + 0O

k )
,;mz (—sin 2ky),

(20)

e

n
M

where we have noted that {(cos & sin ¢} = —
{cos ® sin ') = % sin 2ky. Thus, the main effect
is that the electrons feel a seecond-order foree in
the y direction, which gives them an 8, xB, drift
in the x direction. The drift is spatially periodic
with half the wavelength of the original waves:

S!' = Sn

v - g 1%2 o g sin 2ky

If Vny = 0, there is simply a stratified pattern
of drifts, with the lons moving m/M times more
slowly than the electrons and in the opposite direc-
tion. If ¥n, is in the y direction (that is, in the
direction of k), the drifts cause no charge separation;
and E® vanishes.

If Vn, is in the x direction (that is, perpendicular
to k), however, the difference between electron
and ion drift velocities causes a charge separation
and thus an electric field, which we ean compute
from Eq. (15). The terms N, and ¥ x S, vanish
identieally in this case, and we obtain
!

(Vn, = 0} (21)

.8 iVn :w w0
2 _ a5 o Weilv, 0s 2k
E YBo R L cos 2ky. (22)
Inserting this in Eq. (11), we obtain
8w
= —a(Ze)
0 W
k. il
(— sin 2ky “,; Vn, cos Zky)- (23)
: 20 | n, |
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This result shows that when the microwave
" heating is first applied, a pattern of stratified drifts,
given by the first term, is set up by the interaction
of the electron velocity in one wave with the per-
turbed magnetic field in the other. This patiern
is shown in Fig. 2(a). The ions have a drift m/M
times smaller. The resulting charge separation
creates an electric field, which causes both species
to drift together with a velocity given by the second
term in Eq. (23). After a time 1 = 2k/w..|Vno/m},
the second term dominates, and the convective
pattern is shifted a quarter wavelength relative
to the initial pattern. The drifts tend to smooth
out the density gradient. The cross-field transport
is very fast relative to classical diffusion rates be-
cause the theory does mot break down until E®
becomes comparable to E, and E/B, is fast
even for moderate values of & Standing waves such
as we have assumed can arise, for example, when
microwave heating is applied by launching a wave
with E || B across a plasma with a reflecting wall
on the other side.

y n
AT I Y
7
— .
/ ¥, Vg
7/
/)'_' o By

{b)

drifts ©®} arigin w(;len.a. star(lic_ling
ordinary wave is imposed on a plasma. If the density gra ient
is in the direction shown, dc electric fields will anse. (b)
Convective patterns in an inhomogeneous plasma due to the
above effect.

Fia. 2. {a) Stratified
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Fie. 3. A traveling extra-
I ordinary wave,

¥

of
I

Up to now we have neglected the effect of Vn,
on the first-order quantities of Eq. (19). From the
dispersion relation ¢’k*/w® = 1 — w}/w’ for this
mode, it is elear that k will increase toward the
edge of the plasma. Although we have not treated
this problem in detail, Tig. 2(b) shows what the
drift pattern would probably look like when this
change of wavelength is taken inio account.

B. Eztraordinary Waves

1. Traveling wave

Next we conzider the self-interaction of an ellip-
tically polarized extraordinary wave with &, = O:

a _ 5 B ol = _

E &(§ cos ® — aksin @), & = ky — wi, 24)
B = z&alk/w)sin ¥,

where

{25)

w,. being the electron plasma frequency. The wave
vectors are shown in Fig. 3. The first-order quantities
from the linear solution are

a = wlw, + wh, — w0®) f e s,

m _ _’ﬁ&’_z_ -( _ “’fn) g Yee s ]
v’ = Bowi,[XI o cos P ?wsmfb ,
w . _86 . . .
Vi = T (a% cos & + §sin $),
(26)
{1) kg "
n, = i:esm &,
nll! = —%@sin &,

From these one can ecompute the source terrs of
Eqs. (7) and (10):

1 8% 0%?, k.

@7)
8, =N, =

If Vn, is perpendicular to k, the 8, xB drift
is perpendicular to Vn,, and no electric field is
built up. The second-order drifts from K. (11) are
then
2 2 2

(2) W W,

v, = —

| o)

@

¥, v, 0.

(28)

B | =
el
e |

2 4
0 Wpe
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The self-interaction of this wave causes an electron
drift which is independent of mass and uniform in
space (except for the slow variation of w,,); the ions
do not drift.

If Vn, is parallel to k, one would expect v!? to
give rise to an electric field and a plasma rotation.
This ease, however, requires a more careful solution
of the linear problem in a nonuniform plasma,
because the charge separation from v{* is to a large
extent cancelled by the source terms N, and N o
which do not vanish when Vn, # 0.

