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LASER HEATING OF UNDERDENSE MAGNETIZED PLASMAS

Francis F. Chen

I. Introduction

In experiments on nonlinear effects induced by high-powered COz-laser
pulses impinging on a magnetically confined plasma target, the temperature
of the plasma is raised by resistive heating. Typical targets are g-pinches
and magnetically confined arcs. Since the thresholds for nonlinear pheno-
mena depend on Te’ we wish to calculate the change in Te caused by the laser
beam itself. We consider pulses short enough that the ions do not have
time to be heated by the electrons, and B fields strong enough that wcsz
is much larger than 1 for electrons. The temperature is limited in the
steady state by heat conduction transverse to B. We find that axially
directed gigawatt beams can heat the plasma to an equilibrium temperature
of several tens of eV independently of density, but that in practice this
equilibrium temperature is not reached because of the finite duration of the

laser pulse and possibly also because of inelastic collisions with partially

ionized ions.

IT. The High-Frequency Absorption Coefficient

We first evaluate the inverse bremsstrahlung absorption coefficient

o according to the new corrected formula given by Johnston and Dawson? ;

7.8 x 107° zn_* 2n A (v) .
a = cm (1)
2,.3/2 2, 2.1/2 g
v Tec (l—wP /w™) /
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where w = 2nv is the laser frequency, equal to 1.78 x 10 for C02. For

w > wp » A depends on w; for CO,, it is given approximately by

A=S5S TeV . (2)

This assumes that Te ~ 30 eV, so that quantum effects can be neglected
in evaluating the minimum impact parameter.

A more convenient quantity to femember is the electron-ion collision
frequency Vei? related to a by

2,2
Vej = Cow /wp . (3)

Eq. (3) comcs from the dispersion relation for light waves with collisional

damping: - 2
w
e =< ; =1-—+r_ (4)
w w(w+ive )
2,2 1/2

The imaginary part of k is, for w 2 << wz, Vei << W,

1 1 Vei “22
Imk=ze=7<3 ’ 5)
w
which yields Eq. (3). The factor %-in Eq. (5) appears because a is the
absorption coefficient for intensity rather than amplitude. Eqs. (1) and
(3) give, for wz >> wpz,
-6 neln A
Vej = 2:94 x 1077 —mm (6)
T
eV

in agreemeht with Heald and Whartonz. For T~ 5 eV, &n A is 3.2, according

to Eq. (2). The collision rate for CO, and n = 10'® cn~3 is then
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111. Heat Conductivity

The equation of continuity for electron heat flow is

g? (%nK Te ) +ve 9L - Q ergS/cms/sec , (7)

where Q is the heat source and 9 the electron heat flux. For flow parallel

to B, 94 is given by3

nkT 2
Y, xTe = -K"V"Te ergs/cm“/sec , (8)

e

W = ~Ce T

e

where KTe is in ergs, Te is in °K, K,, is the parallel heat conductivity
in ergs/cm/sec/°K, and Ce is a numerical constant computed to be 3.1616.
In parallel conduction, only electron-ion collisions matter, and we may

replace v, in Eq. (8) by the Vej of Eq. (6). The value of K, is then

5/2

K =2.6 x 10s TeV /&n A ergs/sec/cm/°K (9)

The density has cancelled out because both the energy density and the

frictional drag are proportional to n.
For conduction perpendicular to B, X is reduced by the usual factor

2.2
w

1+ c T the last term being the square of the ratio of cyclotron frequency

to collision frequency or of mean free path to Larmor radius.

X, = K/ v 5 (10)

However, electron-electron collisions also contribute to cross-field conductivity;



and for v_ in Eq. (10), both explicitly and in evaluating K,, one must

substitute the total collision frequency Vei*Vee* For Vee ON€ may use

the reciprocal of Spitzer's4 self-collision time toe!

e
n &n A _ -6 n gn A
Vee = 172377 - 2.9 x 10 ~377 (11)
11.4 A Te TeV

This has the same apparent value as Vei in Eq. (6), but in Sec. III gn A
is to have its ordinary value instead of the high-frequency one, as in
Sec. I1I. For instance, at n = 1015 cm.3 and KTe =5 eV, ¢n A is 8.6.
Although both Vei and Vee contribute to transverse heat conductivity,
the physical mechanisms are different. In an electron-ion collision,
little energy is transferred to the ion, but the electron migrates across
B, carrying its energy with it. When an electron collides with another
electron, there is no net particle diffusion, but the energy can be
transferred to an electron with its guiding center on a different line

.

of force.
At B = 4kG, n = 5 x 10%° cm-s, and T, = 5 eV, wcz/ve2 has the value
8. Thus, for lower densities and higher fields and temperatures we may

assume wcz/ve2 >> 1 and neglect the 1 in the denominator of Eq. (10).

