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Abstract—The dispersion relation for helicon waves in a uniform, bounded plasma is derived with both
collisional and Landau damping. 1t is shown that the latter can explain the very high absorption efliciency
of helicon waves in plasma sources and can lead to plasma generators with a contrelled primary electron
energy. The wave patiern and other features of helicon waves are pointed out,

l. INTRODUCTION

HELICON wavEs were first investigated in the 1960s, first in solid state plasmas (BOWERS
et al., 1961 ; RosE et al., 1962 ; LEHANE and THONEMANN, 1965), and then in gaseous
plasmas (HARDING and THONEMANN, [965). The basic theory of these waves was
studied extensively in that period (Woobs, 1962, 1964 ; KLOZENBERG e al., 1965 ;
Davies, 1970 ; Davies and CHrISTIANSEN, 1969). In 1970, BosweLL (1970) discovered
that a simple, dense plasma source could be made by exciting helicon waves. Interest
in such sources was renewed in the 1980s by the emergence of practical applications
for them: as gas laser media, as plasma reactors for materials processing, and as
plasma lenses for high energy particle beams.

Helicon waves belong to the category of whistler waves, which are right-hand
circularly polarized electromagnetic waves in free space. Helicons differ from classical
whistlers in two main respects: {(a) they are of such low frequency that the electrons’
gyrations may be disregarded and only their guiding center motions kept, and (b)
they are modes of bounded systems, in which their purely electromagnetic character
cannot be maintained. In a series of experiments, Boswell and co-workers (BoswgeLL
et al., 1982 ; BoswgLL, 1984 ; BosweLL and HENRy, 1985; BoswELL and PORTEUS,
1987a, by investigated the structure and propagation of waves in the 7-10 MHz range ;
showed (hat peak densities of order 10'* em =7 (in argon), [ully ionized on-axis, could
be created in 10-cm diameter tubes with only | kW of r.f. power and 1 kG of magnetic
field ; and studied the effects of varying the tube diameter, antenna configuration and
input gas. Using a helicon generator with | kW at the industrial frequency of 13.56
MHz, PErrY and BosweLL (1989) have measured the etch rate of St and SiO; in an
SF, plasma. With higher powers (3.5 kW, 7 MHz, 750 G), it has been possible to
produce densities approaching 10'* cm™ in an argon laser application (ZHuU and
BosweLL, 1989).

In Boswell’s experiments, however, the calculated collisional absorption rate for
helicon waves was much too low to explain the efficient tonization observed. Moreover,
the measured wave profiles were consistent with theory only if the cellision rate had
been 1000 times the classical one. In 1985, CHEN (1985) pointed out that Landau
damping could be the cause of the efficient energy absorption. This mechanism, if it
is operative, could be used even more effectively by directly accelerating the primary

339



340 F. F. Cuen

electrons (CHEN, 1987). Experiments set up to prove this hypothesis have indeed given
indications of Landau damping (CHEN, 19894, b) and of electron acceleration (CHEN
and DECKER, 1989, [991).

The remarkable efficiency of helicon sources can be illustrated by the following
simple calculation of density in a non-fusion plasma without axial confinement.
Consider a cylinder with a magnetic field strong enough to confine electrons radially
but too weak to confine the ions. An ambipolar potential then builds up (o confine
the tons radially. In the axial direction, sheaths on the endplates arise (0 confine the
electrons, but the ions are not confined and can escape at the acoustic velocity ¢;. The
loss rate dN/ds is then 2na’nc,, a being the radius. Let W be the average power needed
to produce each ion—electron pair. W is usually of order 200 eV, since the primary
clectrons lose many times as much energy in inelastic collisions as they do in ionizing
collisions. The power required to maintain the discharge is then P= W dN/
d¢ = 2na’ne,W. Taking a =5 cm and ¢, = 2.8 x 10° cm s~' (T, =3 eV, argon), we
obtain

nlem™%) = 7x 10" P(kW).

A peak density of 10'* cm~" with 1 kW of r.f. power, or an average density of
~5x10'2 ecm™?, is an order of magnitude improvement over that in ordinary dis-
charges and brings W down to the order of the ionization energy. We hypothesize
that this is possible if the ionizing electrons are directly accelerated by the wave—
particle interaction rather than by a random heating process. This paper gives the
theoretical basis for this hypothesis.

