Decay of a plasma created between negatively biased walls
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‘When a slab plasma is created between negatively biased walls with a vacuum gap between the

plasma and the wall, the rate of decay of the density is governed by the space-charge limit to the
_ ion current. This limit is modified by the ion velocity gained in a presheath. It is shown that the

sheath criterion implies eventual stagnation of an initially fast-moving sheath, followed by a

slower motion on a different time scale.

1. STATEMENT OF THE PROBLEM

We consider the one-dimensional situation shown in
Fig. 1, in which a plasma of thickness 22 is suddenly created
between parallel plates separated by 2b. A highly transpar-
ent grid is imagined to exist at the midplane x = 0, serving as
a potential reference (¢ = 0) and as an electron sink to pre-
serve charge neutrality. Ions are drawn to the highly nega-
tive walls, which have a potential ¢, such that — ed,>»KT.
Electrons are Maxwellian at temperature 7, and ions are
assumed to be born with zero temperature. Collisions are
neglected. -

A similar problem was treated by the author almost 20
years ago,’ when the concern was the stability of the ion
stream in the sheath. The present paper deals with the mo-
tion of the sheath itself in a configuration specifically ex-
cluded from the previous work; namely, one in which the
plasma does not fill the space between the walls. In the labor-
atory such a situation could occur, for instance, if the plasma
were ionized by a collimated beam of ultraviolet light or of
fast electrons as in a double-discharge gas laser. The ioniza-
tion could even be accidental, as in UV-induced breakdown
between high voltage electrodes. The positive electrode, in
practice, would probably not be a real grid but would be
located above or below the plasma. Because of the large elec-
tron mobility, such an electrode would fix the potential of
the plasma almost as well as the fictional grid drawn in Fig.
1. The grid allows us to reduce the problem to one dimension
and thus bring out the main features of the sheath-edge mo-
tion without obscuring them in algebraic detail.

For definiteness, suppose that K T'is a few eV and |ed,| a
few kV, and let the initial plasma density n, be of order 10'°-

10'2 cm~3, with dimensions a and b of the order of centi-
meters, as is typical of gas discharges. The Debye length 4,
is then 1072-103 cm, several orders smaller than the plas-
ma dimensions. Furthermore, the transit time of ions across

FIG. 1. Geometry of the idealized prob-
lem.
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the vacuum gap is much shorter than the decay time of the
plasma, and the decay will evolve through a series of quasi-
steady states in which the electron density follows the Boltz-
mann relation

n, = noexpleg /KT), (1

and the ion velocity and the potential ¢ have adjusted them-
selves to the steady-state values dictated by space charge.

To treat this problem at the simplest level, one can con-
sider the plasma to be a perfect conductor emitting ions,
neglecting both the structure of the sheath and the redis-
tribution of density within the plasma. The flux of ions is
then given by the Child-Langmuir formula for space-
charge-limited flow?:

_ 1 i 172 ¢0‘3/2

where s is the distance between the plasma edge and the wall.
This flux is supplied by the retrograde motion of the plasma
edge, which exposes successive layers of ions to the acceler-
ating field as excess electrons are rapidly removed by ther-
mal motion to the anode grid. Setting I" = n (ds/dt ), we ob-
tain

ds 1 2 \\2
oo L (2Y"y 0 ;
dt 9mng\eM id )
Thus,
=5+ 2) g @
° 3mng \eM o "

where s, = b — a is the value of s at £ = 0. The plasma is lost
in a time
t=3mngleM /2)'*(b> — 53)|¢o| =2 (5)

This time is longer than the transit time of each ion by a
factor of approximately £2,7, where {2, is the ion plasma
frequency and 7 is the transit time of an ion with the maxi-
mum energy led,|.

Il. FORMULATION USING THE BOHM SHEATH
CRITERION

At the next level of approximation, we must account for
the structure of the sheath at the plasma edge. There are
three distinct regions: (1) a plasma region where quasineutra-
lity holds (n,~n,), (2) a Debye sheath where the electron
density falls from n, to a negligible fraction of »,, and (3) a
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FIG. 2. Possible shapes for potential variation in the plasma (1), Debye
sheath (2), and Child-Langmuir sheath (3). The thickness of region (2) has
been exaggerated for clarity.

Langmuir sheath filled only with streaming ions. Regions (1)
and (3) have a macroscopic scalelength L on the order of a or
s, while region (2) has a much smaller scalelength on the
order of Ap. Though the thickness of the Debye sheath is
entirely negligible, the conditions required for its exis-
tence—i.e., for a smooth transition between plasma and
near-vacuum—have an important influence on the way the
plasma decays.

Figure 2 shows three possible ways in which the solu-
tion ¢ (x) for each region can join together. In (a), the poten-
tial and its derivative vary monotonically through the three
regions. In (b), the usual solution for a wall sheath is matched
to the usual solution for a space-charge-limited diode, but
with a change in the sign of the curvature. This cannot occur
because a layer of negative charge would be required at the
plasma edge. Once the Bohm sheath criterion? has been sat-
isfied at the sheath edge, the electron density cannot exceed
the ion density anywhere in the sheath. In (c), we show a
nonmonotonic potential. The same argument can be used to
eliminate this possibility; in addition, any small amount of

J

= 2/M)'"? [leldol + M) — M05)' 7] [lelgo] + IMV3)'72 + 20M07)' %)

dissipation would cause ions to be trapped in the trough and
raise the potential there. We therefore consider only poten-
tial shapes of type (a).