Taking half the value of K, given in Eq. (9) because Ve = Vei * Vee © Zvei.
we then find
6 ni6 in A
K, =1.4x10 NV ergs/sec/cm/°K s (12)
T !°B
eV kG

where N is the density in units of 1016 cm-s. We assume n and B to be

uniform and TeV to vary spatially; K, is not constant. Eqs. (7) and (8)

give for the heat flow



3 oT '
imc 3t V" * (K"V"T) - V.l . (KIV.I.T) =Q . (13)

IV. Heating with Axial Beams

When the laser beam is incident along the axis of a cylindrical
plasma in a magnetic field B, the focal region is a long, thin filament
aligned with B. In this case, heat conduction is radial, and Eq. (13)
becomes

3 oT ) oT
T s - Far (K 5)

= Q. . (14)

To evaluate Q, we note that the beam intensity after traversing a heating

region of focal depth L is
2
I =1_.¢e ergs/cm”/sec . (15)

In an underdense plasma where al << 1, the energy lost is

- -al, _
I0 -1-= 10(1 -e )= IOaL . (16)
Hence the heat input to the plasma is
Q= (I - /L = al, ergs/cms/sec . (17)

From Eq. (1) for the case of CO2 lasers and wpz << wz, we have

Q=9.7 x 10-4Zn§6 in A(v)I T;é/z ergs/cms/sec . (18)

Let us first calculate the equilibrium temperature in the steady state

in which the heat input is balanced by radial conduction. Dropping the
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time-dependent term in Eq. (14), changing from T° to TeV’ and assuming

that n and B, and therefore KxTiCZ , are constant, we have
13 (12 EIS!-) - -Q/(11,600)K,ToH? (19)
T or eV or = -Q ’ 17ev °

From Eqs. (12) and (18), we obtain

2
ZhiwBke an A(W)
3/2 &n A ’
TeV

oT
T-1/2 eV )

1 9
T or (r eV oT = -0.6

(20)

where IMw is the laser beam intensity in MW/cmz. The ratio of &n A values
for high and low frequencies has a value of about %-. We thus have the

nonlinear differential equation

-1/2.* %

132 7l VY v c=0 (21)

where C = 0.3 IMwBiG for a singly ionized plasma, if T is in eV. The

density does not appear in this equation because both the energy absorption
and the thermal conductivity are proportional to n?. The temperature
in steady state, therefore, does not depend on the density.

It is not generally possible to solve for the temperature distribution
within the focal spot, since neither the density nor the intensity distri-
bution is known accurately there. Because of the small radius of the focal
region, we may assume that T inside is only slightly larger than Tb’ the

temperature at the boundary of the focal region.
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In the exterior region, T satisfies the equation

Y270 o A = const. , (22)
or
dT A
= — dr . (23)
T172 T

Integrating from the beam boundary r = b to a radius r = a where the

temperature is at the initial value TO’ we have

172 1/2 _

T

0 - T

b

N =

A &n(a/b) . (24)

The constant A is found from the condition that the total heat input is

equal to the heat flux across the cylinder at r = b:

mb%Q = 2nbq = -21b K, T, (25)

or

-T' = [bQ/2K,] °K/cm . (26)
r=b

Eq. (22) then becomes

A= by 2o el/? 27)

Substituting from Eqs. (12) and (18) and converting to eV, we find
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I B
_ 2 "MW kG Z &n A(Vv) '
A= -32b 373 i . (28)
T
eV

Eq. (24) then gives the steady-state temperature:

3/2,.1/2 1/2 _ 2= .2 Z2n A(v) a
[Tb Ty, - Ty )]ev = 0.15 b IMkaG A in & . (29)

Since the incident power is PMw = szfhw and Zgn A(v)/&n A ~ 0.5 for Z = 1,

this becomes

[Tbs/z(Tbl/z i TOI/Z)] - 024 prBiG gn(a/b) . (30)
e

The temperature depends on the beam power, not on its intensity. The radius
a is determined by the dimensions of the plasma or by the volume of plasma
that can be heated during the pulse. For the particular case Tbl/2 >> Tol/z,

