Plasma Physics

PART Al: INTRODUCTION TO PLASMA SCIENCE

I. What is a plasma? 1

II. Plasma fundamentals 3

- 1. Quasineutrality and Debye length
- 2. Plasma frequency and acoustic velocity
- 3. Larmor radius and cyclotron frequency
- 4. $E \times B$ drift
- 5. Sheaths and presheaths

PART A2: INTRODUCTION TO GAS DISCHARGES

III. Gas discharge fundamentals 11

- 1. Collision cross section and mean free path
- 2. Ionization and excitation cross sections
- 3. Coulomb collisions; resistivity
- 4. Transition between neutral- and ion-dominated electron collisions
- 5. Mobility, diffusion, ambipolar diffusion
- 6. Magnetic field effects; magnetic buckets

Cross section data 21

PART A3: PLASMA SOURCES I

IV. Introduction to plasma sources 25

- 1. Desirable characteristics of plasma processing sources
- 2. Elements of a plasma source

PART A4: PLASMA SOURCES II

V. RIE discharges 31

- 1. Debye sheath
- 2. Child-Langmuir sheath
- 3. Applying a DC bias
- 4. Applying an RF bias
- 5. Displacement current
- 6. Ion dynamics in the sheath
- 7. Other effects in RIE reactors
- 8. Disadvantages of RIE reactors
- 9. Modified RIE devices

Plasma Chemistry

PART B1: OVERVIEW OF PLASMA PROCESSING IN MICROELECTRONICS FABRICATION

- I. Plasma processing 99
- II. Applications in Microelectronics 100

PART B2: KINETIC THEORY AND COLLISIONS

- I. Kinetic theory 103
- II. Practical gas kinetic models and macroscopic properties 109
 - 1. Maxwell-Boltzmann distribution (MBD)
 - 2. A simplified gas model (SGM)
 - 3. Energy content
 - 4. Collision rate between molecules
 - 5. Mean free path
 - 6. Flux of gas particles on a surface
 - 7. Gas pressure
 - 8. Transport properties
 - 9. Gas flow

III. Collision dynamics 119

- 1. Collision cross sections
- 2. Energy transfer
- 3. Inelastic collisions

PART B3: ATOMIC COLLISIONS AND SPECTRA

- I. Atomic energy levels 125
- II. Atomic collisions 126
 - 1. Excitation processes
 - 2. Relaxation and recombination processes

III. Elastic collisions 129

- 1. Coulomb collisions
- 2. Polarization scattering

IV. Inelastic collisions 130

- 1. Constraints on electronic transitions
- 2. Identification of atomic spectra
- 3. A simplified model

ii Table of Contents

PART A5: PLASMA SOURCES III	PART B4: MOLECULAR COLLISIONS AND SPECTRA	
 VI. ECR sources 47 VII. Inductively coupled plasmas (ICPs) 49 1. Overview of ICPs 2. Normal skin depth 3. Anomalous skin depth 4. Ionization energy 5. Transformer coupled plasmas (TCPs) 6. Matching circuits 7. Electrostatic chucks (ESCs) PART A6: PLASMA SOURCES IV	 I. Molecular energy levels 137 1. Electronic energy level 2. Vibrational energy level 3. Rotational energy level II. Selection rule for optical emission of molecules 139 III. Electron collisions with molecules 140 1. Frank-Condon principle 2. Dissociation 	
1. Dispersion relation 2. Wave patterns and antennas 3. Mode jumping 4. Modified skin depth 5. Trivelpiece-Gould modes 6. Examples of helicon measurements 7. Commercial helicon sources IX. Discharge equilibrium 69 1. Particle balance 2. Energy balance 3. Electron temperature 4. Ion temperature PART A7: PLASMA DIAGNOSTICS	3. Dissociative ionization 4. Dissociative recombination 5. Dissociative electron attachment 6. Electron impact detachment 7. Vibrational and rotational excitation IV. Heavy particle collisions 142 V. Gas phase kinetics 143 PART B5: PLASMA DIAGNOSTICS I. Optical emission spectroscopy 151 1. Optical emission 2. Spectroscopy 3. Actinometry 4. Advantages/disadvantages 5. Application: end-point detection	
 XI. Remote diagnostics 75 1. Optical spectroscopy 2. Microwave interferometry 3. Laser Induced Fluorescence (LIF) XII. Langmuir probes 79 1. Construction and circuit 2. The electron characteristic 3. Electron saturation 4. Space potential 5. Ion saturation current 83 6. Distribution functions 90 7. RF compensation 8. Double probes and hot probes 	III. Laser interferometry 162 IV. Full-wafer interferometry 163 V. Mass spectrometry 164 PART B6: PLASMA SURFACE KINETICS I. Plasma chemistry 167 II. Surface reactions 167 1. Spontaneous surface etching 2. Spontaneous deposition 3. Ion sputtering kinetics 4. Ion-enhanced chemical etching III. Loading 177	
	IV. Selectivity 178V. Detailed reaction modeling 179	

Table of Contents	iii
XIII. Other local diagnostics 93 1. Magnetic probes	PART B7: FEATURE EVOLUTION AND MODELING
2. Energy analyzers3. RF current probe4. Plasma oscillation probe	I. Fundamentals of feature evolution in plasma etching 183

PART AB8: CURRENT PROBLEMS IN SEMICONDUCTOR PROCESSING 199

I.	Front	-end challenges	199
	1.	High-k dielectrics	

- 2. Metal gates
- II. Back-end challenges
 - 1. Copper metalllization
 - 2. Interlayer dielectrics (ILDs)
 - 3. Barrier materials

III. Patterning nanometer features 204

- 1. E-beam
- 2. Resist trimming

IV. Deep reactive etch for MEMS 205

- V. Plasma-induced damage
- VI. Species control in plasma reactors 207

- II. Predictive modeling

III. Mechanisms of profile evolution 186

- 1. Ion bombardment directionality
- 2. Ion scattering within the feature
- 3. Deposition rate of passivants
- 4. Line-of-sight redeposition of products
- 5. Charging of surfaces in the features

IV. Profile simulation 190

V. Plasma damage

- 1. Contamination
- 2. Particulates
- 3. Gate oxide Damage photon
- 4. Gate oxide damage electrical stress
- 5. Lattice damage
- 6. Post-etch corrosion