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THICKNESS OF COMBINED BOHM-LANGMUIR SHEATHS
Francis F. Chen

When a large voltage is applied to a plane probe in a plasma, a
sheath of sizable thickness compared to a Debye length Ap can be created.
In the case of cylindrical or spherical probes, the perturbation caused
by the probe falls sufficiently fast with distance that an exact solution
can be obtained; this has been done by H. Lam using aerodynamic boundary
layer analysis techniques]. In the case of a plane probe in a magnetic
field, however, the perturbation caused by the probe extends to infinity,
and the problem is not well defined. We present here a practical but
non-rigorous analysis and indicate the approximations involved.

Consider a plane probe of unit area biased to a potential -V
relative to the plasma potential. We assume the ions to be cold (Tt<<Te)
and the electrons to be in a Maxwellian distribution at temperature T.

If the density far from the probe is n,» a normal Debye sheath has a
thickness d; ~ 2 Ap» Where

s V/2
\p = (eOKT/noe ) (mks) (1)
If the probe is biased at a negative voltage much larger than KT, there

is an additional sheath next to the probe, where the electron density can
be neglected and the local potential takes the large drop to the probe
potential. The thickness d2 of this region is given by the Child-

Langmuir formula

1/ ¢ 1/2 3/4
_ 2 ,2e 0
d, = §'(ﬁ—) (37 v (2)

‘Since the ion current density J enters in this formula, we must estimate

it. If the Debye sheath is to have a monotonic potential variation, the

ion current entering it must exceed the value given by the Bohm criterion1



. 1/2
J > 5 n e (Kle/M) (3)

where M is the mass of a singly charged ion. This criterion will be
rederived below. It implies that the ions are accelerated to an energy
% KTe by the electric field of a presheath that extends from deep
inside the plasma to some ill-defined sheath edge, and that the density
at the sheath edge is approximately no/2. The total sheath thickness
is then

d =d; +d, (4)

As a numerical example, take n = 1012 ecm=3, KTe = 3eV, M = 40 My
and V = 100 volts. (V is a positive number; the potential -V is negative.)
Then J = 21 mA/cm2, Ap = 1.28 x 1073 cm, and d, = 2 x 1072 ¢cm. Thus-
d = d] + d2 = 2.3 x 1002 cm, and the Child-Langmuir sheath is 8 times
thicker than the Debye sheath.

We now wish to calculate the combined sheath more exactly to check
on the accuracy of this rough estimate. To do so requires an ad hoc
assumption about the sheath edge, since strictly speaking the disturbance
caused by a plane probe (or any probe in a strong magnetic field) extends
to distances at which the probe no longer appears planar.
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Figure 1 shows the situation. The point designated as the sheath edge
is labeled x = 0, and the potential V, for convenience, is defined to
be 0 there. The sheath edge is defined to be the nearest point to the
boundary at x = d at which the plasma can still be considered to be
quasineutral. Thus

Ne (x=0) = n; (x=0) = ng. (5)

If n, is the density in the body of the plasma, it is intuitively clear
that ng < ng. Since the electrons are Maxwellian (they are repelled

by the sheath potential), the potential at x<o must be positive relative
to that at the sheath edge. This gives rise to the presheath electric
field. 1Ions are accelerated toward the sheath by this field and cross

the sheath edge with a drift velocity Vo© We shall neglect the thermal
spread in ion velocities and assume that at x = o there is a monoenergetic
ion stream with energy )

S 1y 2
These assumptions will allow us to solve for V(x) and the sheath
thickness. The arbitrary division into d] and d2, shown in Figure 1,
will not be necessary. The Debye sheath (d]) is defined as the region
where n;y # Ne and Ne is not negligible. The Child-Langmuir sheath
(d2) is defined as the region where Ng is negligibly small. The
difficult part is now finished; the rest of the problem is relatively
straightforward.
For a one-dimensional system, the governing equations are:
d
o 2 - M~ Mg (Poisson's equation) (7)
dx
ne “se'ev/KT (Boltzmann relation) (8)
1 .,.2 I .
7 Mvy - eV = 5 Mvg (Energy conservation) (9)
ngVs = NV (Ion continuity) (10)



Here it must be remembered that V is the negative of the potential and
is positive. Egs. (9) and (10) give

1
_ 2,72
ny = ng (1 + 2eV/Mv0) . (11)
Eq. (7) then becomes
1
d%y 2eV \ 2 _eV/KT
e —3 = ng [(1+5=) -e 1. (12)
dx Mv0

Near the sheath edge, V is small; and we may expand the right-hand side:

1
——) (13)
Mvs .

=1 " E.V.. eV _ ]_
e e =l gy ceV gy
V0

For small x>0, we must have V and V" both positive for the sheath to
have a monotonic potential variation. Hence we require

Mv2

=1
U= 2 "0

> % KT. (14)
We may now define the sheath edge more specifically as the point where
this condition is barely met; namely, where

- 1/2 -
Vo = (KT/M) = Vg (15)

This critical drift is referred to as the Bohm velocity Vg- To acquire
this velocity, the ions must have fallen through a pre-sheath potential

of magnitude %KT/e. Hence the density in the plasma, according to Eq. (8),
is

1/2

- e-(e/KT)(-KT/Ze) = n e

Mo s

= ].65ns, (16)

or "s/"o = 0.6. This is the reason for the approximate factor %-in Eq. (3).