BkG = 4, and a/b = 10, we have

2
Tev = 0.87 PMw . (31)

We next investigate the minimum rise time of the temperature under the

condition that the heat conduction is negligible. Eq. (14) then becomes

3 aT _
? Nk —a? = Q (32)
or, from Eq. (18),
aT
ev . _2 Q c4x 108 1) T2, (33)
5t 3 3 16 eV
1.6 x 10'n,
6
d 2 .5/2y _
= (£ 7147 ) = 0.4 n) 1200 A(Y) (34)



5/2 5/2 _ :
Al PR T TS . (35)

3, since &n A(v) varies from 2 to

Here we have taken Z = 1 and &n A(v)

5 as Te varies from 1.5 to 30. Eq. (35) shows a sensitivity to density

\
and spot size, which Eq. (31) does not.

As a numerical example, consider 25-ns, 1 GW beam focussed to 1 mm
diameter in a plasma of initial temperature T0 = 2 eV and density N = 1

in a 4 kG magnetic field. For a/b = 10, Eq. (30) yields T, = 34 eV, while

b
Eq. (35) yields 39 eV. Since the latter does not greatly exceed the former,
there is insufficient time to reach the equilibrium temperature, and the
nonlinear heat equation Eq. (14) must be solved. We can, however, estimate
the time-limited temperature by considering the source Q to be spread out
over a volume larger than the focal region. As a pessimistic limit, let

the beam be spread over the area waz instead of wbz. Q is then reduced

by 10%, and T_, by L A

6.3. The final temperature is then 6 eV
instead of 39 eV. Since Tev varies as [zn(a/r)]2 outside the beam, the

temperature inside will be considerably above 6 eV but below 34 eV.

V. Heating,with Transverse Beams

If the laser beam is incident along a radius of the plasma, both

parallel and perpendicular heat conduction will occur. If B is large

B —
\l
— - q,
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enough, parallel conduction will dominate, and we may neglect the third
term in Eq. (13). We then have

oT )

wZ)=q , ergs/em¥/sec  (36)

3 oT ]
7™ 5t - 5z (K

with K, and Q given by Eqs. (9) and (18), respectively. Again, we may look

for a steady-state solution by neglecting the first term. Since K"T;3/2
is a constant, according to Eq. (9), Eq. (36) becomes
3 _(p*S/2 3Ty _ Q .5/2
s Ty 370 = - K. Tev ’ (3)
or
S/2
2 QT
) 772 7 -1 Yev
—5 Ty = - 5 (11,600) X (38)
az L
_ 2 -3/2
= -11.3 Zn16IMw2n A(v)en A Tev (39)
. 2 -3/2
= -300 n16IMWTeV (40)

In the last step, we have taken Z = 1 and &n A(v)&n A = 25. If we consider

the region inside the beam and let Tev = T0 + Tl’ where T0 is the uniform

initial temperature, Eq. (40) can be written

3/205/20 w , 5 3/2

2
ev Ty Ti" + 3 Toy

Tl'z) = -88 n; I . 41)

T 16"MW

Let IMw = PMw/nb2 and let & be the scale length of Tl‘ Eq. (41) then

becomes

5.3 32 2 2,2
+ 3 Toy(Toy = T)* = 28 nj P (85/%) . (42)

- To) *+ 7 Ty (Tey - Tg)

4
TeV“eV
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The result previously obtained by Jassby and Marhic5 corresponds to
neglecting the second term in Eq. (42) and replacing the factor 28 by
42.

As explained in Sec. IV, however, the temperature gradient outside

the beam is more important than that inside. We should therefore examine

the region |z| > b, where Igw = 0. Eq. (40) then yields

7/2 _
TeV = Az + B , (43)
or, for Tev = T0 at z = a,
Tb7/2 1.2 o A@a-b) . (44)
0
The heat flux across the boundary z = b is
T
oT Vv
q = -K, 3= -K,(11,600) a: (45)
From Eq. (43), we have
7 25/2.'
TTev Tey = A (46)
so that
7 . 5/2
-A = §'Tb q/11,600 K" . (47)
The total heat input into the beam of focal depth L is
2
mb“LQ = 2bLq . (48)

Eqs. (18) and (47) then give
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3/2

