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1. Introduction

In a recent experiment on period doubling and chaos in a plasma, Jain er al.! observed
an instability occurring in rather unusual conditions. The frequency of about 10 kHz was
below that of most instabilities except drift waves, but was above the argon-ion cyclotron
frequency €. . The magnetic field of 150 G was sufficient to constrain the electrons but not

3

the ions. The plasma density of about 5 x 108 ecm™> was of the same order of magnitude as

the density of beam electrons (of about 150 eV) used to ionize the plasma.

Drift waves with « comparable to Q_ have been considered by Chen?, who found
that, in the absence of a driving beam, instability occurred only for ® < _ . In that paper,
ion Larmor radius effects were not taken into account, but the results should be correct in the
limit T, = 0 . In another paper, Chen® considered the excitation of drift waves by beams
and concluded that it was not possible for weak beams; the dense beam case was not con-
sidered. Standard references on drift waves? ignore the case of large ion orbits in weak mag-
netic fields.

In this paper, we study the possibility of drift waves with @ > €_ being excited by an
electron beam in a very low density plasma with weakly magnetized ions. The problem is
solved in plane geometry in the local approximation. The method for obtaining the Whit-
taker function solutions in cylindrical geometry can be found in earlier papers5 . There are
several basic mechanisms which may be operative in this case. One is the interaction of a
negative-energy wave on the beam with the parallel velocity of the drift wave. A second is
interaction through resonant particles. A third is simply "charge uncovering”, which is the
effect of replacing plasma electrons with beam electrons which cannot participate in the drift
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wave because of their large momenta. This effect has been explained® in connection with
other instabilities. These mechanisms have not yet been sorted out.

11. Calculation of Dispersion Relation

A) Assumptions

We consider a plasma in Cartesian geometry with a uniform magnetic field B = BZ .
There are three components: 1)ions withZ = 1, T; = 0, ny; = n,; 2) plasma electrons
with T, # 0, n, = (1-a)n,; and 3) beam electrons with T, = 0, n,, = an,, and
v, = uZ . All species have the same density gradient: Vn, = n /X . We look for electros-
tatic oscillations of the form ¢ = exp i(kyy + k,z — wt) with kz2 << kf .

B) Equations of motion and continuity

1. Ions. The linearized equation of motion for the cold ion fluid is:

ov;
M— =e(E+v,xB) . (1)
ot
For E = =V ¢, the solution can be written:
. QC ’ Qc ch -1
Vi T U (6 —“(',‘)—kym(l- e )
Q 2
B = 2% ey (] = 2 -l
vy = g (b0 00— 2)
c =
Vig = ©B kzq) =0
We neglect v,, because k, is assumed very small.
The linearized ion continuity equation is
ani
—a‘ + Vi'Vnoi+n0iV'Vi = O (3)



or

1 . nO, : ’
— =-— [lvix T Ve T kyViy] : @

Substituting the velocities from Eq. (2), we obtain

n, KT./M n, Q. n,’
4 = qe R ¢ ¢"+_°¢'_k3¢_ky._°_°_ ) (5)
n, QE"(D‘ KTe n, W n,

2. Plasma electrons. Being the only species with finite temperature and non-negligible

collision and Landau damping effects, the plasma electrons follow the equation:

mnc(%\t;+v~Vv) = -en(E+v,xB)-KT,Vn, = mn.vv. , (6)

where v, is an effective collision frequency to be discussed later. We may safely neglect
the inertia and v - Vv terms on the left-hand side. We may also neglect the dissipative term
in the perpendicular motions, since it gives rise only to the slow, classical diffusion of the

plasma. Thus, the governing equations are:

en(E_+vy, xB)+ KT,V n,. =0 N

enE,+ KT, V,n., + mn.v v, =0 . 8)
In equilibrium, all terms in Eq. (8) vanish, but Eq. (7) gives the diamagnetic drift:

KT, Vn,x12

= = v 9
Yoe eB Ny D ©)
Since Vn . /n, = Vn,/n,, we have
KT, n,
Vp = — 9y . 10
D eB n Y (1o



In first order, Eqgs. (7) and (8) are solved in the usual way7 , and the resulting velocities are
inserted into the equation of continuity. The derivatives of n. and ¢ cancel out as long as
the electron mass is neglected, and one obtains the modified electron Boltzmann relation:

N, _ e ¢ (1)* + ibo”
KT, +ibo,

(11)

nOC

8

This result is exactly the same® as in the usual drift wave, but here ng, is no longer equal to

n, . The new quantities are defined as follows:

w = kyvp = -k KT, n (12)
* ’ - eB n,
b=kla’, a’=KT/MQ (13)
6 = (K /KO Ver)Q (14)
o, = bo = kJ(KT/mvyq) = Dick? . (15)

When collisions are the dominant mechanism that inhibits electron motion along B , then
Ve is either v, (for fully ionized plasmas) or v, (for weakly ionized plasmas). Then o
or bo, can be recognized as the reciprocal of the time for an electron to diffuse a parallel
wavelength. When collisions are unimportant, Vg can be replaced by an effective collision
rate due to Landau damping. It can be seen from Eq. (13) that the usual Boltzman relation

n;/n, = e¢/KT, isrecovered in the limit G — oo .

