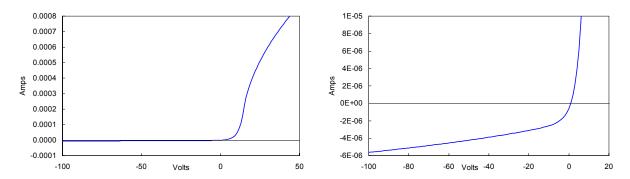
CHEMICAL ENGINEERING DEPARTMENT ChE 234, Spring, 2004

Homework Assignment No. 6


PROF. F.F. CHEN

Assigned May 25, 2004

Due June 1,2004

- 1. [15] An ICP has a flat, insulating wall outside of which an antenna applies an RF field at 13.56 MHz. If the 3-eV argon plasma is 1% ionized and has density $n = 10^{11}$ cm⁻³, what is the skin depth δ_s for the RF field including the effect of electron-neutral collisions? [Hint: Before solving the complex equation, check if the Taylor expansion is valid. If it is, you can use it.]
- **2.** [15] You are to design a matching circuit for a 2.0-MHz RF plasma source. The antenna has an inductance of 12 μ H (microhenries), and the plasma is expected to present a resistance of about 1.5 Ω , with a negligible reactance compared with that of the antenna. The RF power supply has an output impedance of 50 Ω , and the coaxial cables also have 50 Ω characteristic impedance. Using the formulas given in the text, calculate the capacitances C₁ and C₂ [in pF (picofarads)] around which the "alternate" circuit should be designed. [Note: C₁ is the same as the loading capacitor C_L, and C₂ is the tuning capacitor C_T. Work in dimensionless units; then convert back to real units.]
- **3.** [15] Calculate the parallel wavelength of a 27.12-MHz helicon wave in a 5-cm diam cylinder if $\mathbf{B}_0 = 800$ G and $n = 10^{13}$ cm⁻³. [Note: You do not have to know about Bessel functions if you understand the explanation in the text. The equations there are in MKS. You will need to solve a quadratic equation for k^2 .]
- **4.** [15] The density in a uniform, 10-cm thick slab of plasma is measured with a 65-GHz, double-pass microwave interferometer. If the measured phase shift is $\Delta \phi = 30^{\circ}$, what is the density? [Hint: Assume that the Taylor expansion is valid; then justify it *a posteriori*. Easiest to use CGS.]
- **5.** [15] You are to design a magnetic probe to measure a magnetic field expected to be $B = B_0$ sin ω t, where $B_0 = 10G$ and $\omega/2\pi = 0.4$ MHz. Each turn of the coil is a circle 5 mm in *diameter*. How many turns are necessary to get a peak voltage of 1V? [Hint: The equations are in MKS. Assume $B = B_0 \sin \omega t$.]
- 6. [25] The I V curve for a 0.15 mm diam, 1 cm long Langmuir probe is shown below, together with an enlarged view of the ion saturation current. The data for these curves are given in the table.
- a) Using Eq. (16) of the text for the OML (Orbital Motion Limited) theory, find the plasma density by fitting a straight line to a plot of l^2 vs. V_p .
- b) Subtract the theoretical ion current from the straight line from the total (negative) current to obtain the electron current I_e . Plot I_e vs. V_p on a semi-log scale and fit a straight line to obtain KT_e for this plasma. [Note: I can e-mail you an Excel file or a comma-separated file (.csv) containing the data so that you don't have to type it in.]

[Hint: To fit a straight line, you can use the SLOPE and INTERCEPT functions in Excel if you have the Analysis Toolpak installed. Otherwise, you can find M and B of the line y = Mx + B by hand on a graph. Before making the semilog plot of I_e , change to the magnitude of I_e so that it never goes negative. Then add the ions from the square root of the straight

Vp	le(A)	Vp	le(A)
-100	-5.6E-06	0	-5.6E-07
-95	-5.5E-06	1	8.9E-08
-90	-5.4E-06	2	9.7E-07
-85	-5.3E-06	3	2.2E-06
-80	-5.1E-06	4	3.8E-06
-75	-5.0E-06	5	6.1E-06
-70	-4.8E-06	6	9.3E-06
-65	-4.7E-06	7	1.4E-05
-60	-4.5E-06	8	2.0E-05
-55	-4.4E-06	9	2.8E-05
-50	-4.2E-06	10	4.0E-05
-45	-4.1E-06	11	5.7E-05
-40	-3.9E-06	12	7.9E-05
-35	-3.7E-06	13	1.1E-04
-30	-3.5E-06	14	1.6E-04
-25	-3.3E-06	15	2.2E-04
-20	-3.1E-06	15	2.2E-04
-15	-2.9E-06	16	2.7E-04
-10	-2.6E-06	17	3.1E-04
-9	-2.5E-06	18	3.4E-04
-8	-2.4E-06	19	3.7E-04
-7	-2.3E-06	20	4.0E-04
-6	-2.2E-06	25	5.1E-04
-5	-2.1E-06	30	6.0E-04
-4	-1.9E-06	35	6.8E-04
-3	-1.7E-06	40	7.5E-04
-2	-1.4E-06	45	8.1E-04
-1	-1.0E-06	50	8.7E-04

line fit of I^2 . After you fit a line to $\ln(I_e)$, you have to change back to I_e to get the slope, and thus KT_{e} .]