52 (9.7 x 10'4)2n gtn AT T,
T

7
A=z T

2b(11,600)2.6 x 10 Tb 5/2 /en A

2 = 3/2
18b Zn16IMw2n A(v)en A/T . (49)

Here TeV is the average temperature inside the beam and may be approximated

by the edge temperature Tb. Again taking Z = 1, &n A(v)&n A = 25, we have

2 = 3/2

-A = 440 bn16IMw/Tb (50)
and
3/2 7/2 7/2, _
(Tb - T0 ) = 440b(a- b)n16 MW . (51)
> 440abn16 MW - 140(a/b)n16 MW (52)

Comparing this with Eq. (30) for transverse conduction, we see that
the expression for Tb depends on n2 rather than on Bz. Specifically, for

Tb >> TO’ we have

i 1/5_2/5,1/5

Tb = 2.7(a/b) ne PMW {transverse beam) (53)
T, = 0.15[2n(a/b)]Y%B,_PY/2  (axial beam) (54)
p = 0 kG MW :

The dimension a is difficult to estimate, but it enters only weakly; it
is related to the length of the plasma column in Eq. (53) and to the radius
in Eq. (54). For example, if B = 4kG, P = 1 GW, n = 10® cm™3, b = .05 cm,

and a = 2 c¢cm and 0.5 cm, respectively, Eqs. (53) and (54) give

-
n

b 22 eV (transverse beam)

=
n

29 eV (axial beam)
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VI. Heating in Absence of Magnetic Field

If wc/\)ei << 1, we must use KII in the radial heat equation. Eq. (14)

becomes

3 aT 13 9T

A RS G (33)
where, from Eq. (18),

2
16™wW

3/2

Q=9.7 x 10 (A /10, 6)22n I 2nA(v)T ergs/cm3/sec . (56)

Here I, is I  in W/cmz. Using Eq. (9) for K,, and measuring all T's in eV, .

W
we obtain
5 3/2
3/2 3T 1.26 x 10° 1'% 3 ( 5/2 ar) ( )
T me3c ~ A - == \ T = 0.6 z \ 352 anlenA(v) . (57

The steady state solution is obtained by solving

3/2 4 5/2 3T -6 ( )2 5 |
T or (rT a—r) = -3.2 x 10 Z 10 g/ Mely 2nAfnA(v) . (58)
In the interior region r < b, we have
3/2 3 ( 5/2 _a_T_) i
T 5 \fT7 " 37/ = -Ar, (59)

where A is a constant if n and Iw are constant, and this has no simple solution.
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In the exterior region r > b, we have Iw = 0 and hence
/% =0,
T7/2 _ TZ/Z = C n(b/r) , (60)

where T0 = T(a). The boundary condition is determined by the heat flux

condition
2 '
m°Q = 2mbq = -2mbK ,T' . (61)

From Eqs. (9) and (56) we obtain

3, 22 -3/2
' b _ b 9.7 x 10 Z(Au/10.6) anIWQnA(v)Tb ,
T = -3 E— -3 5,572 - » (62)
H (2.6 x 10°1," “/¢nh) (11,600)
while from Eq. (60) we obtain
' - _2cC -5/2
T'(b) = 75 Tp . (63)
Equating these, we obtain
N 2
7 .2 -6 1 ) 2 -3/2
C=7b" (3.2 x10 )2 (IGTE nl Iy fnh Enh(v) T,70T (64)
or since nbzlw = Pw , we can write C in terms of PMW’ whereupon Eq. (60)

becomes
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2

A
(T]Z/2 - TZ/Z) = 1,79 (10?6) ZniGPMW 2nA ZnA(v) 2n(a/b) . - (65)

3/2

Ty

If TZ/Z is negligible, we have, for A = 10,6 um,

2

T5(b) = 1,44 an6PMW 2nA 2nA(v) &n(a/b) . (66)

The risetime can be estimated by neglecting the KII term in Eq. (55):

%n% - =t . (67)
1.6 x 10

From Eq. (56) we then obtain

2
Y
23 .52, _ ( u > .
5 5T (T7'°) = 0.4 2 166 n161w LnA(v) . (68)
The solution is
- 2 2/5
Tb(t) = [1.,0 Z(xu/10.6) n16IMW znA(v)tusec] , (69)

2
i i d i i .
where IMw is I0 in MW/cm~ an tusec s t in usec
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