3. Electron beam. The linearized equation for a cold beam with uniform velocity v,

=-e(E+vwxB) . (16)

ovy,
m | 5= +u - Vv

Defining

W, = 0-ku , a7)



we may write the solution as:

2
. W, ’ W, W -1
= - + —k - —
o = - (7% 5ok (- T
2
0] () ol _
Vpy = = ——= (ko+ — ¢") (1~ — )
O)bB Wy wy
. ko
va— (!)bB 7

In the limit of small m but finite m x u , these become:

iva = ky¢/B , be = ¢'/B

Vp, = €0/mu

where we have approximated w, by —k,u, since o << k,u .

The equation of continuity for the beam is:

on
b
_a[ + Vob ‘ an + nobv N Vb + Vb N Vnob = O s
or
Ny . . no/
Oy + vy, = kyvpy = kv, + vy, — = 0
Nob o Ny

Substituting the velocities from Egs. (19) and (20), we find:

2.2
nb _ C¢) w£ _ kZ Vlh
Nob KTC Wy, 2(’)b2
where
vl% = 2KT,/m

(18)

(19)
(20)

@21

(22)

(23)

(24)



C) Dispersion relation
The quasineutrality condition n; = n.+n,, together with the definitions n; = n,,

ney = ang, ny,. = (1-0a)n, and the densities given by Egs. (5), (11), and (23), yields the

dispersion relation

bw - o, 1o w_+ibo, ®, kZv2 5
—_— ~ -—a)w —-’t——_ = 0 - .

o o + ibo; ® - k,u 2(w - kyu)?

ok

1. Limit of no beam. When a = 0, this reduces to:

(w+ibo|;)(b——&)=(%—l)(w +iboy) . (26)
i o *

C

a) When o << QZ, this further reduces to the familiar drift wave equation

W + i (0-w,) =0, 27)
which has the asymptotic (0 >> ®@_) growth rate y given by
(28)

= 3 — fen 2
0= +iy= o + m)*/o“

The growth rate for resistive drift waves is found by using Eq. (14) for o), with

I . e e e .
Vs = V., = n,e"N/m, where 1 is the resistivity. One then obtains

k'z Vi 4n 0)2 k2 c2
L AL S - AL 29)
ky ¢ M Tk, va

where vﬁ = ¢’B*/4 nnM is the square of the Alfvén speed.

Collisionless drift waves can be obtained from Eq. (27) by substituting for Vg the

effective collision frequency due to Landau damping:
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Verf = VID = —21_{— kzvlhe_cz ’ (30)

where { = w/k,vy . Eq. (30) is derived in the Appendix. The asymptotic growth rate
found from Eqs. (28), (14), and (30) can be written

2 2 2

o k be &
= —x Y = Vg 22X 31
¥ 0, k? Vip ™o k,vip GD

which agrees with the standard universal instability growth rate®®,

b) When  is of the order of €., Eq. (26) can be written:
b lo, o' - Qe +iol 0’ -1+ Q0+ Q%0 1=0 . (32)

We point out two limits. When the plasma is uniform and o is large enough that the elec-

tron Boltzmann relation is satisfied, the first two terms in the square bracket give
w = (1+0)Q7 , or o = QZ+kick . (33)

This 1s just the electrostatic ion cyclotron wave. When the magnetic field is so weak that
b >> 1, asin the experiment by Jain er al. 1, setting the square bracket to zero shows that
W = wp, where

wp =W /b . (34)

The asymptotic solution for 6, >> @_ is then:

(1)2 s (02
D 1 D 2 2
O =wy(l+ =)+ — (QF-w5) . (35)
b bQ> o, bQ2 ¢ P

C

It is seen that there is no instability for @ > €. in this case.
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2. Effect of driving beam. When none of the approximations above can be made, Eq.

(25) is a sixth degree equation for . Fortunately, the condition ® << |k,u| is satisfied
by several orders of magnitude; and, furthermore, the last term in Eq. (25) is only a 5%
correction to the preceding term in the experiment under consideration. The square bracket
in Eq. (25) can then be replaced by —w,_/k,u, and Eq. (25) reduces to the following cubic

equation:
3 bw 2 o’ 2 2
(1-a)w” + (a- — )Qfw - o (0°=-QF) =
o, ,u
2 aw
= iboy Q2 |22 _1- @ (& gy (g —x)
W, 0, Q k,u

(36)

For large © ., the square bracket is approximately zero, so that again o = ®, /b for large

b . Recalling the definitions wp = @_/b and g = bo;, we can write the asymptotic

solution as:

o | Q

%* <

3 "
(O3 (O] [V
w:o)D+—D D {l+a{l+—i‘-]}+

: 2
100 (O] [0

D 1-o) | —2 -1 2 _1| . 3
() Q l1-a k,u

From this we see that if ® = wp > Q., there is instability only for a = 1, since we

have already assumed wp/k,u << 1 . To see if instability occurs more readily for inter-
medidte values of o, [smaller than the asymptotic value assumed in Eq. (37)], we must
solve the cubic equation (36) or the 6th degree equation (25). Unfortunately, Eq. (36) is also
cubic in k,, since O o< k2 , so that the spatial growth rate is no easier to compute. It is
not likely that the exact solution of Eq. (36) will yield instability for w > €., in contradic-
tion to Eq. (37).