In quasisteady state, the directed velocity of ions enter-
ing the Debye sheath at the boundary between regions (1)
and (2) must exceed the Bohm velocity?

vy =(KT,/M)"2. (6)

This velocity gives the ion motion sufficient rigidity for n, to
exceed n, as the potential ¢ falls, as is required to give ¢ *(x)
the right sign. A presheath potential drop of 1XT, or larger
must therefore exist in the plasma. Indeed, it is well known
that in the collisionless case the quasineutral plasma solution
breaks down' (becomes double-valued) at |e¢ | = 0.854KT,
where the ions have maximum energy 1.3v,. The ion distri-
bution function f;(#,v) in this case can be shown' to be highly
peaked at v = (2¢¢ /M )'/? and to be independent of the spa-
tial distribution of ionization sources, though the profile of
¢ (x) does, of course, depend on these sources. Our procedure
is to define the sheath edge at e¢ = LKT and approximate
J;(v) there by a monoenergetic stream with v = v, . The value
of |e¢ | rises to a few times KT within a few Debye lengths.
Since [edy|»KT is assumed, we may neglect the Debye
sheath altogether and match the Child-Langmuir solution
directly to the plasma solution at the sheath edge.

To do this we must modify Eq. (2) to account for the fact
that ions enter the Langmuir sheath with a velocity v, > v,.
We omit the details, which are straightforward. Let the
Child-Langmuir sheath be matched with zero slope to the
plasma solution at a plane where n = n,,v, = v,,I" = n,v,.
Then we find

977e? s

which reduces to Eq. (2) when v, =0. For v, =v, and
KT<¢led,|, this becomes

For the potential in the Langmuir sheath to span a
range ~|d,| in a distance s, the ion flux I" must have the
value given by Eq. (2) or (8). The flux provided by the pre-
sheath is

I, =nvy =ngexp{— 172)KT/M)"?, 9
n, being the midplane density. If I', is larger than I, there is
insufficient voltage to draw the Bohm current across the
vacuum gap, and a monotonic potential of the type shown in
Fig. 2(a) cannot occur. In the usual case, I, will be smaller
than I; then the deficit in lux must be made up by a retro-
grade motion of the sheath edge, giving an additional flux
n,(ds/dt ). Thus we have

d d.
I'=n, (v, + 7’:):_«0.6%(0, + :5) . (10)
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The midplane density is determined by the loss of ions to the
sheath at the rate I, = n,v;. The number of ions per cm’
between the midplane and the sheath edgeis N = Bny{b — s),
where B is a profile-dependent form factor, somewhat less
than unity, such that r = Bn,. Since I, = — dN /dt, we
have

B%[no(b—s)] = —0.6nyp. (11)
iil. APPROXIMATE SOLUTION

Equations (8), (10), and (11) are coupled differential
equations governing the sheath motion and density decay. A
complicated analysis can be avoided by realizing that the
decay proceeds in two distinct stages. In the first stage, N is
so large that it can supply the flux I" without suffering any
appreciable decrease. Then »n, is approximately constant,
and Eqs. (8) and (10) give

s’(v, + -g-) =C, (12)
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where

(2/7eM )2 ,,2[ ( QKT)"’]
C="—"7""—- 1+3 . 13
S, ol + eldal (13)
It is seen that the sheath stagnates (ds/dt = 0) at
s=s, = (C/v,)"% (14)

In principle, one can find the time to reach stagnation, ¢,, by
integrating Eq. (12):

: _J"_s”ls_:_l_ ' _sds
! % C"”n-"z Up Js -"f -5
_1 ﬁl,,’_ni_‘)", (15)
v‘ 2 S,—S 5

This expression diverges, indicating that the constant 7, as-
sumption fails before s, is reached. However, the time ¢, can
be estimated by dividing the distance s, — s, by the velocity
§=Csg 2 —v,.

When s = s,, the flux I' is provided by the Bohm flux
T’,, and the plasma slowly decays while maintaining an al-
most constant profile. The sheath edge must remain sharp as
long as A, €a holds. The loss rate is initially given by Eq. (8)
with s=s,. As n falls, however, I, falls below I', and a slow
motion of the sheath edge must occur to make up the deficit.
If the plasma volume is large enough, the motion will be
much slower in the second stage than in the first stage, and
theterm — ds/dtin Eq. (11) can be neglected. We then have

0.

ne (&)= - 222, (16
dt Ba,

where a, = b — 5,. The density decays exponentially with

the time constant

7=pa,/0.6vy~4a,/3v,. (17)
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In the final stage, the plasma will collapse rapidly when 7,
and a reach such small values that the sheath edge must
again move rapidly to supply the flux I". In other words, the
plasma then cannot shield out the applied electric field be-
cause it contains an insufficient number of Debye lengths.

IV. EFFECTS NEGLECTED

To treat this problem more accurately would require
solving for the distribution function f;{v), where the velocity
v depends on ¢ (xo,7) — @ (x,?); i.e., the potential difference
the ion has traversed since its birth. Because of the time de-
pendence, f;(v) will show an explicit dependence on x, as
contrasted with the steady-state case.' It is unlikely that this
difficult numerical calculation would greatly alter the time
scales found in our approximate analysis.

It should be pointed out that the quasisteady transport
assumed here cannot be set up without an initial state of
turmoil. Suppose that a uniform plasma with warm elec-
trons and cold ions is suddently created between x = —a
and x = ain the presence of a vacuum electric field. Ions will
be drawn toward the negative walls, and electrons will be
repelled; butat x = g + € the electron density will exceed the
ion density, causing the potential ¢ (x) to curve upward in-
stead of downward. The potential will then flop around, per-
haps generating acoustic shocks and solitons, until the ions
have been redistributed in the plasma to form a presheath.
Only after the Bohm criterion is satisfied at the sheath edge
can the quasisteady flow proceed.

'F. F. Chen, Nuovo Cimento 26, 698 (1962).
2F. F. Chen, in Introduction to Plasma Physics (Plenum, New York, 1974),
Sec. 8.2
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