2. DISPERSION RELATION
Helicon waves in their simplest form are derived from these three linearized
equations (in SI units) :

VxE = —dBjot (1)
VxB = pj (2)
E = jx By/en,, (3)

where n, and By = ByZ are the equilibrium density and magnetic field, and »#, B, E
and j the perturbed density, magnetic and electric fields, and current, respectively.
Equations (1)-(3) further imply

V-B=0 ()
V=0 (5)
jr = —cngE x By/B1. (6)

In equation (2}, we have neglected the displacement current. In equation (3), we have
assumed that the plasma current is entirely carried by the E x B guiding center drift
of the electrons ; that is, that (a) @ <« ¢, so that the electrons’ cyclotron motion is teo
fast to matter, (b) @ is much higher than the lower hybrid frequency so that ion
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motions can be neglected, and (c) the resistivity is zero, so that £, = 0. Dissipation
effects will be added in the next section. Without these effects, an arbitrary current j,
can be supported, while the perpendicular component of j is given in equation (6).

We assume perturbations of the form exp i(m@+kz—wt), representing wave
patterns that rotate in the clockwise (m > 0) or counterclockwise (s < 0) direction
in time at a given position z when viewed in the B, direction. Equations (1) and (3)
give

ioB = VXE = Vx(jxBg)/en,
= (By* V)jfen, = (ikBy/en)j, (7)

and using equation (2) for j yields

_ [@WHe®R -
B_<k_r?(, ) V=B {8

We define the quantity a, which can be expressed in terms of the usual clectron
frequencies w,, and w,

2
Equation (8) then becomes
V=B =uaB, (10)
whose curl gives our main equation
V:B+a'B = (. (1mn
Substituting equation (10) into equation (2) gives
i = (a/u)B, (12

showing that the current is parallel 1o the wave magnetic field ; all three components
of both are important.

Denoting /dr by (), we may write the z component ol equation (11} in cylindrical
coordinates as follows:

1 m* .
B’;+;B;+(T2-73)Bzmo, (13)

where the transverse wavenumber 7T is defined as
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T? =g = k2,

This is Bessel’s equation, and the solution which is finite at r = O is J,

B.=C,J,(Tr).
The r and 8 components of equation (10) are
i
= B.—ikB, = ab,

]kBr— B; = O!Bn.

(14)

(15)

(16)
(17

Solving for B, and B, in {erms of 5. and B., and substituiing for 5, from equation

(15), we obtain

iCy fm
Br = L Jm*k']lfn
= (r % )
Cyfm ,
BU == F (‘; k‘]m +"th;1)'
Use of the recursion relations

1

?Jm = (Jm—l'**]m+l)

B3| =g

22| =g

(Jm— | +Jm+l)7 J:n =
yields
B, = E”a@—!—k\.}..,_ v ae— k)T 0]
§ 2T F— | | S + 11
B, = &[( +i) (@ — k) 1]
[ 27—- o m—1 m+ 1l

Introducing the amplitude
A =iC,/2T,
we may write equations (21), (22) and (15) as

Br = C|J,"_[+C2J,,,+|
B{) = i(CIJ.'n—l_CZ‘]m-FI)

(18)

(19)

(20)

(2

(22)

(23)

(24)
(25)
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. =CsJ,, (26)

where
Ci=(a+k)d, C,=(x—k)4d, C,= —2TA. 27

For future reference we give here the right- and left-hand circular components Bg, B
of the local ficld as defined by

2Bg = B,—iBy, /2B, = B, +iBy (28)
and the inverse transformation
V2B, = By+ B, /2B, =i(Ba—BL): (29)
By = /2C, 0, ((Tr), BL = 2C1dpi (TP, B.=CiJ(Tr).  (30)
The electric field E is given by equation (1) :

E = (w/k)By, E,= —(w/k)B,, E.=0, (D

or, equivalently,
Ex =i(0/k)Bx, E, = —i(w/k)B,, E, =0. (32)
The transverse components are thus
E, = i{@fk)(CJp 1 = Codpy ) (33)
E0 = _(w/k)(cl‘]lnfl+C2Jm+l)‘ (34)
with C, and C, given by equation (27).
The boundary condition for an insulator is j, = 0 at r = a; that is, from equation
(12), B, = 0. A conducting boundary would require £, = 0, or, from equation (31),

B, = 0. Thus, for this case of the simplest helicon, it does not matter whether the tube
is insulating or conducting. Equation (18) then gives the boundary condition

mad, (Ta)+kad, (Ta) =0, (33)

where J.,(Ta) is the rderivative of J,(7r) at r = a. In particular, the lowest two
azimuthal modes are given by

J(Ta) =0 (m=0) (36)
J(Ta) = kaT{2e)(J:—Jy) =0 (m=1). (37)

The last inequality holds for long, thin tubes, where T ~ o and ka « 1. To obtain the
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dispersion relation w(k) for given #,, By and ¢, one can proceed as follows. Defining
Z = Ta and k = ka, one can substitute for o from equation (14) and write equation
(37) for the m = | mode, for instance, as follows:

