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Abstract—The spatial variation of the amplitude of electromagnetic radiation propagating into an
inhomogeneous plasma is discussed in reference to nonlinear interaction of HCN laser radiation
with plasmas and to experiments on r.f. heating of the ionosphere. Previous results on the ordinary
wave and on the extraordinary wave at normal incidence are reviewed with emphasis on the physical
processes affecting the amplitude behaviour. New numerical results are obtained starting from an
integral representation of the solution of the wave equation for waves in a cold, inhomogeneous,
magnetized plasma slab. Resonance absorption is discussed for the cases of normal incidence in the
presence of a magnetic field (the Budden problem) and oblique incidence in the absence of a magnetic
field.

1. INTRODUCTION

RECENT developments in laser technology make possible the exploration of the
electromagnetic spectrum in the wavelength range between 10 and 1000 xm (1 mm).
The most powerful lasers in this range are the CO, laser at 10-6 um and the HCN
laser at 337 um. By using plasmas in the density range n = 10*-n = 10'* cm™ as
targets, the study of nonlinear optics can be made more precise than in solid targets,
since the nonlinear matrix elements can be calculated from classical electromagnetics.

The amplitude of a wave in a magnetized plasma, however, undergoes large
spatial variations because of zeroes and infinities in the index of refraction. The
approximation of geometrical optics is not useful in such cases; the wave form must
be calculated by more exact methods before the wave amplitude can be inserted
into any nonlinear theory. The gradient of the amplitude is also important, since this
is proportional to the local radiation pressure, which can cause a low-frequency
motion of the ions (HoraA, 1969; LINDL and Kaw, 1971).

In Section 2, we discuss the propagation of electromagnetic radiation in aninhomo-
geneous medium, analyzing cutoff and resonance points for several cases of practical
interest. In Section 3 the linear absorption of radiation at a resonance point is
analyzed.

Our results are also relevant to the problems of double-resonance coupling of
microwaves to low-frequency waves (WONG ez al., 1970, 1971) and of r.f. heating of
the ionosphere by the mechanism of parametric instabilities. Indeed, the subject
of this paper has been treated extensively in connection with ionospheric radio
propagation. Actual numerical computations, however, are rarely available.

2. PENETRATION OF A PLASMA BY ELECTROMAGNETIC WAVES

2.1 Fundamental equations
Consider a plane electromagnetic wave E = E, exp i(k-r — wt) propagating into
a static plasma with a uniform magnetic field B, in the z direction and density gradient
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Vn, in the x direction. From Maxwell’s equations (e.s.u.)

V x E = ioB )
2V x B = —4mngev — ioE, ¥))
one obtains the linear wave equation
2 .
2 17 4miweny(x)
V(V'E)_VE_EE:_—C:'._V’ 3)
where ion motions have been neglected, and the electron velocity v is given by
N _C(EtvxBy)— v (4
ot m
For zero collision frequency », equation (3) can be written as follows:
OE oE, i
(kS + k2 — kot + kDE, + ik, = + ik, — — 2¢,2p — ¢ (5)
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where ky = w/c and
2 2 wpz
K(x)=ky 5, ®)
0’ — w,

w,? and w, being 4mny(x)e?/m and eBy/m respectively. The fact that k, and k, are
not functions of x is a consequence of Snell’s Law (GINZBURG, 1964a), the index of
refraction varying only in the x direction in this case.

(a) Normal incidence, k, = k, = 0. In this case equation (7) is decoupled from
equations (5) and (6):

2

E
f k(1 —22)E, =0 ©)
w

ox>

This is the wave equation for the ordinary mode, whose well known solution is given
in Section 3. Equations (5) and (6) become

O°E,
ox?

0? 0 — w,?

2 2 3
+ ko2(1 — “’—’”ﬁ’—wl)E,, =0 (10)

?E—“’ _ % 2wz)2(xz , (11)
E, o 0° — w4(x)
where w,, is the upper hybrid frequency: w,* = w,? -+ w2 The bracket in equation
(10) will be recognized as the dielectric constant for the extraordinary mode in a
uniform plasma. Equation (10) will be discussed in Section 2.3.
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(b) Oblique incidence, k, = 0. If the wave enters the plasma obliquely in the plane
perpendicular to B,, equations (5)-(7) become

e
k2 — kg + DE, + ik, aa—x" _ % WE, =0 (12)

E i )
0E 9 w,? k2
4k 1-—’L——”)E,,=0. 14
ax2 + 0 ( w2 k02 ( )

The ordinary and extraordinary modes are still separable. Equation (14) for the
ordinary mode has been treated previously and will be discussed in Section 2.2.