There are several features of Eq. (37), however, that are suggestive of the experimental

observations. The imaginary part of  is sensitive to variations in €., u, or a which



could make one of the two parenthetical factors at the end change sign. The real part of ®

varies as @_/b e 1/ky, so that higher azimuthal mode numbers will produce subharmon-

y ’
ics. The frequency also varies linearly with B (the correction term being smaller by 1/b),

which does not agree with observations; but one has to solve Eq. (36) properly to be sure.

The direction of ion motion in response to an electric field changes signat @ = €, as
seen in Eq. (2). In normal drift waves, where @ < €., the ion response amplifies the E-
field; and there is instability. In high-frequency drift waves, where w > €., the ion motion
is stabilizing; and it takes a very strong excitation mechanism to overcome the basic stability
of the plasma. Even if this mode is unstable, it is hard to understand why the plasma does
not choose to oscillate at a frequency lower than € . Note that the curvature of the magnetic
field is concave, so that the centrifugal force of the beam cannot drive the gravitational insta-
bility. The only conclusion we can draw at the present time is that, if indeed €. is below
®, then the instability is not a plasma instability but a gas-discharge instability involving
such processes as ionization and relaxation.



Appendix

When resonant-particle effects, as well as collisions, are important in limiting the free
motion of electrons along B, one can nonetheless derive an effective resistivity Mg or col-
lision frequency V. which takes both Landau and collisional damping into account.
Instead of using Eq. (8) to describe the parallel electron motion, one can use the linearized

Boltzmann equation with a Krook collision term:

af, af,
o V% T

of n
€ 0 i
—— _— = — —f
E o ( o f,—=f)v , (A1)

where Vv is the total collision frequency against ions and neutrals, and v and E stand for
v, and E, . Fourier analyzing, taking a Maxwellian for f;, and defining

wW+iv )]
{ = Co

= s = y (Az)
kzvlh kzvlh
we find
ieE fo’ (\) v fo(v)
f — 1€ _ Z/ v , A3
! m ®-kv+iv kv € o-kv+1iv (A3)

where Z'(C) is the derivative of the plasma dispersion function 19 The current j, can be

found by integrating Eq. (A3):
jo=-e [ vhmdv . (A4)

The integrals can be evaluated with the help of the identity

Z(%) = -2[1+8Z(0)] . (AS)

The result in mks 1s:

-10-



2
s (‘op ’ v ’
- 1(’)Eo 0.)2 CoZ(C)[C+ 20 Coz(go)] (A6)

a) Limit of no Landau damping ({ — o)

We note the asymptotic expansion for { >> 1 :

2(§)=——é--~ilc—3+...+i~f7?c-§2 (A7)
CZ@ =1+ %_Cl? 4. —2im BeE (A8)

Thus when { — e, Z’ approaches 0 and CZZ' approaches 1. We then have

2
)z . wp v
— = 10E 1- —
E ° w2 ( (1))

E, -i v
= — (1+—) . (A9)
)z WE, (Dp w

The real part of this is the resistivity:

E )
Re(—2)=n=—"0p =10 | (A10)
Jz €, Wp ne*
which is the usual relation.
b) Limit of Large Landau damping ({ — 0) .
We now use the power series expansion of Z({) validfor { << 1 :
z<g)=—2g+%g3+...+iﬁe—€’ - (Al1)
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Z°(0) = -2+ 40%+...=2iVnge ¥ (A12)

In this limit, Z~ approaches —2, and the square bracket in Eq. (A6) becomes, simply, &, .
For the factor Z’({) in Eq. (A6), we retain the Landau term and write

jz _ . wpz 2 N -
— =iwg—7 L(=2)(1+iVR Le™>) . (A13)
E )

Taking the reciprocal, expanding the last (), using the definition of {,, and taking the real

part, we obtain

Y m
2

= kvpe (A14)

EZ
Re(—) =My =

Jz ne

Here it is not necessary to distinguish between { and {, . Comparing with Eq. (A10), we

see that the effective collision rate due to Landau damping is

r 2

Verf = Vip = B3 k,vine s . (A15)

For the intermediate case of comparable collisional and Landau damping, it can be seen
that these two processes interfere with each other. The solution can be obtained only by
using the actual Z-function in Eq. (A6).
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