L Z
IZ) = =00 (@) = 5 1(2) = Il Z)), (38)

o

where J'(Z) = dJ(Z)/dZ and aa = (Z*+x*)""%. This can be solved by iteration for
Z(x). In mosl cases, however, Z will be such a weak function of «k that we can obtain
a good approximation for any m > 0 by using the Taylor expansion of J,(Z,) about
Z,, where Z,, is the root of J,,(Z,,) = 0. Thus

InlZ) = L Z,}+(Z—=Z,)](Z,) = (Z~Z,)],(Z,). (39)

From equation (35), we have
J(Z) = —(xjmaa) ], (Z) = —(x/ma,a) ] (Z,.), (40)
where o2a” = Z2 4-«*. Equations (39) and (40) give Z ~ Z,,— k/ma,,a. Using this in
the definition ag = (Z*+x%)'* and expanding to lowest order in «/Z = k/T, we obtain

a value of & which can be used in equation (9). The resulting approximate dispersion
relation for m > 1 can then be written as

By eupafw wa
—= -t — 41
ne " Z, (k+m23)’ @

where Z,, = 3.83 for m = 1. The second term is a small correction of order k/T and
is essentially an additive constant. We see that B/s is proportional to the phase
velocity ; that is, to the square root of the accelerated electron energy ;. Thus, if £,
has an optimum value for efficient ionization, the ratio #/ 8 tends to be constant.

3. STRUCTURE OF HELICON MODES
The wave fields are given by equations {(24)—(26), (27) and (31). Including the real
part of the exponential factor, these can be written as

k

B." = - EE&' = A{(a_’_k)‘]m— ) (Tr) +(a'_kk)']m+ I (Tr)] cos (m9+kz—mt) (42)

B{} - —(lj;Er = _A[(a+k)Jlir— i (TP") +(a—k)'fm+ | (Tf')] sin (m9+kz—a)!) (43)

B. = 24T/, (Trysin (iml+kz—wt), E.=0. (44)

With the recursion relations equation (20), equations (42) and (43) can be written
alternatively as
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k. 24
B =— 559 =7 I:@ ,Ln(Tr)+kJ:n(Tr)]cos (mb+kz—wi) (45)
ke 24 k
By= E == [aJ:,,(Tr) T Jm(Tr)Jsin (mi+kz—on).  (46)

We note that the K and B fields are orthogonal to each other on each constant-z plane.
In addition, B has a z component Lo preserve its divergenceless nature, but E does
not. Indeed, E has a finite divergence, proportional to a large space charge which
would not arise in free space and which greatly affects the wave pattern. From
equations (3), (12), (9) and (10), the divergence of E is found to be

V'E =V-(jxBy)jen, = By- (Vxj)

B, a w ©
= — -—B = — . = — .
on, |:V X e :|z % VB, r o8, 47y

Thus, the space charge is proportional to B, and is peaked on-axis for the m = § mode
and at the peak of J,(Tr = 1.84) for the m = | mode. We now examine the m =10
and m = + 1 modes in more detail.

The m = 0 mode
For the m = 00 mode, we have, from equation (20), J_, = —J,and J;= —TJ,.
Equations (44)-(46) can then be written as

B, = —AKJ (THcosyr, E, = Aw(af/k)J,(Tr)sinyfs (48)
By = Aot (Trysinyg, E, = AwJ,(Tr)cosy (49)
B, = ATS {Tr)ysiny, E, =0, (50)

where iy = kz —wt. The boundary condition J,{Ta) = 0 gives Ta = 3.83 for the lowest
radial mode, regardless of the value of /o It is seen that B. peaks on-axis and that
B. and B, both peak at rfa = 1.84/3.83 = (.48, the ratio B,/ B; being independent of
radius. Furthermore, equations (30) and (27) show that |Be/B\| = (a+k)/(a—k), s0
that, for |k/x| < |, the local fields are elliptically polarized in the right-hand direction
for £ > 0 and in the left-hand direction for & < 0. Equations (48) and (49} show that
the long axis of the ellipse is in the r direction for E and in the 0 direction for B.

The electric field pattern is shown in Fig. 1. When ¢ = 0, £, vanishes, and the field
is purely electromagnetic. When iy = n/2, the field is purely radial and electrostatic.
In between, the field lines are spiral. Since |o/k! is normally > I, theradial, electrostatic
component of E dominates over the azimuthal, electromagnetic component, suggest-
ing that coupling to this mode is best done through the electrostatic field. The smaller
\k/a| is, the smaller the range of phase angles ¥ over which the electromagnetic
component of E can be seen ; and in the limit &/ = 0, the E-field is always radial (a
space charge field), changing sign at ¥y = ®/2.
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(b)

Fii. 1.—Electric field line patterns for the m = 0 mode. (a) 3-D representation; (b} cross-
sections at {kfo) cin (kz —wit) = 13 {lef) and 1 (right).