(c) Oblique incidence, k, = 0. If the wave is incident obliquely with a component
of k along By, equations (5)-(7) are no longer separable into ordinary and extraordin-
ary modes, and a fourth-order differential equation must be solved for the wave
amplitude variation. The normal modes are then given by the Appleton-Hartree
dispersion relation, and the fluid case has been discussed in the standard texts
(BUDDEN, 1961; GINZBURG, 1964). Moreover, the finiteness of k, means that Landau
damping has to be taken into account via the Vlasov equation. This problem has been
analyzed by PEARLSTEIN and BHADRA (1969) but is not of interest here because no
new effects of wave amplification occur if k, # 0.

2.2 The ordinary mode

(a) Perpendicular incidence. The geometry for this case is illustrated in Fig. 1.
Since E lies entirely along B,, there is in the linear theory no cyclotron motion of the

-
vn,
A
Ez
»
/%" k Bo

FiG. 1.—Geometry for the ordinary wave, TE mode.

electrons; and the wave equation, equation (9), is the same as for an unmagnetized
"plasma. The solution of equation (9) can be expressed in terms of well-known
functions if the density and, hence, the index of refraction

e(x)=1— @1s)

©,*(x)

is a simple function of x. If ny(x) is linear and ¢ = 1 — (x/x,) (Fig. 2), a simple
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F16. 2.—Linear behavior of the dielectric constant which gives rise to Airy function
solutions.

substitution (BREKHOVSKIKH, 1960; BUDDEN, 196la; GINZBURG, 1964a) brings
equation (3) into the form
4E +lE=0 (16)
e ’

where { = (ko?/xo)"/® (xo — x). The solution of equation (16) can be given in terms
of Bessel functions of order % or as an Airy function:

E(@)) = 3 Afwcos (3x® — {x) dx oc Ai(=). an

This solution is shown in Fig. 3 for kox, = 5, corresponding to a typical laboratory

F16. 3.—Wave intensity distribution for linear density profile, koxo = 5.

experiment, and in Fig. 4 for kyx, = 70, corresponding to an ionospheric or fusion-
oriented experiment. These two curves are, of course, simply different scalings of the
same function of .

O hgs——-—— e e

F16. 4.—Wave intensity distribution for linear density profile, kox, = 70.

The amplification factor is easily found as follows. The electric field amplitude
|E| reaches a maximum |E,,| several free-space wavelengths in front of the cutoff layer;
|En/A|? has a value of 2-68. The distance between the plasma boundary and the cutoff
layer (see Fig. 2) is

fo= (koz/ xo)llsxo = (koxo)2/3- (18)
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If {, is sufficiently large, we may use the asymptotic expansion of equation (17) at the
boundary:

-

34 i2__ T
E(§) ~ ey cos (%@ _ )
At a peak of the amplitude distribution near the boundary, we have

4l

A

Since we have neglected dissipation, this peak results from the constructive interference
of the incident wave with a reflective wave of the same amplitude. Hence, the incident
wave has amplitude |E,[4|? = (9/4~) (koxo)~/2. Dividing 2-68 by this, we have the
amplification factor

r 21517 = 2 (peg) 1,
aw aT

En = 37410, (19)

[

essentially the result given by GINZBURG (1964b). Here x, can be interpreted more
generally as the density scale length

2 —_
A=l _ (4Le a_"e) 1. (20)

ny ma? 0x

Because of the weak dependence on kyA, the enhancement factor (19) varies only
between 10 and 100 in a wide variety of applications. In laboratory experiments
with microwaves, it is about 5; with lasers, about 15. In ionospheric experiments
(WonG and TAYLOR, 1971) it can be as much as 80. For 337-um radiation in a fusion
plasma of 1 meter radius, the factor would be 100.

Equation (3) has also been solved analytically for other density profiles (BUDDEN,
1961b; GINZBURG, 1964a; BaNos and KELLY, 1972). Larger enhancement factors can
be achieved if the density gradient decreases near the cutoff layer. For instance,
Fig. 5 shows computations for a parabolic profile with #,’ vanishing at the reflection

o Xo x

FIG. 5.—Wave intensity distribution for parabolic density profile, kox, = 70.

layer; i.e. for e = (1 — x/xg)%. The amplification factor is 21-9, compared with 14-9
for the linear profile of Fig. 4, which has the same number of free-space wavelengths
between the boundary and the critical layer. The physical reason for this depend-
ence on profile is easy to see. If n, varies slowly in the region near the cutoff layer,
where ¢ is small, the last lobe of the amplitude pattern is greatly stretched out and
hence can rise to a higher value before falling again to match the solution in the
evanescent layer.

When collisions are taken into account, the enhancement factor given by equation
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(19) may be largely illusory. Retaining the » term in equation (4) yields the dielectric
constant
2 TR |
s=1—‘°—‘;(1+ﬁ) . 1)
w w
For constant », collisional attenuation of a wave as it traverses a linear density profile

to the cutoff and back out again results in a reflection coefficient (BUDDEN, 1961a;
GINZBURG, 1964a)

[R| = exp (— gf;— koxo). (22)

The effect of this on |E,,|? can be seen as follows. The intensity E,? of the incoming
wave at the principal maximum in the absence of collisions is given by } of equation

(19):
P

When » > 0, |E,| is diminished by approximately a factor | R|'/2, since half the losses
represented by equation (22) occur in the reflected wave. When E, interferes construc-
tively with the reflected wave, the intensity must again be multiplied by 4, resulting
in

0 0:9(koxg) 2.