To solve the sheath equation, introduce the following dimensionless
variables:

where )¢ is the Debye length [Eq. (1)] evaluated with ng instead of
Ng*
Setting Vo = Vg in Eq. (12), we can write it as

1
L (1 42n) 2 - (18)

Multiplying by n' = dn/dg, we can integrate this once to give
1

M=o Z see, (15

It is tempting to set the integration constant C equal to -2, so that
n' = 0 at the sheath edge, where n = 0. However, this would restrict
us to the trivial solution n(g) = 0 everywhere. The reason is that
n{0) and n" (0) have been defined to be zero; and if n'(0) = 0, then
n'*+ (0) and all higher derivatives also vanish, as can be seen by
differentiating Eq. (18). Thus we must allow n'(0) to have a small but
finite value s, determined by the pre-sheath scale length, as is clear
from Figure 1. Eq. (19) then becomes

ao= 22 el e™ - 2124 s, (20)

The behavior of the two sheaths d; and d, (Fig. 1) can be
recovered in the approximate 1imits. For n>>1, Eq. (20) becomes

n' = 22 (2n)1/4. (21)
This amounts to neglecting the electron density, the initial ion velocity,

and the slope at the origin--exactly the conditions of the Child-Langmuir
problem. Solving, we obtain



n-]/4 n' = g (n3/4)'

3/4.

Integration from x = o to x = d yields

314 =% 23/ £y

(22)

Aside from notation, this is precisely Eq. (2), the Child-Langmuir law.

In the limit of small n, we may expand the r.h.s. of Eq. (29) in
Taylor series. The first non-vanishing term is third-order:
n' o= -—%' nd +s.

Thus
- dn_

s + bn3

Using a table of integrals, we obtain an analytic form for the Debye
sheath:

2 Y
o 1, (n +a) . /T tan] a ]
B A AL AR G BT
where
o = (S/b)‘l/3
b=v27/3

(24)

(25)

A smooth joining of the solutions (25) and (22) would give a reasonable

approximation to the exact solution for any given value of the initial

slope s. However, it is easier to integrate Eq.(20) numerically to
study how the sheath thickness depends on s. We have done this on an
HP-29C (or HP-25) hand calculator using the recursion formulas



- ' ' -
My = Npap B88smpy = F (”n-l

where f(n) is the r.h.s. of Eq. (20).

The range of s was chosen by the following process. Let L be the
scale length of the pre-sheath. If we consider the plane collector to
be perpendicular to a dc magnetic field, then L would be the smallest
of the ion mean free path, the ijonization length, or the ion cross-field
diffusion length. If the plane collector is parallel to the lines of
force, it would be pulling ions across the magnetic field. Then L
would be scaled to the ion Larmor radius evaluated with the electron
temperature, since the pre-sheath potentials are of order KTe/e. Taking
the latter case, we have

- M (ZKTe)UZ

eB M
and
. los =(80KTe .M )”2.5;_3_ -
M 27
2
L nse. 2KTe
. BZ 1/2
-1/2 { 2o -
(1.2) ( "oM ) 0.91VA/C,

where VA is the Alfven speed, and we have used Eq. (16). For B = 2T,
N, = 1018 n=3, and M = 40 MH’ we find s =2 x 1072,

Numerical results for the potential profile in the combined sheath
are shown in Fig. 2 for s = .001, .01, and 0.1. It is seen that the
joining of the small-n and large-n solutions could have been made
smoothly around n = 0.5. On a semi-log plot, the curve is more S-shaped
the smaller the value of s. This is because the Child-Langmuir sheath
has a fixed scale length, but the Bohm or Debye sheath can have a very
long scale Tength if s is chosen very small. In practice, the effective
sheath thickness is not sensitive to the assumed value of s. At the



distance where eV has fallen to a small fraction of KT, say 0.1KT,
one is to all intents and purposes inside the plasma. If we define

6 to be the distance between the n = 0.1 and n = 100 points, Figure 2
yields the following sheath thicknesses:

s 8
.001 39 ADS
.01 36 ADS
0.1 33 XDS

Thus, the difference among the curves is mainly due to the choice of
where in the pre-sheath one arbitrarily assumes the sheath to begin.
The insensitivity of 6§ to s justifies the seemingly arbitrary assumptions
on which Bohm-1ike calculations like this are based. ‘

It is instructive to compare the calculated result with the rough
estimate made at the beginning of this paper. For KTe =3 eV, ng = 0.6 x
1012 and ng = 33, we obtain 6 = 3.3 x 1072 cm at s = .01. This is
considerably larger than the 2.3 x 1072 cm estimated earlier. The
difference is probably due to the thickness of the transition region.

If the curves of Figure 2 are plotted on log-log paper, then one
finds that the d« V3/4 law is obeyed at both large n and small n, but
the curves take a wiggle in between.

See F. F. Chen, in Plasma Diagnostic Techniques, ed. by
R. S. Huddlestone and S. L. Leonard (Acad. Press, 1965)
Chap. 4.
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