The m = + 1 modes
By contrast, the m = +1 mode has a field pattern that does not change with

position ; but it does change with the value of |k/x|. The electric field pattern is given
by

Aw

k . w
E =— 7,?[ J(Try+ ;J|(Tr):|sm (0+kz—wi) :EBU {51)

Aol a , w
Ey = ——— __]I(Tr)+kJ,(Tr):|cos (+kz—wt)y = —— 8, (52)
Tkir Kk
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with E, = 0. This pattern simply rotates as z changes so as to keep 0+ kz constant,
as shown in Fig. 2a. By using the recursion relations equation (20), we can describe
the E-fleld at kz —w¢ = 0 as follows:

Er = E()([fJO—Jz) SinO (53)

Fig. 2.—Electric field line patierns for the m = | mode. (1) 3-D representation; (b} detailed
pattern for kje = 1/3. Line spacing is indicative of field strength only at y = 0.
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E{] = E[)(ﬁJo'f‘Jz) COSG, (54)

where

f = [T+ (k) /[1 — (k/a)], (35)

and the Bessel functions have argument Tr. The E-field lines are shown in Fig. 2b for
kfo = 1/3. Since E must be perpendicular to the boundary, it is clear that E is plane
polarized at ¥ = a. Near the axis, the m = 1 mode is right-hand polarized, since, from
equations (30) and (32), By oc Jy and By of J,, so that |Bg| > |B|. In between, there
is a region in which |J(T7)| > | Jo(Tr)| so that E is left-hand elliptically polarized.
These conditions are obviously satisfied by rotation of the pattern shown in Fig. 2b.

The lines of E in Fig. 2 are not closed because of the space charge [equation (47)].

An m = 1 antenna can be destoned to counle to the strone. straicht electrostatic field
iRl iri = LLnigsidd wils [VASER S WA 1 5 Ll LU/ \/UMFI\/ LS Ll Ol \}lls Jbl ulblll. WA RD VoLl Ll BIWwING

near the center. The lines of B, are orthogonal to E and also have a divergence. In
this case, there is a component B, given by equation (30) which closes the B-lines to
preserve V+B = 0. The transverse components of B induce an eleciromagnetic E.
which cancels the E, caused by the space charge; in this way, the total E. is made
zero, as it has to be in the absence of damping.

For each value of k/x, the value of T'is given by the solution of equation (54) :

BJIo(Ta)+J.(Ta) = 0. (56)

The field pattern of Fig. 2b shows a separatrix that separates lines that reach the
boundary from those that are confined. All the field lines converge on a point at a
radius r,. Since E. must vanish there, r, is given by the solution of equation (53):

ﬁJu(Trn)*Jz(T?'o) = 0. (57)

It will be shown in the next section that the absorption of wave energy varies as
J..(TF), so that the radius of maximum energy deposition is given by J\(Tr,,) = 0.
As k/a varies, the quantities T, ro/@ and r,/a vary in the manner shown in Fig. 3. The
field pattern remains similar to that of Fig. 2b; only r, changes. The separation
between rq and r,, increases with &/a. In the limit /o = 0, ry, merges with r,,, and the
pattern becomes the same as that of the TM,, electromagnetic mode in a vacuum
waveguide.

Similarly, the m = —1 mode has left-hand circular polarization near the axis,
changing to right-hand elliptical polarization and then to plane polarization near the
boundary, By summing m = + 1 and m = — i modes, one can aitempt to construct
a mode that is nearly plane-polarized everywhere, and thus susceptible to being driven
by a non-helical antenna. A discussion of this interesting problem will be given in a
separate paper.

The relation between the wave pattern shown in Fig. 2b and that of pure electro-
magnetic waves in a circular waveguide can be seen as follows. When there is no
plasma, the only current is the displacement current, and equation (2) is replaced by
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F1G. 3.—For the m = | mode, variation with k/a of (A) 7/3.83, (B) r, and (C) r,

t

VxB = —iweyuF. {(38)
Wave equation {11) then becomes
V'B+kiB =0, (59)

where kZ = w?/c?. This is identical with equation (11), so the solutions of equations
(24)—(26) and (31) are still valid if we define 7 in equation (14) with &, in place of a.
However, the coeflicients C; are different. The condition V- B = ( gives

iC, =T(C,—Cyjk (60)
in agreement with equation (27), but now we have V- E = 0 also. This yields
V'E = —ile/h){(C,+C)TJ, =0, (61)

showing that €, = —C,. For the helicon wave when o » k, we see {rom equation
(27) that C, ~ C,. This reversal of sign means that the roles of B, and B, are
interchanged, as is easily seen from equations (24) and (25). The field lines are
therefore almost orthogonal to one another in the helicon and vacuum cases, and the
lines of E and of B are roughly interchanged. Indeed, the TE helicon moede resembles
the TM electromagnetic mode. This shows the importance of the space charge field
in helicon waves.