"~ 37 |R| (ko). (23)

En

The coefficient in equation (23) is somewhat increased if the effect of » on the Airy
function solution is accurately taken into account (GINZBURG, 1964a).

For the ionosphere, GINZBURG (1964a) has already shown that collisions reduce
the field enhancement factor from about 80 to the factor of 4 one would get from
reflection from a simple mirror. For a laboratory arc plasma with n,,, = 5 X 10%cm~3,
T, = 1:5¢V, and x, = 0-5 cm, the ratio »,;/w is 6 x 1073 for 337-y radiation (HEALD
and WHARTON, 1965). Equations (22) and (23) then yield

|EJE|* ~ 1.5,

as compared with about 15 for T, = 5 eV, and about 17 for a collisionless plasma.
Under fusion conditions (7T, > 10 KeV), |R] is essentially unity; and the factor 100
mentioned above is still valid. At the other extreme, in Q-machine experiments
(WoNG et al., 1971) with 10-cm microwaves, in which n = 10 cm~2 and T, = 0-22¢V,
v[w is 1-3 x 1073; collisional attenuation is then negligible. Since koxo &~ 1 in the
experiments of WONG et al. (1971), equation (19) or (23) predicts only the factor of
4 enhancement given by a simple mirror reflection; in fact, with A < A, finite-
geometry effects would decrease this factor further. Double-resonance coupling
using the ordinary mode, therefore, would not be expected to be highly localized.
(b) Oblique incidence, TE mode. Consider now the case of oblique incidence at an
angle 0, to the direction of Vn,. In the absence of a magnetic field, the ordinary wave
can be polarized with E in the plane of incidence or perpendicular to it, with markedly
different results. In the latter case, which may be called the TE (transverse electric)
mode, the geometry is as shown in Fig. 6. The electric field E = E,Z obeys equation
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Fig. 6.—Geometry for the ordinary wave, TE mode.

(14). Since k, =k sin 0 is constant by Snell’s Law, it is equal to k, sin 6o; and.
equation (14) can be written -

9°E,
Xt

+k’i ! sin?6,)E, = '
0 - w’ - $1n 0 s — 0. (24)

Alternatively, we may write equation (14) as

_aLE! 2 k2

ax? —kE,+ ko ¢E, =0, - (29)
where & denotes the ordinary-wave dielectric constant given by equation (15). The
reason for the k,? term is obvious from equation (25): since & is isotropic in the plane
perpendicular to By, the wave equation must become E” 4 kg? eéE = 0 in the limit
of a uniform plasma. The k,? term is needed because the x-axis was not chosen
along k. Because of this term, the cutoff occurs at a lower value of w, than for
perpendicular incidence, as seen from equation (24):

w, = ‘m cos 8y - ' : (26)

" For a linear density profile, one again obtains equation (16), where L is now defined
as L = (ko?/xo)/® (x, cos? 6o — x). The amplitude variation is as shown in Figs.3 and
4, except that the cutoff now occurs at the point where

e=i'= si_n’ 6,. ‘ 27

The wave is reflected earlier because of refraction in the outer layers of the plasma,
and the enhancement factor is less than in the previous case. ‘

(c) Obligue incidence, TM mode. If E is polarized to lie in the plane of incidence,
as illustrated in Fig. 7, the wave is ordinary only if By = 0. Now it is the oscillating
magnetic field which is transverse (to Vng). As pointed out by GINZBURG (1964a),
the wave amplitude exhibits a fundamentally different behaviour in this case. The
reason for this is shown in Fig. 8. As the electrons oscillate in the direction of E,
a component of their motion lies along Vn, as long as 6, > 0. This component



372 R. B. Wurte and F. F. CHEN

Fig. 8.—Motion of electrons in the ordinary wave, TM' mode.

_ causes an electrostatic charge separation, and the wave cannot remain purely electro-
magnetic. Specifically, the electrostatic part of E can be obtained by taking the
divergence of Maxwell’s equation

¢V x B = —iweE. ' ' (28)
Thus _
0=¢V-E+E.Ve :
V.E=—E-V(ne). - (9)

This mode is described by equations (12) and (13) in the limit w, — 0; it is simpler,
however, to use equations (12) and (29). With the help of equation (8), equation (12)
now reads, for B, = 0,

(k,’ — k' + )E + 1L,a (30)
0x
Substituting for E, from equation (29) and using equation (15) for ¢, we have
E,” + ke — sin®6)E, + [E(In )T =0, G

where the prime denotes 3/dx. The first derivative can be removed by the transfor-
mation

