

1984

I NTERNATIONAL

C ONFERENCE ON

PLASMA

PHYSICS

Lausanne - Switzerland

June 27 - July 3, 1984

PROCEEDINGS CONTRIBUTED PAPERS

Volume L

Editors: M.Q. Tran,M.L. Sawley - CRPP-EPFE, 21,av. des Bains

CENTRE DE RECHERCHES EN PHYSIQUE DES PLASMAS

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

WHY IS THE TWO-ION HYBRID RESONANCE OBSERVABLE?

Francis F. Chen

University of California, Los Angeles, California 90024

Abstract: The two-ion hybrid frequency $\omega_{\mathbf{r}}$ can be seen in a plasma of finite length even though the finite-k | frequency shift should be large. A small amount of damping requires $\omega = \omega_{\perp}$ in order to satisfy sheath matching.

Use of the Two-Ion Hybrid as a Diagnostic

In a plasma with two ion species, electrostatic oscillations with $k_z = 0$ (that is, with phase velocity perpendicular to the magnetic field Bo2) have the characteristic frequency ω_r given by l

$$\omega_x^2 = \Omega_1 \Omega_2 \frac{\alpha_1 \Omega_2 + \alpha_2 \Omega_1}{\alpha_1 \Omega_1 + \alpha_2 \Omega_2} \,, \tag{1}$$

where $\Omega_{1,2}$ are the ion gyrofrequencies of species 1 and 2, and $a_{1,2}$ are their weighted relative concentrations. Let species 2 be the "minor" or impurity species, so that $\alpha_2 <<$ α_1 , then Eq. (1) shows that $\omega_T = \Omega_2 + \Delta \omega$, and the frequency shift $\Delta \omega$ is a sensitive measure of the impurity concentration α_2 . This is easily obtained by applying a frequency ω to the plasma and observing the peak in response at $\omega = \omega_{\rm r}$. For instance, the contamination of H2 ions in an H plasma or of Artions in an Artplasma is often of interest. In the latter case, where $M_1 = M_2$ but $S_1 \neq S_2$, Eq. (1) reduces to

$$\omega_{\mathbf{r}}^2 = \Omega_2^2 \left(1 + \frac{n_2}{n_1}\right) / \left(1 + \frac{z_2^2 n_2}{z_1^2 n_1}\right), \tag{2}$$

so that Δw is sensitive to the density ratio n_2/n_1 because of the weighting factor $z_2^2/z_1^2=4$.

Dimonte et al. 2 have reported an experiment in an Ar-Xe plasma in which u_r was observed to obey Eq. (1) accurately. Mowever, the plasma column was limited in length by conducting endplates, and the value of $\boldsymbol{k}_{\underline{\boldsymbol{g}}}$ was necessarily finite. Any conventional treatment of the boundary conditions would lead to a value of &w larger than observed and well outside the experimental error. The unexpected validity of Eq. (1) proved to a difficult problem, which we have now solved.

The Electromagnetic Dispersion Relation

The resonance frequency $\boldsymbol{w}_{_{\mathbf{T}}}$ is shifted by a small but finite value of k_g because rapid electron motion along \underline{B}_O destroys the ion charge balance conditions leading to Eq. (1). The effect of finite $\mathbf{k}_{\mathbf{z}}$ can be calculated by careful treatment of the electron dynamics, including inertia, collisions, Landau damping, and self-inductance. Consider waves in an infinite, uniform plasma with $T_i = 0$ and $k_x = 0$, so that $k^2 = 0$ $k_{\rm w}^2 + k_{\rm g}^2$. From Maxwell's equations without displacement current, we obtain a wave equation whose components are

$$k^2 E_{\perp} = (4\pi i \omega/c^2) j_{\perp}$$
 (3)

(6)

$$k_{\perp}^{2}E_{\perp} - k_{\perp}k_{\perp}E_{\perp} = (4\pi i\omega/c^{2})j_{\perp}$$
 (4)

$$k_{x}^{2}E_{x} = (4\pi i\omega/c^{2})j_{x}$$
(3)
$$k_{x}^{2}E_{y} - k_{y}k_{x}E_{z} = (4\pi i\omega/c^{2})j_{y}$$
(4)
$$k_{y}^{2}E_{x} - k_{x}k_{y}E_{y} = (4\pi i\omega/c^{2})j_{z};$$
(5)