4, COLLISIONAL AND COLLISIONLESS DAMPING
Damping of helicon waves arises, as with Alfvén waves, from the drag on electron
motion along B caused by collistons or by Landau damping. A component E, is then
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needed to push the electrons in that direction. To arrive at simple formulae for the
damping, we assume the ordering v « w « @,, which is valid over a wide parameter
regime. For instance, with n, = 6x 102 ¢cm~7%, B, =100 G, T. =3 eV and f= 27
MHz, we have v; = 1.7x 107, w = 1.7x 10* and w, = 1.76 x 10° s~', so that the
frequencies are separated by about an order of magnitude. The electron collision rate
with neutrals is negligible compared with the rate v, with ions for all but the weakest
discharges. Electron inertia is then negligible in the perpendicular motion, but it is
dominant in the motion parallel to the magnetic field. Therefore, to account for
collisional drag and parallel inertia, we need to change only the equation for /., leaving
the perpendicular equations unaltered. For fields much below 100 G, the electrons’
gyratory motion and perpendicular inertia have to be considered, as has been pointed
out by Davies (1970) ; we shall treat this case in a separate paper. Kinetic effects in
the perpendicular direction have to do with finite electron Larmor radius and also
may be neglected except at the lowest magnetic fields.

4.1. Collisional damping
The linearized equation of motion for a cold electron fluid with & phenomenological
collision rate v yields the following replacement for equation (3):

ixB int .
=u————l(w+1v)j. (62)
eny  Mpe

Equations {1, (2) and (62) are now the governing equations. Substituting for j from
equation (2), taking the curl of equation (62), and combining with equation (1), we
obtain
(w0 +iMVxVxB—koVxB+ako B = 0. (63)
This can be factored as
(B, —Vx)p,—Vx)B =0, (64)
where f8; and f, are the roots of the quadratic
(w+iv)f? —kw f+koo=0. (65)
The most general solution of equation (64) is B = B+ B,, where
VxB, =8B, VxB; =8, (66)
The solutions of equation (65) are

Bra=[1F (1 —dap)')/2y, (67)

where
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y = (w+ivyke,, (68)

and ais defined in equation (9). The root §, is that corresponding to the helicon wave,
since B, =~ 1/2y is not close to o. For small ay, 8, is approximately

By =§1;[1—(1 —4a) "] = a1 +a). )

Writing y in terms of o according to equation (9), we obtain

e (0]

When v is the electron—ion collision frequency v,;, the plasma resistivity # is given
by

n=mv/nge’, (71)

and f§, can also be written as

B za[1+a2(i+ i)] (12)
o pow

Since equation (66) is identical with equation (10}, the previous solutions are
unchanged except for the substitution of #, for « in equations (10) and {14):

T = k2, (73)

To satisfy the boundary conditions, T must be real; hence & must be complex when
£, 1s complex. To find Im (), we define

k =k +hki, o=kik. (74

Since « varies as 1/k, we can write it as

@ =ao(1+i6)"", o= (75)

The complex value of k can then be found by substituting equation {75) into equation
(70) and equation (70) into equation (73), and then setting the imaginary part of
equation (73) to zero. When the damping is small, we can expand equation (70) for
small § and v/w. To first order in these quantities, equation (73) yields
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ki v o 2/( kf) v {aee Y
E_5<m_p) )= (). (76)

The last inequality holds for T » . The damping rate is then approximately

Im (k) ~ avjw, =~ (v/o )T, (7N
or, in terms of resistivity,
Im(k) o7y
Re(k) o p, (78)

The collisional damping length L, = 1/Im (k} can be written as

g

u
2 (79)

©

L

~

Z
=g

(o

4.2, Landau damping

In the absence of collisions, the electron motion along By is controlied by electron
mertia and wave—particle interactions. The inertia effect was included in the previous
section in the limit v = 0, but the Landau effect has to be treated kinetically. On the
other hand, the kinetic effect in the transverse direction involves the finite Larmor
radius of the clectrons and can be neglected at all but the lowest magnetic fields. For
w « w,, the inertia effect in the transverse direction can also be neglected, the plasma
behaving like a hydromagnetic fluid in that direction. Our previous treatment, there-
fore, nceds to be changed only in the use of Boltzmann’s equation to solve for the
electron parallel velocities.