E, = Gsin 6 = Gsin 6,/¢'?, (32
which, for sin 8, 7= 0, brings equation (31) into the form

G” + [k, — sin® 6,) + 3(In £)” — 3(In )]G = 0. (33)
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The effective dielectric constant is, therefore,

. AV[(1e” 37 ‘
ett = &€ — sin® 6 ~°\)(—————). 34
Cett ,8 o0 + (21r 2 4¢ @4

If 7, is much smaller than the scale length of &, the last two terms are negligible
except near the layer where £ ~ 0. Consequently, the TM mode has a cutoff nearly
- at the same place as the TE mode does. The wave amplitude near cutoff has nearly
the same behaviour as that prescribed by equation (24), except that it is G = Ve E,|
sin 6, rather than E, which satisfies this equation. When e is sufficiently small,
however, ¢ becomes infinite. For e oc — x?, equation (34) becomes

’ . 1 p( p)
Eopp = € — §in? Oy — 1), 3
.o ) ett °™ ko’ a2 +2 ( 5)
and g4 dnverges as 1/x2, as illustrated in Fig. 9.
' - 1€ett
I'N
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F1G. 9.—Schematic of the effective dielectric constant for the ordinary wave, TM mode.

The case of a linear profile, p = 1, has been treated extensively by DeNisov (1957)
in connection with the ionosphere and by FREIDBERG et al. (1972) in connection with
laser-fusion. In the neighbourhood of ¢ = 0, equations (33) and (35) give,forp =1,
~',G~4—;G SRR (6)
s0 tbat Gec Jr'”’ and E o sin 6y/x. This behavxour with the infinity removed by

collisions, is shown in Fig. 10. Beyond the cutoff at the layer where'¢ a sin? ,, the
* wave is exponentially attenuated. If the evanescence region is not too thick, the
amplitude becomes large agam at the resonance layer & == 0. The physical reason

for the mﬁmty of E here is, of course, that E has a frequency equal to the natural

X Xo X

Fia, 10 .—Schematic of the wave intensity distribution for the ordinary wave, ™
mode.
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oscillation frequency w, of the electrons, and plasma oscillations build up in amplitude
to a value limited by collisions or nonlinear effects. The TM ordinary wave has the
property that both components of E become infinite at the resonance layer. E, can
be found from equation (29); it behaves as log x near e = 0. The wave magnetic
field, however, is finite at ¢ = 0; and it is clear that the infinity in |E[ is associated
with its electrostatic component. Numerical computations of the various field
‘quantities may be found in FREIDBERG e al, (1972).

The field enhancement factor at resonance will depend on the collision rate.
From equation (21) and (32), we have, for w,=w,andp =1,

in 6 .
IE, | = G s.m o _ R(6,) sin 00’ 67
Jivje v|w

where R(8,) is the coefficient of G at @ = @,. Thatis, G = R(0,)/xY/? = R[(—¢&)V/?
near x = 0. The behaviour of |E,m| at resonance was analyzed by Denisov (1957)

1.0

13 ..
tk, x 1173 5in 8,

Fi16. 11.—Amplification factor as a function of angle for the ordinary wave, TM mode
(from Denisov).

with the result shown in Fig. 11. For small sin 6o, |E[E,| is small because the
electron motion is almost parallel to surfaces of constant ny, and the electrostatic
charge separation is small. For large sin b5, |EA/E,| is small because the cutoff and
resonance regions are widely separated, and the wave is greatly attenuated in the
evanescence region. The angle of incidence 0,, therefore, can be adjusted for
maximum amplification. : o

As a numerical example, consider the arc plasma discussed previously: n, = 1018
cm?, T, = 1-5 eV, kox, = 93, #,;Jo = 1-2 X 10~2. Since the peak of the curve of
Fig. 11 is around unity, we have |E,,/E,|? ~ 12, as compared with 7-5 for the intensity
near cutoff. This result, however, is proportional to »,;~2 T2 AtT,=5¢V, we
would have |E,, [E,|* ~s 400. Field amplification at resonance, therefore, can be
much larger than at cutoff, even when the component E, is neglected. The optimum
angle of incidence in this case is 6, = 8°.

The half width of the curve of Fig. 11 gives Afy ~ A sin 0o = (koxo)™V/*. In the
present example, significant amplification is achieved between 3° and 16°. The
angular range, however, becomes rather small for large plasmas, such as those
encountered in fusion reactors or in space. For koxy = 104, Ab, is only 2:7°; and
extreme care must be taken in the collimation of the incident beam. In such plasmas
the evanescence layer is thick compared with the wavelength unless 6, is small;
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hence the angular range in which appreclable tunneling of the radiation occurs is
limited.