2. Slanding waves

We now consider the superposition of two extra-
ordinary waves propagating in the 4y and —y
directions;

EY = gf(cos ® + cos &)
— &aX{sin & + sin &),
2ea(k/w)(sin & — sin ¥'),

(29)
B(l) —

&' = —ky — wi,

with o defined by Eq. (25). The linear solution
vields

{13 ed w

vZW“W= —H—ﬁ*[ (1 — S‘)(costb -+ cos ')

wel

— ? (sin ® + sin @’)] (30)

n = %e {(sin ® — sin ®").

As before, the ion drifts will be small, and we omit
the ion quantities. The source terms are

252
S, = “s‘rs"'e—k [—la— + 4 (1 - ——) :lsm 2ky,
wce wpl

(31)
N, =0.

Note that the self-interactions of the waves have
cancelled out, but we have the stratified drifts
varying as sin 2ky. Comparing this with Eq. (20),
we see that the results for standing extraordinary
waves are the same as for standing waves if we
replace 0™ by 03 + w331 — «*/al,)®. With this
substitution, Eqs. (23) for v!® may be used; the
electric field builds up as in the previous case, and
the stratified drifts of Fig. 2 will occur.

3. Mixed waves

If both ordinary and extraordinary waves are
present simultaneously, we find no new nonlinear
interactions besides those we have already discussed.

ARISING FTROM PLASMA WAVES

691

IV. APPLICATION TO ION CYCLOTRON
HEATING

As an example of the case &, # 0, we consider
ion cyclotron waves propagating in the z — z plane
(Fig. 4). Taking m/M = 0, n, = n;, and ¢ =
Wl /e’k® << 1, from Egs. (1)—(4) we find the dispersion

relation
2 ; 1 1 -1

where Q = w/w,; and k* = k* + k. If there are
two waves with phases & and &', the first-order
quantities are as follows:

(32)

EY = g(cos & 4+ cos &),
(:1__§k_2 : . P 1y __
EY = ka(smdh—l-smd’), EM =0,
(1 _ ﬁ ’
vy = B, “(costt-i— cos 7Y,
pi = f?lﬁ (% — 1) (sin & + sin ¢, HAE
o
pl = ITS (cos ® + cos $),
2
o =2 %% (sin ® + sin @), 33)
0 i3
i = BE—% e — 1)(003 & — cos ¢},
0 z
BP = 8% {cos & — cos P},
2
BY = —S%;;%c_ (sin & — sin &7,
B = Eg-% . {cos & + cos &),
— g !
nl'—Bne (cos¢+cos<l>),
where Vn, has been taken as njx.
A, Self—Intera;ction
For a single wave, we take & = k,x + k.2 — wt

and omit the  terms in Eq. (33). The source terms
work out to be

S.’=1
[

g - .
———?21? , N.=N,=0. (39

k1
@ 2
Since Sy, vanishes, we have case (2') of Sec.1I;
the S, . terms determine the drift motions. Initially
the S xB drifts are seen to be in the +# direction
for k, < 0; that is, radially outward if the wave is
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¥ Fi1a. 4. Coordinate system used for ion cyclotron waves.
The cylindrical geometry of a Stix coil has been replaced by
Cartesian coordinates.

propagating inward. The resulting charge separation
will cause the plasma to “rotate’” in the y direction.
The rate of buildup of E® requires a more detailed
treatment of the plasma inhomogeneity; here again,
the N, term tends to cancel the charge separation
when Vn, #= 0.

B. Counterstreaming Ion Cyclotron Waves

Here, we take ® = ke + kz — of, ¥ =
kx — k2 — wi, so that {sin ® cos ¥’ + cos & sin
&) = 0, (sin ® cos & — cos ¥ sin ') = sin 2k.z,
{cos ® cos ®') = (sin P sin &) = } cos 2k,2. From
Bq. (33) we compute the following source terms:

LEE L
S, = _“yBoCI)GQ {1 4+ cos 2k.2)
2 1 .2
+z§-’fﬁlﬁ[1~1(1+22)]sm2k,z,
0o« € : (35)
&k [1 ( 1)
= —f—"=1= 2 - = 2,
S. f?Bowl:e +L € cos 2k.2
.282kkl.
— % - k:wﬂsm%,z

Since S;, # 0, we have case (2) of See. II. The
potential is then given by
82k 1

& = = cos 2k,z + f(x).

= EO- E wQ (36)

The function f(z), and therefore E., is determined
by the perpendicular drifts. From the y components
of S,, we sce that vi” has a constant part (arising
from the self-interactions) and a periodie part. For
¢ << 1, the periodie parts for ions and electrons are
180° out of phase. These drifts are depieted in
Fig. 5. The periodic part of vi” causes a charge
separation in the z direction, but this is easily
cancelled by electron motion along B,, and E, is
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still given by Eq. (36). The constant part of v{¥
gives rise to a component E, and a plasma rotation,
as in the ease of self-interaction.