To make an eventual connection with the collisional results, we write the Boltz-
mann—Vlasov equation with a particle-preserving Krook collisional term:

(),

ot Uaz mo o

Here the subscript z on £ and v has been suppressed, and the equation has been
linearized. For f| varying as expi(kz—w/), the solution is

ieEﬁﬂE)__ +ivﬂ fol®)

m w+iv—kv ny w+iv—ko

Sy = (81)

Since the last term already contains v, we may approximate n, with the solution of
the collisionless Vlasov equation:

n, = J_ Sfi(p)do, (82)
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1eE folo)

mw—ko

file) =

With the definitions

u=ojvy, v =2KT./m
Lo = wikoy, { = (o+iv)/fkoy,

this becomes

icE fg(u) du
mkoy ) {o—

m =

Specifying a Maxwellian distribution

2

B _,
fn(u)"ﬁvlhe

and integrating by parts, we have for n,

ien,E 1 = e du
H=———= O
T T ke Jr ) =00

In terms of the ptasma dispersion function defined by

2
“ e~ du b

Z0 = {0 =

we finally obtain

—= = Z(Cu)
Uth

With this value of n, inserted into equation (81), we can write /() as

A

f = RE|  fu) folw)
s W+ iv— kv !wlh w+iv—

The paraliel electron current

1
7;,;[—«: u—{" \/;le (u— g)!’

353

{83)

(84)
(85)

(86)

(87)

(88)

{89)

(90)

o1
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Ji= —er o (v) do

for a Maxwellian distribution is then

_ nge’ iE 1T d e uda T ouw .
=— mﬁ[ﬁmdu(e ) 7 kth(Cn)J u—ge du].

This can be written in terms of the integrals 7, and 7., as defined below :

 igyiE / i—vZ’(" y:
J: = kv, ( koo, Colz |-
Integration by paris yields I, and [/, in terms of Z({{):

7(6*“)(:1 — ML

® _edf ou
1 i Cd Loe E(u%)du
ﬁ Jr

=—-'—r et = {Z')

\[ W WD
.[ e du
= \/; B

Equation (94) then becomes
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To obtain a tractable expression for j., we write { as

w1y iy
‘= kvy Co(l * 5)

and expand Z'({) about {,:

Z) =Z U+ (L2 =2’ (CuH#Z”(Co)-

Thus, for { —{, « |, we have

1 ’
720

(92)

93)

(94)

(95)

(96)

o7

(98)

99)
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. 1£wp v Z" iv iv_,
Jo=—=02 (Co)[l +k—m?][]+5+552 (Cu)]- (100)

A further simplification results from assuming { » 1, or w/k » vy,. The asymptotic
expansion of Z’({) is

0z =1+ %é + - =2i\/£{:3 e (1en)
The Z°(,) term then becomes
v Z¥ v 2v
— = - —. 102
kvlh Z’ kvth C3 CO w ( )
Evaluating j, to first order in v/, we obtain
11‘ (JJ
B iz (Co)(] - —)
egw? v A
o*p : 3 .-¢2
=—FE|1——=2 R 103
! ( 2 2 /ate ) (103)
Comparing this with the fluid result from equation (62),
L, .
Lol () (104)
Sz o _\ C!)/!
we see that the Landau term gives an effective rate equal to
vp = 2/t et (105)
The total effective collision frequency is then
Veir = v+ YLn- (I 06)
The corresponding effective resistivity is
YLp 3 A£2
= = 52 107
HLo ta? ot} fC (107)
and the damping length for Landau damping is
Lip = —%e = /2, /T e (108)



356 F. F. CHEN

One would expect that Landau damping would dominate over collisional damping
if vip > v. Though the exact expression for vy, in terms of Z’({} would continue to
inerease as { is decreased, the asymptotic approximation, cquation (105}, reaches a
maximum at { = (3/2)'2, or * exp (—{* = 0.41. Since the waves effectively do not
propagate for smaller {, this value can be used to estimate the effectiveness of Landaun
damping when w/k is adjusted to match the thermal velocity of the main electron
distribution. Thus

vp(max) = 2,/2(0.4)w = 1.45m, (109)
The electron—ion collision frequency is approximately
Vi =29 %107 20, ZIn AJTY? 57!, (110)

where T, is ineV and sy in m~ 7 Taking Z=1, T, =3 and In A = 10, we find that
the break-even density at which v = v p(max) is

ne=26x10"w = 1.63x10"*f. (11

Thus, Landau damping should be the dominant dissipation mechanism for densities
below about 5x 10" m~? for '~ 30 MHz.

4.3. Energy deposition

Finally, we show that the energy dissipation is connected with the z component of
E and is not necessarily peaked on-axis. The energy loss per unit volume is j* E, but
the transverse components of j and E will not contribute to this, because j is parallel
to B [equatien (12)] while E is perpendicular to B, [equation (31)], and hence
ji"E, = 0. The loss rate is then

dw

- = B = B, (112)

From equations (2) and (66) we see that j = (#,/u,)B, where 5, is given by equation
(70). To lowest order in the damping, we may take f§, = o here. Equations {44) and
(105) then give

Re(j:) = (20(/#0)]144.]",(7}) Sin]\[} (113)
Re(E,) = —(2ujuq)TA % (cos o — ‘—a’)sin l,[;)],,,(Tr), (114)
0

where W is the phase (m8+kz —wr). Thus

2y 2
by =22 [1 TJ.,,(Tr)] : (115)

Goty [_Ho

According to this formula, the m = 0 mode deposits its energy mainly at r = 0,



Plasma icnization by helicon waves 357

while the m = | mode heats the plasma preferentially at r/fa = 0.48, where J,,(T7) has
its maximum. In the Landau damping regime, edge heating is even more pronounced
because of the density dependence of v, /@, In practice, the m = | mode is usually
found to heat the plasma mostly at the center. Considerations of discharge physics—
diffusion, temperature profile and burn-out of neutrals—would probably explain the
discrepancy.