In addition to the enhancement of |E| at resonance, there is an even greater
enhancement of the radiation pressure gradient VE?(8x, leading to a ponderomotive
force on the ions (HORA, 1969). The scale length of the resonance peak is given by
the condition that the real part of & be comparable to the imaginary part; i.e. for a
linear profile,

Ax Lx, (38)

Xo w . .
The pressure-gradient scale-length, therefore, is shorter than the density scale-length
by a factor »/w. A further effect at the resonance is the absorption of energy there,
even in the absence of collisions. This mechanism will be discussed further in
Section 3.

2.3 The extraordmary wave at normal incidence (the Budden problem)

For the geometry of Fig. 12, with k = k£ and E polarized perpendicular to B,,,
the appropriate equations are equations (10) and (11). Deﬁmng

g)_,_w — w, __kz(x)

eCEI_w:ma_wh’— kO. » (39)
—
vn,
A v
Ey e
y
X : ‘.‘
z .
Fic. 12.—Geometry for the extraordinary wave, normal incidence.
we may write equation (10) as
dzE _ .
= 4 ke, =0, (40)

~ The behaviour of ¢, is shown in Fig. 13.
As the wave propagates into regions of increasing w,, it first encounters the right-
hand cutoff (¢, = 0) at '

e al B (41)
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e .
..|_-—
_"‘0\0 x

Fia. 13.—Behavior of the dielectric constant for the extraordinary wave, normal
incidence.

and then the upper hybrid resonance (e, = oo)' at

o, et T .
P R )

We shall assume that the left-hand cutoff, described by equation (41) with the sign -

reversed, does not occur within the plasma, Just as in the case of the ordinary TM

mode at oblique incidence, there is refiection at the cutoff, then a layer of evanescence

and tunneling, and finally a resonance with the natural oscillation frequency of the

electron fluid, @ = w, in this case. Consequently, the field amplitude behaves

- qualitatively as in Fig. 10. For the extraordinary wave at 6, = 0, however, the separa-

~ tion &, of the cutoff and resonance layers is fixed by the plasma parameters. Dividing
equation (42) by equation (41), we have .

PR o, n dx ’
-—’E’-=l+—‘='—=~1+—‘, : 43)
Wy ® n A

where the density ratio n,/n, is expressed in terms of the density scale length A. There-
fore,

dx=22p -, 44
[}

If 2L A, the wave cannot tunnel through to the hybrid resonance unless B, is
extremely weak; the layer of non-propagation—of thickness dx—between the cutoff
and resonance layers would then be many wavelengths thick.

The physical mechanism for a peak in |E|* at resonance is again the development
of an electrostatic component of E, which excites upper-hybrid oscillations limited in
amplitude only by collisions or nonlinear effects. In this case, the Lorentz force
causes electrons to move in the direction of Vr,, and hence develop a component E,,
even though E is purely in the y direction outside the plasma. - The structure of e,
(equation 39) is considerably simpler than that of &,4 (equation 34) for the ordinary
wave at oblique incidence. By choosing a suitable density profile, one can reduce
equation (40) to Whittaker’s equation and make use of the asymptotic properties of
Whittaker functions. The absence of derivatives of w, in ¢, allows one to solve easily
for the corresponding density distribution.

BUDDEN’s (1961¢) analysis of this problem is well known. One replaces equation
(39) with a simple function containing a zero and an infinity (Fig. 13):

=142 @)
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With s = kyx and s, = kyx,, equation (40) becomes

’E, So
— +(1+—)E,=0. (46)

ds® s
This has the solution (BUDDEN, 196lc) E, = W, ,.({), where W, , is Wittaker’s
function, { = 2is, k = — i/2, and m = 4-%. Although the reflection and trans-

mission coefficients have been found from this solution, the field amplitude behaviour
has not previously been computed, there being no suitable series representations
of W, , valid in all regions for the case m = 4-4. We have, therefore, computed the
amplitude distribution using an integral representation.

Before giving the details of this, we show that equation (45) represents a reasonable
density profile. Setting equation (45) equal to equation (39) yields a quadratic
equation for the density w,?/w?, with w,?/w?, as a parameter. The solution is shown
in Fig. 14. The cutoff and resonance points occur on different parts of the density

CUTOFF: /RESONANCE

L~

-0 -8 -6 -4 -2 0 2 4 6 8 10
X/ %o

FiG. 14.—Density profiles corresponding to the assumed form of &(x) in the Budden
problem.

profile depending on w?/w?, but in each case the density is a smoothly increasing
function of x. An integral solution (WHITTAKER and WATsoN, 1952; Bawos, 1972;
WEYL, 1970; BERK and PEARLSTEIN, 1972) of equation (46) is

E(s) = Ase“fexp -—i(2ws — 1s,In Y= 1) dw. 4n
w

For finite E, as |s| — oo, possible contours of integration are given by Fig. 15. The

