Task II-1712

SPACE CHARGE IN RADIAL ENERGY ANALYZERS
Francis F. Chen

We wish to calculate the maximum density at which a radial
energy analyzer (REA) can operate without space charge problems. In
its simplest form, an REA consists of a tube and a positively biased

collector plate, as shown in Figure 1.
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Figure 1

Electrons are scraped off by the shield tube; and fast ions enter the

- gap with velocity v, are slowed down by the retarding field, and are

collected if %'Mv 2 > evc, where VC is the collector potential relative
0

to the plasma.

We consider a one-dimensional gap in which ions are emitted at

x=0, V=0 with velocity Yo and flux I = NoVor Poisson's equation is
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Continuity of flux gives

F=nyv,=nv, n=ny/v (2)

Energy conservation gives

%-Mvo2 = %-Mv2 + eV(i),
or v =(v§ - 2ev/M)1/2 (3)

Substituting into Eq. (1) for Z = 1 yields
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In terms of the variables

X =
2 50 and (4)

X, (5)

this becomes
2
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Because the potential is retarding, the curvature of x(t) is opposite

to that in the Child-Langmuir problem. Figure 2 shows the behavior of

V(xy (or x(£¢)) as n, is increased.



Eigure 2

For small Ny the potential has only a slight curvature (curve a).
As N, is increased, space charge eventually causes the electric
field E = -dV/dx to vanish at the collector (curve b). If n, is
further increased, a potential maximum is created in front of the
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collector at X+ If eV(xm) should become as large as ?'Mvo » the

ions cannot reach the collector. Thus, the critical condition at

which the monoenergetic ion flux is reflected is

d = X0 where V(xm) = fo/e,
or §q = &p» Where X (£ ) =1 and x'(gm) =0. (7)

We note that the finite electric field at x=0 is usually too
large to match the transverse field in the plasma. The matching is
done in the scrape-off boundary layer, where electrons and low-energy
fons contribute a net negative charge to decrease the slope of V(x) near

x=0,



Multiplying Eq. (6) by X' = dX/CE, we obtain
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Condition (7) states that x' =0 when X=1, so that ¢,=0.
Thus we have
x' =2 (1-x)1/% (10)
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Since X=1 at §=§m, we have
Q= 2§m + Cz, C2 =‘2£m
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This gives the potential distribution x(£). The critical space charge

condition is given by the boundary condition X(0)=0. This yields
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From Eqs. (5) and (7) we have
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In terms of the analyzer current density

‘\] = noevos (]5)

this becomes
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J = o esu, (16)
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or

10 2
J = — A/cm
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= 5.8 x 108 € 328V pycn, (17)

Where A is the atomic number of the collected ions and Eev is their

initial energy in eV.

In terms of the density Ny of the collected species, Eqs. (15)
and (16) yield
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If n, s measured in units of 1010 cm'3, Es in keV, and d in mm, this

becomes
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Mo = 2.5 Ekey/dmm (19)

This is the critical density of the collected species in the plasma
above which a virtual anode forms and space charge effects impede the

collection of the REA.



If the velocity distribution of the collected species were
known, this calculation should be redone taking the spread in
velocities into account. A conservative estimate can be obtained
by using for Ekev the minimum energy collected, namely, ch, and
for o the total density of the collected species, including those

below the energy cutoff.