As a check on self-consistency, we can show that the term in equation (1135) is
primarily responsible for the damping rate of the wave. The wave energy density is

W= (B2up>+{e0E 2>+ K.E. (116)

The kinetic energy {(K.E.) of the particles is negligible because the ions do not move
and the electrons have only a slow E x B drift. Equation (31) shows that the electric
field energy, even including the electrostatic part, is smaller than the magnetic energy
by (w/kc)? and can be neglected. From equations (44)—(46), one can see that the
magnetic energy, integrated over radius, is dominated by B. ; thus we have

(B ~(BI)=24T"J, (L7}
W A2T2J 2 . (118)
The energy W changes at the rate 2Im (w) = —2p, Im (k), where v, is the group

velocity. The dispersion relation, equation (9), shows that v, is equal to w/k except
for the weak dependence of « on k. Thus we have approximately

dw

S = 21m (@)W = — 20, Tm (DI = —2(wfk) Im ()W, (119)
AW _woyT AT, 24% | T 2
T kw—o'—#r-f,n~;n—§0€7"[%-ﬁn(ﬂ):ls (120)

where we have used equations (9) and (78) for w/k and Tm {w). We sec that equations
(115) and (120) are identical for o ~ T.

5. DESIGN OF PLASMA SQURCES
For design purposes, it is sufficient to neglect &? relative to T2 in equation (14) and
let @ = T. The dispersion relation, equation (9), then becomes

TB,

foemy’

o
e (121

where Tis given by the appreximate boundary condition J,(Ta) = 0 [cquations (36)
and (37)] for the m = 0, | modes to be

T = 3.83/a. (122)

The first step is to choose the tube radius @ and the phase velocity w/k. If w/k is
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chosen to be near v, the wave wili be strongly damped by Landau damping. On the
other hand, the presumed advantage of helicon sources is the direct acceleration of
primary electrons by wave—particle interactions. In that case, one would choose w/k
to be near the velocity of the ionizing electrons. Let E; be the electron energy (in
electron volts) to which the wave is to be matched. Then we have

w 2eE,\"? :
7= ( m’) =593x 10°E}/* ms™". (123)

Using equations (122) and (123) in equatton {121) and converting to useful units, we
obtain the B/n value

B
— = 31.2E)q,,, (124)

M3

where B is in gauss, 7,5 in units of 10'? cm~* and «,,, in cm. For the most common
case of discharges in argon, which has a peak in the ionization cross-section at E, =
50 eV, one would have

Bo/nys = 220a,,. wfk=fi=419%10ms"". (125)

We see that B/n depends only on tube radius. For instance, a 10-cm diameter helicon
source producing 10'* cm~? densities would require a field of about | kG. The density
that is achievable depends on the r.f. power available to overcome the losses; these,
in turn, depend on the neutral density, the tube radius and the magnetic field (CHEN,
19892, b).

The choice of frequency or wavelength is more flexible. The frequency is usually
taken to be the industrial frequency of 13.56 MHz or one of its harmonics or sub-
harmonics, and the one to choose depends on the aspect ratio of the antenna. An
antenna which has both &, and &, such as the Nagoya Type HI antenna (WATARI et
al., 1978), has a coupling coefficient which increases as k3 /ki (CHEN, 1981); that is,
as (T/k)®. Let us define the aspect ratio, or gain factor, G, to be

== —=0.61-. (126)

A reasonable value to start with is G = 8, which gives a gain of 64. Equation (126)
then gives A = 13.1a, and equation (125) gives, for argon, f = 32/a,, MHz. Table 1

TABLE |.—INITIAL CHOICE OF OPIRATING FREQUENCY AS A
FUNCTION OF TUBE DIAMETER {FOR ARGON)

Approx. diameter Frequency
{cm) (MHz)

1.5 40,08
2 27.12
4 13.56
0 6.78
0 339
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shows the standard frequency that would be used for each range of tube diameter.
Note that the plasma may choose its own diameter if the frequency is too high for the
tube diameter used. This may be the reason that experiments often show (Section 6) a
discharge that is concentrated along the axis, using less than the diameter available.