W-PLANE W-PLANE
S>0 S<0 t ‘
0 |
D D S
| m' m
I o

Fic. 15.—Integration contours for the extraordinary wave, normal incidence.
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major contribution to E, for |s| — co comes from the region Imw ~ 0. The asymp-
totic behaviour of Ey, for example, can be calculated by substituting w = e~i"/2 z/2s,
w — 1 ~ ¢i", where z is a real integration variable and the phases of w, w — 1 are
determined by the cut structure in Fig. 15. Carrying out the integration gives

Ey(s)— ’-24 e*(2s)/ %m0 /(1 — e )T (1 — bis,). (48)

Similarly one finds

Eun(s)—> — l—f— ~H(2s) 0 %m0 (1 — ¢"%0) (1 + Lis,) (49)

and for s < 0,

Eqni(s) —»’—2“-‘ e (—2s)*0 e/ (em — (1 — kis,)

' (50)
Ery(s) > — 124 e —2s)% 250/ (e™%0 — YI(1 + Bis,).

E; and Eqyp are thus right moving waves, and Ep; and Epy left moving. There is also
one contour in the finite plane encircling both branch points which gives a solution.
However, a second independent finite-plane contour does not exist, and this represen-
tation is therefore not useful.

For boundary conditions we choose E;(s) i.e. a transmitted right-moving wave,
for s > 0. Thus, for s > 0 we have the contour I. To continue analytically to s < 0,
we are restricted to the lower half plane in 5. (This can be shown necessary by
including a small dissipative term in the problem.) Thus we must rotate the contour
counterclockwise as s is rotated clockwise. The contour I is successively distorted as

W -PLANE W-PLANE"
O I FauN /f
\Q;
(a) (b)
(c) (d)

F1g. 16.—Distortion of the contour I for analytic continuation from s > 0 to s < 0.

shown in Fig. 16. From Fig. 16(d) it is seen that E; becomes, after continuation to
s <0,

E;— Ery(1 — €7™%) + Eqyyy, (51)
the two terms on the right representing the reflected and incident waves, respectively.
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The transmission coefficient is given by equations (48) and (50):

[T| = IEI/EIIII = e/, (52)

The reflection coefficient is the ratio of the two terms on the right-hand side of
equation (51). From equation (50) we have

IRl =1 — &™™ (53)

|T| and |R] are the same values given by BUDDEN (1961c), and their squares add up
to less than unity. The deficit is the energy absorbed by the plasma at the hybrid
resonance. In practice, the energy absorption may occur through mechanisms such
as collisions with particles, collisions with turbulent fields, or generation of Bernstein
waves. The rate of energy absorption, as shown explicitly in Section 3, is correctly
given by the residues at the first-order poles of &(x), in spite of the fact that the
dissipative mechanism has not been specified. This is because only the asymptotic
behaviour of the fields is needed to calculate the energy loss, and the fluid equations
are valid far from resonance. Inclusion of the dissipation mechanism will allow one
to calculate the field amplitude near resonance, where the collisionless fluid equations
break down, but the energy absorption there is already determined; and the amplitude
must be such as to yield the correct energy loss. It is not necessary to assume, as
Budden does, that energy flows away in the z direction as the wave approaches
resonance.

To calculate the field E; near s = 0, we distort the contour of Fig. 15(a) into that
shown in Fig. 17, which has three parts. It can easily be shown that the contribution

W-PLANE

Fi6. 17.—Integration contour for s ~ 0.

of part b of the contour is bounded by esM, where M is a fixed number. The circular
part a yields a contribution bounded by sN, with ¥ a fixed number. Part c of the
contour yields, for e -0,
iA, .,
Ef(0) = — — (&7 —1). 54
Thus, E, is finite at the resonance. Dividing by the normalization of the incoming
wave Ejpp (equation 50) we find

|E,(0)] = Ae"%/4/|T(1 — %isp)l. (55)
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equation (11) then gives E_(s), which becomes infinite at s = 0 in the absence of
collisions. For finite » < w equations (39) and (11) become

K*(s) w,> o® — 0, + ivw

1——= (56)

(57)

The collision frequency produces an insignificant change in E, but determines the
amplitude of E,(0). Substituting the expression for E,(0) obtained above we then
find

w? — wcz w Ae—a:qu

[EL0)] == 2
T w0t wly [T — %ise)|

Figures 18 and 19 show the spatial behaviour of [E|2 for two values of kgx,, as
computed by direct integration of equation (47) using the appropriate contour

(58)

CUTOFF \
L ] [ l\| N e —— e ]

-5 -4 -3 -2 -1 o] l 2 3 4
S

Fig. 18.—Computed wave intensity profiles for the Budden problem for kox, = 1 and
two values of the collision frequency ». The incoming wave has amplitude |E,|* = 1.

in Fig. 15. A moderately large collision rate, »/w = 2 X 10-3, is sufficient to make
the field peaking near hybrid resonance unimportant. A value of w,/w = 6 X 10~2
was used to calculate E,. In the experiments of WONG et al. (1970), however, the
density was sufficiently low (7 = 10° cm™3, »/w = 1-3 X 107%) that the coupling to
ion oscillations could have been caused by the steep field gradient near resonance.