The perpendicular currents $\mathbf{j}_{\mathbf{x}}$ and $\mathbf{j}_{\mathbf{y}}$ are easily found from the electron $\mathbf{E}^{\mathbf{x}}\mathbf{B}$ drifts and the cold-ion velocities. Eqs. (3) and (4) can then be written

$$(f + \kappa^2) E_{\mathbf{x}} + ig E_{\mathbf{y}} = 0$$

 $-igE_x + (f + \kappa_x^2)E_y - \kappa_y\kappa_zE_z = 0$ (7)

$$f(\Omega) = \frac{\alpha_1}{1 - (R\Omega)^{-2}} + \frac{\alpha_2 R}{1 - \Omega^{-2}}$$
 (8)

$$g(\Omega) = R\Omega \left(\frac{\alpha_1}{R^2 \Omega^2 - 1} + \frac{\alpha_2}{\Omega^2 - 1} + 1 \right)$$
 (9)

$$\alpha_{j} = z_{j} n_{0j} / n_{0e} \tag{10}$$

$$R \equiv \Omega_2/\Omega_1, \quad \Omega \equiv \omega/\Omega_2 \tag{11}$$

 $\kappa = kL$, $L^2 = H_1c^2/4\pi z_1 n_{os} e^2 \approx c^2/\Omega_{pi}^2$. (12) and

To evaluate j_z we neglect the ion v_* and solve the Vlasov equation with a Krook collision term to obtain the electron

$$\frac{\partial f_1}{\partial t} + v_z \frac{\partial f_1}{\partial z} - \frac{e}{m} E_z \frac{\partial f_0}{\partial v_z} = v_e \left(\frac{n_1}{n_0} f_0 - f_1 \right). \tag{13}$$

Using the electron continuity equation for n_1 , we obtain

$$\frac{4\pi i \omega}{c^2} j_z = -\frac{\omega^2}{c^2} z'(\zeta) \frac{\frac{\omega}{k_z v_{th}} \zeta E_z + \frac{v_e}{2\omega_c k_z} \frac{k_y}{E_x}}{1 - \frac{i v_e}{2\omega} z'(\zeta)},$$
 (14)

where $\Sigma^{+}(\zeta)$ is the derivative of the plasma dispersion function3, and

$$\zeta = \frac{\omega + i v_e}{k_z v_{th}}, \quad v_{th}^2 = 2kT_e/m.$$
 (15)

The term containing $v_{_{\bf C}}/w_{_{\bf C}}$ in Eq. (14) can safely be neglected, whereupon Eq. (5) can be written

$$-\kappa_{y}\kappa_{z}E_{y} + (\kappa_{y}^{2} + P)E_{z} = 0, \qquad (16)$$

where
$$P = \frac{M_1}{Z_{1m}} \frac{\zeta Re(\zeta) Z^{\dagger}(\zeta)}{1 - \frac{1}{2} \frac{v}{\omega} C Z^{\dagger}(\zeta)}$$
(17)

The determinantal condition for the compatibility of Eqs. (6), (7), and (16) yields the dispersion relation

$$f(\Omega) = -\frac{P\kappa^2\kappa_g^2 + (f^2 - g^2)(P + \kappa_y^2)}{P(\kappa^2 + \kappa_g^2) + \kappa^2\kappa_y^2}.$$
 (18)

For a cold, collisionless plasma, we may let P+= in Eq. (18) to obtain $(f+\kappa^2)(f+\kappa_g^2)=g^2$, which yields the usual electromagnetic ion cyclotron wave⁴ when $a_2 = 0$, R = 1. The electrostatic limit of Eq. (18) can be obtained by letting C + *, so that L, K, K + *:

$$f = -(k_g^2/k_u^2)P. (19)$$

This is the two-ion hybrid dispersion relation with finite $k_{\rm g}$. When $k_{\rm g}$ = 0, this becomes $f(\Omega)$ = 0, which is identical to Eq. (1).

Sheath Boundary Conditions

Let the wave be excited by applying a voltage Vp = V_{m} cos ($\omega t - k_{y} Y$) to a split endplate at z = 0, while the other endplate at z = L is grounded. If we neglect the sheaths and naively assume that λ_{g} = 4L, k_{g} = $\pi/2L$, then Eq. (19) predicts an extremely large shift &w (dot-dash curve in Fig. 1). However, we have previously shown 5 that an ion sheath is an insulator, so that the density $\boldsymbol{n}_{\boldsymbol{g}}$ and potential # just outside the sheath on a conducting plate can fluctuate as long as the plasma can supply the additional electron current that penetrates the sheath Coulomb barrier because of the fluctuation in n_g or ϕ_g . The current j_g in the plasma depends on k_{g} , so that k_{g} is determined by a matching condition, which turns out to take the form

$$\frac{3\psi}{3\pi} + \pi(\frac{3}{3t} + \nu_{e})\psi = 0 \text{at } \pi = L$$

$$\frac{3\psi}{3\pi} - \pi(\frac{3}{3t} + \nu_{e})(\psi + \chi_{p}) = 0 \text{at } \pi = 0,$$
(20)

where $\psi = n_1/n_0 - e\phi_1/RT_e$, $\chi_p = eV_p/RT_e$, and a = $\frac{1}{2} (RT_e/R)^{\frac{1}{2}}/(RT_e/m)$. Applying Eq. (20) to waves with real k and complex ω , we previously found the effective $k_{\underline{z}}$ to be $k_{\pi} = (4/L) (av_{e}L/2\pi)^{\frac{1}{2}}$, about an order of magnitude less than the naive estimate. Even this value, however, gives too large a frequency shift, as shown by the dashed curve in Fig. 1; the electromagnetic correction reduces the discrepancy by only 20%.