C. Standing Waves.

We now take ® = ko + bz — wl, & = —
k.x — k2 — wt, corresponding to standing waves
in both the radial and the # direction. The argument
2k,2 in the periodic terms of the previous paragraph
is now replaced by v = 2(k,x + k.2). The source
terms are found to be N, = N, = 0 and

L8 k(1L 1 N1 .
S":XB_DN-[?’EF(;_I)}S”IT
2 .2
+i§%%[l—%(l+%§):lsiny,
1] z
S miﬁﬁﬁfl(l_g) i (37)
¢ cwleﬂ € sy
L28°kE k1
_ZB—DL_u?\‘_ﬁsm%

where we have assumed m/M < ¢. Note that the
self-interactions have cancelled out. From the
condition d¢/dz = 8,,, we obtain
8 k" 1

¢ = B, i og ™ 20k.x + k2) + f(2).  (38)
In this case f{x) vanishes because the perpendicular
drifts, being perpendicular to the density gradient
Vn, = n{%, do not cause any charge separation.
The derivatives of Eq. (38) are sufficient to give
both E, and E, everywhere. Adding the S xB,
and E* x B, drifts, we obtain

L8k 1 1 (1 2;02)
w _ & Koyl 1 (1 %
Vi, = Y ﬁwﬁ [62 92 . ]_ kf
-8in 2(k.x + k.2), 30)
EE k11
@ _ s 6k k11 ) )
Vi. = YBg Bwe QSl.I’l 2k.x + k.2).

These drifts are perpendicular to ¥n, and do not
cause any direct particle loss; however, losses ean

k‘\ /]~\ /‘.-k
TN NS
D

tht ot orgr ot

(i
Vil

NS N ng_m
Fia. 5. Quasilinear drifta for ion cyclotron waves propagating

in the z direetion but standing in the z direction.
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oceur indirectly because the stratified shear flow
would lead to an anomalous viscosity.

In addition to these drifts, the quasilinear electric
field will give rise to an acceleration of ions along
B,. From Egs. (12}, (37), and (38) we find

. &k, 2k” 1 K
s -G+ -1+ 5]
-gin 2(k,x + k.2).

These drifts are also shown in Fig. 6.

(40)

D. Numerical Estimates

As typieal conditions for an ion cyclotron heating
experiment, we take § = 50 V/em, B, = 16 kG,
n=10"%em> %k = 05em ™, and k, = 0.16 em™",
Then, we have /B, = 3 X 10° em/sec, ¢ = 0.1,
and w,; = 1.6 X 10° sec™ for hydrogen. From Eq.
{39) we find

08| &= |v'2)] &~ 3 X 10* em/sec.

Since ¢ ' is proportional to &} - kI, we see from
Eq. (39) that both ¢} and »'}} vary as kI in the
heating region and become larger in the magnetic
beach, where k&, — =.

Integrating Eq. (40) over half a wavelength of
the drift pattern, we find that the maximum energy
acquired by the ions is of the order of 10 eV. This
is not a large effect in itself, but the local concen-

Ve
h| X
]
Z’ -~ d e v]z

(b}

Fia. 6. Pattern of stratified drifts for standing ion cyelo-
tron wavea (a) in the idealized plane geometry, and (b) in
practice,
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trations of density caused by the ion motions may
excite ion acoustic waves.

V. CONCLUSION

Quagilinear effects in rf plasma heating can give
rise to de drifts of lons and eleetrons. In an inhomo-
geneous plasma these drifts can create de electric
fields, which in turn eause convection of both species
together. Traveling waves generally can only give
rise to a rotation of the plasma; this 13 dangerous
only if the rotation is large enough to cause cen-
trifugal instabilities. Standing waves, however,
are particularly treacherous; they lead to stratified
drift patterns which can convect plasma out either
direetly or through secondary effects, such as en-
hanced viscosity.

In ion cyclotron heating the drift velocities are
typieally of order 3 X 10* cm/scc and can be many
times larger in the magnetic beach. In microwave
heating with &, = 0, the dc¢ drifts build up linearly
with time and reach a value [v{¥*| = &/B, in a time
t = (w/e)’(2AB,/8), where & is the amplitude of
the wave electric field, w, is the lower hybrid fre-
guency, and A is the density scale length.

These convective effects may account in part
for enhanced losses observed in previous heating
experiments. In the design of future experiments,
it would be desirable to minimize these effects by
carefully avoiding standing waves.
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