2.4 The extraordinary wave at oblique incidence

When the plasma radius is large compared to the wavelength, the upper hybrid
resonance is inaccessible; and the wave amplification in the geometry of Budden’s
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z
F1G. 20.—Geometry for the extraordinary wave at oblique incidence.
problem is not practical. One then asks whether the TM mode at oblique incidence
has an accessible resonance. The answer is unfortunately no.
When B, is large, this mode is an extraordinary wave and is governed by equations
(12) and (13) with the w, terms retained. The geometry is shown in Fig. 20. Eliminat-

ing E, between equations (12) and (13) and simplifying, one obtains the following
equation for E,:

d’E dE
—f+ p(s) ="+ q()E, =0, s=kyx (59)
ds ds
where
d 22 0
P) = (@) i x )
: (0® — cu,,z)(cos2 6, — 2&_2 )
0" — W,
2 .2 2 d . .
qgs) =1— “’_z; w2 w,,2 _ sin® 6, — = (@) @, sin 6, cos® 6,
W" W — Wy S w(w2__wh2) 005200— 260, .
— o,
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_/

p(S)

F1G. 21.—Schematic behavior of the coefficients p(s), g(s).

We have made the low-§ assumption that w, is uniform; the entire s dependence
then occurs in w,*(s). The characteristic behaviour of p(s) and g(s) for a monotoni-
cally increasing density profile is shown in Fig. 21. We have for convenience defined
the origin (s = 0) to be at the point where (w,?)/(w? — w,?) = cos? §,. Both p and ¢
have first order singularities at this point, as well as at s,, where w? = w,2 Further,
p(s) is identically zero at the plasma boundary, whereas g(s) is asymptotically equal
to cos? 6,. Their Laurent expansions about s = 0 are given by

1
p(s) = — St
62
w, cos® 6, (62)
g(s) =———-
w ssin 0,
Introduce the transformation E,(s) = U(s)h(s) with
h(s) = exp (—f 1p(s") ds'). (63)
Then U(s) satisfies the equation
d*U
d_s2- + K¥As)U(s) =0
with
K*(s) = q(s) — p'(s) — 1p°(s). (64)

The structure of k2(s) is easily seen to consist of a cutoff, two second order singular-
ities at s = 0 and s = &, and first order singularities at the same points. It is clear
from equation (62) that the coefficients of the second order poles are independent of
the details of the plasma density profile. Also, lim k2(s) = cos2 .

8—»—00

Figure 22 shows k2(s) for the density profile ,?/w? = (1 + tanh s)/2 for various
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8,=0 (BUDDEN CASE) € \\

§.=2.2° ‘

—— I 1 /Kl S
0 ! N/4 5
e,=5°

— . /ks

FiG. 22.—Behaviour of the effective dielectric constant k%(s) for the extraordinary
wave at varying angles of incidence. The curves were computed for w,*w? = 2 x 107
and w,*(s)/w? = #(1 + tanh s).

values of 0,. As 6, — 0 the second order poles merge and cancel, p(s) — 0, and the
problem reduces to the one treated in Section 2.3, Fig. 13. The point s =0 is a
regular singular point of equation (59). From the collisional counterpart of equation

(12) one obtains
2

w ’
— —_2— ,(5) — sin 6,E, (5)
o (0 + iv)* — o,
E(s)=1i . , (65
w0, (1 + iv/w) 2

.z —¢0s O
(0 + V) — o,
which shows an apparent resonance behaviour at s = 0. In fact one can show using
the expansions of p(s), g(s) near s = 0 together with equation (12), (13) that the
numerator in the r.h.s. of equation (65) vanishes at s = 0 and E,(0) is finite. There
is a resonance at s = s, at which E, = oo in the absence of collisions. Figure 22
shows the dependence of the distance between resonance and cutoff on incident
angle 6,. The physical reasons for the cutoff and resonance are as follows. Ats = s,,
the wave has the usual hybrid resonance because the wavelength is infinitely short,
so that the plasma inhomogeneity is negligible. Thus, the square of the frequency,
w? = w,? 4 w,? is determined equally by the electrostatic restoring force (w,? term)
and the Lorentz force (w,? term). The cutoff occurring to the left of this resonance is
the usual right-hand cutoff modified by finite 6,. In the limit of weak density gradient
and far from resonance, we have p(s) ~ 0, q(s) ~ ¢, — sin? 0,, in analogy with
equation (24) and (27). The physical explanation is the same as for the ordinary wave,
since ¢, is isotropic as long as k is confined to the x—y plane. Cutoff then occurs at

2

—~1F 2 cos 6,. (66)
w
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3. LINEAR (RESONANCE) ABSORPTION

The phenomenon of linear or resonance absorption can be an important mechan-
ism for the thermalization of electromagnetic energy in many cases of interest. It can
in some cases be responsible for the thermalization of as much as half of the radiation
incident on a plasma, and as the process has no threshold it is important also for low
amplitude incident radiation. The process is due to poles in the dielectric constant
which gives rise to a non-Hermitian Hamiltonian for the system, and the absorption
of energy at a point in space with an associated non-unitarity of the S-matrix for the
scattering process. This non-unitarity is generally the result of the vanishing of a
particular channel in an idealized limit; e.g. the fluid limit. Although the modes of
this channel do not exist in the idealized limit, the energy flux into these modes can
be correctly given by the residue of the resulting singularity. As an illustration we
calculate the energy absorption for the Budden problem and show that it is prescribed
by the first-order poles of the dielectric function e.