We have reexamined the problem recognizing that we have real ω and complex k here, so that it is appropriate to assume a perturbation ψ of the form $\psi = A(t) + B(t)e^{-0.2}$ $\cos \beta x$, where $k_x = \beta + i\alpha$. The term A(t) is needed to represent a uniform potential fluctuation of the whole plasma, which of course, is possible at any frequency. Since the excitation is of the form $\cos\phi$, where $\phi=\omega t-k_{\chi}y$, $\lambda(t)$ and B(t) will be of the form

$$A(t) = a_1 \cos \phi + a_2 \sin \phi$$
, $B(t) = b_1 \cos \phi + b_2 \sin \phi$. (21)

Inserting this into Eqs. (20) and equating the coefficients of the sin* and cos* terms, we obtain four equations for the four coefficients a1, a2, b1, and b2, which are then expressed in terms of α , β , and ω ; that is, in terms of ω and $\boldsymbol{k}_{_{\boldsymbol{Z}}}$ (for fixed $\boldsymbol{k}_{_{\boldsymbol{V}}})$. Since ω is also related to $\boldsymbol{k}_{_{\boldsymbol{Z}}}$ by the dispersion relation (18), once ω is chosen one can compute a_1 , a_2 , b_1 , and b_2 and hence $|\psi|^2$. The maximum in $|\psi|^2$ as w is varied indicates the frequency that should be observed. The computations are simple enough to be done on a programmable hand calculator. For a wide range of parameters the eigenfrequency lies extremely close to the classical twoion hybrid frequency $\boldsymbol{\omega}_{_{\mathbf{T}}}$. Apparently, the physical reason is that the damping constant $\alpha = \text{Im}(k_{\underline{\alpha}})$ is appreciable even for fairly weak collisions, and this gradient in $\left|\psi\right|^{2}$ causes an electron flow which the sheaths cannot accommodate. The only way to reduce the flow is for ω to be so close to $\omega_{_{\bf T}}$ that the space charge of one ion species is cancelled by that of the other ion species without the necessity for electron parallel conduction.

Comparison with Experiment

The quoted experiment² was done in an argon discharge with a controlled xenon impurity, whose fractional density α_2 was measured by the xenon partial pressure. The plasma parameters were $n_0=2.2\times10^{11}\,\mathrm{cm}^{-3}$, $B_0=10.23$ kg, $T_e\simeq3$ eV, $T_1\simeq0.3$ eV, $v_{s1}\simeq1.5\times10^6$ sec $^{-1}$, and $v_{s0}\simeq0.4\times10^6\,\mathrm{sec}^{-1}$. The 9-cm diam. plasma was bounded by endplates 150 cm apart, one of which was split to excite an m=2 mode with $k_y=0.44$ cm $^{-1}$. The two estimates of k_z as described above were 10^{-2} and 9 \times $10^{-4}\,\mathrm{cm}^{-1}$. Since $|\zeta|$ was or order 20, P is accurately given by the asymptotic form of Eq. (17): $P\simeq (M_1/Z_1 m)\,(1+iv_g/\omega)^{-1}$. The resulting eigenfrequency is indistinguishable from ω_x , shown by the solid line in Fig. 1.

Fig. 1. Frequency shift $\Delta\omega/\Omega_2$ vs. relative xenon density α_2/α (points), compared with the two-ion resonance frequency ω_x (——), and with ω_x corrected for finite k_z effects according to previous calculations (---) and (---).

REFERENCES

- 1. S. J. Buchsbaum, Phys. Fluids 3, 418 (1960).
- G. Dimonte, T. Christensen, G. R. Neil, and T. E. Romesser, Bull. Amer. Phys. Soc. <u>24</u>, 992 (1979).
- B. D. Fried and S. D. Conte, The Plasma Dispersion Function (Academic, New York, 1961).
- T. H. Stix, <u>Theory of Plasma Waves</u> (McGraw-Hill, New York, 1962), p. 35.
- 5. F. F. Chen, Phys. Fluids 22, 2346 (1979).

_