The Poynting vector is given by x

= < Re (Ee!) x Re (— Xy x Ee““"). (67)
4 w

We are interested in the x-component of P, averaged over one cycle, which is

p_ ic? ( OE* +E 0E,* E OE* E oE* cc) 68)
7 1670\ Y ox * ox Y 9y * 0z
Then since E is independent of y and z we have
ic® 0E,*
P, = (E = c.c.). 69
16rw\ * Ox (69)
Thus the divergence of P is given by
0P ic? « OE, )
— = E — c.c. 70
ox 1677(0( ox? (70)

or, from equation (46),
oP, ic%ky? [( Xo
— = 1+—)E *E —c.c.].
ox 16mw x/ '

= g + xpim 6(x). an

The Hermitian part & clearly does not contribute to energy loss from the wave;
thus the relevant part of 0P,/0x is

In the limit »/ow — 0,

8}_’2 ic’ky”
ox 16w

IE |* 27ixy 8(x), (72)

and the absorbed energy is

ckoxol

—AP, = E, 0" (73)
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Substituting the value of E,(0) from equation (55), we find

€So Aze—3730/2
8 |T(1 — isy/2)l*

Using  T'( — ise/2) = — i(so/2)T'( — ise/2), T*(1 —ise/2) = T'(1 + ise/2) and
'@ — z) = a/sin 7z, we find

—AP, =

2
—AP, = CSAW (€™ — &%), (74)

Substituting the asymptotic forms of E, into equation (69), we find the total incoming
and outgoing fluxes to be

2
Po=L01—|rRP

87

. (5)
Pout = &~ ITIZ

87

Substituting |T'| and |R| from equations (52) and (53), we find

P in = Pouy — AP;
and thus the resonant absorption due to the singularity in & accounts for the discrep-
ancy in |R|? 4 |T|2 # 1.
The absorption coefficient =% — €~2"% is shown in Fig. 23 as a function of the
tunneling distance s,.

The absorption due to singularities in dielectric constants describing other
processes can be calculated in a similar manner, but has been done only in a few cases

5
4

o
T

Fic. 23.—Absorption coefficient for linear absorption for the Budden problem.

0 | L 1 1
0 2 4 .6 .8 1.2

2/3 g\2
(kgL)2/3 sIN28,

Fic. 24.—Absorption coefficient for linear absortion for an obliquely incident TM mode.
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which readily admit analytic solution. In particular the problem of Section 2.2(c),
an obliquely incident TM mode, has been analyzed extensively by PiLtya (1966) and
more recently by FREIDBERG et al. (1972). The absorption in this case is a function
of the single parameter ¢ = (k,L)*? sin® 0, where 0, is the angle of incidence, k, the
free space wave number, and L the density scale length. The absorption coefficient is
shown in Fig. 24.

4. SUMMARY

We have considered the amplification of electromagnetic waves propagating into
an inhomogeneous plasma at either normal or oblique incidence, both with and
without an external magnetic field. Numerical results for the wave amplitude variation
and energy absorption have been obtained for cases where such results cannot be found
in the existing literature. An integral representation is given from which the amplifi-
cation and absorption for all cases can be computed by direct integration. It is shown
that the absorption is correctly given by the poles of the dielectric constant without
collisions.

Enhancement of the wave intensity at a plasma cutoff depends only weakly on
ko and cannot ordinarily be made larger than about an order of magnitude. On the
other hand, enhancement at an infinity of the effective dielectric constant (resonance)
can be larger than 10% The extraordinary wave at normal incidence exhibits this
effect, but the resonance is not accessible if koA is large. The ordinary wave at oblique
incidence has a resonance which can always be made accessible by adjusting the angle
of incidence. The angular range, however, becomes extremely small for large k,A. Ina
strong magnetic field, the extraordinary wave at oblique incidence has an effective
dielectric constant with two resonances. The wave amplitude, however, isresonant only
at the upper hybrid point, which cannot be made accessible by adjusting the angle of
incidence. A sufficiently large magnetic field, therefore, removes the resonant
absorption associated with the TM mode at finite §,. The computation of absorption
in the general case is straightforward but tedious. For most purposes a sufficiently
good approximation can be obtained by averaging the values given by Figs. 23 and 24.
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