Once the frequency has been chosen, the other parameters can be calculated exactly.
Equation (123) gives

1] — SO0 NS VZIf g (1773
A= 2.03x 07k m, (1211}

and equation (126) gives the resulting antenna aspect ratio ¢G. When G is not large, a
more accurate value of T can be obtained for the m = 1 mode by iterating equation
(35) or using equation {40). This value of T can then be used in equation (14) to
obtain a better value for o, and thus, from equation (%), an accurate value for Bjn.
Figure 4 shows such results for the m = 0 and 1 modes for various tube diameters as
a function of phase velocity in units of \/E where E; = im(w/k)*. Also shown in
Fig. 4 is the total damping length Ly = (1/L.+1/L;p)~ ", calculated from equations
(79) and (108). In the region of large E;, L. dominates and is proportional to \/ Ey, as
predicted by equation {79). For small \/E , Landau damping dominates and
is essentially exponential in E,. Note, however, that L, has been calculated for the
thermal electrons, not the primaries ; and it is not necessary to make L; comparable
to the length of the discharge. In the original version of this paper (CHEN, 1985), we
surmised that the jumps in density seen experimentally were caused by the sudden
increase in thermal Landau absorption when 7, and k jumped to large values that
made w/kv,, small. Subsequent data show that this is probably not the case. The
values of B/n reported in the next section suggest that I, lies in the range where L, is
much longer than the discharge, so that the wave is damped mainly by the acceleration
of fast electrons, The computed value of L, therefore, need not be considered seriously

in the design of helicon sources.

6. RELATION TOEXPERIMENT
We have shown that helicon modes in a bounded, uniform plasma can have parallel
phase velocities matched to the velocities of either thermal or hyperthermal electrons.
We conjecture that the observed efficiency of helicon plasma generators is caused by
the direct acceleration of “primary” electrons to ionizing energies. Before applying
our results to experiment, however, we should be aware that the present analysis is
incomplete and may be insufficiently accurate in several respects.

(1) Electron inertia. The effect of electron inertia is given by the factor y defined in
equation (68). Perpendicular inertia gives the electron gyromotion and leads to
another root of the dispersion relation, f, ~ 1/2y [equation (67)], which is essentially
a cyclotron wave in a cylinder (Trivelpiece-Gould mode). Parallel inertia gives rise
to an E. even in the absence of dissipation [the first term of equation (114)]; but this
term is out of phase with ;. and therefore does not contribute to damping. Its main
effect is to shift the frequency by an amount ay [equation {69)], which is of order
{(T/k) (w/w,). These effects have been pointed out by Davies (1970) and reconsidered
recently by CHEN (1989b).

(2) Polarization. Whistler waves in free space can only be right-hand polarized, but
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HELICON DISPERSION RETLATION
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Fici. 4.—Dispersion curves for helicon waves for four combinations of frequency f and tube
radius a. In each casc, curve (a) is By/r, for the 1 = | mode vs Ej'“. where B, is in gauss,
#, in units of 10" ¢cm™* and £, is ym{w/k)? in electren volts. Curve (b} is the same for the
= 0 mode, Curve (¢} is the damping length L, vs £/7 for T, = 3 eV, but the scale factor
and the assumed density are different for each case. Curve (d) is a cross-plot of £, as a
function of B/n; E;/10 in electron volts is given by the abscissa. Case 1: f=27.12 MHz,
a=1¢em, ny=5x10"2cm? and (c) is L,/10 in centimeters. Case 2: f = 13.56 MHz, v =
2 em, ny = 5% 10" em™? and (c) is L,/20 in centimeters. Case 3: f=6.78 MHz, a=
5cm, 1, = 10 em™? and () is £y/200 in centimeters. Case 4: f= 3.39 MHz, & = 10 cm,
e = 10" em™?, and (c) is Ly/100 in centimeters.
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F16. 4—continucd.

low-frequency whistlers in a cylinder (helicons) can also be left-hand polarized. Qur
analysis applies equally well to positive and negative values of m. Since J_,, = +J,,,
the boundary condition of equation (35) is the same for m < 0 except for a change
of sign in the small correction term in J;,(T«), which is of order £/T. Indeed, one can
construct modes which are nearly linearly polarized. This peint will be amplified in a
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separate paper. As the frequency is lowered toward the ion gyrofrequency, however,
the left-hand component will be much more affected by ion motions than the right-
hand component, which rotates in the direction opposite to the ion gyrations.

(3) fon motions. The assumption of infinite ion mass will break down as « is lowered
toward the lower hybrid frequency wy,. However, wy, is a resonant frequency of the
plasma only for waves with k /k, smaller than (m/M)'", so ion motions should not
greatly aller the helicon dispersion relation at that frequency. As the frequency
approaches the ion gyrofrequency €., left-hand polarized helicon waves would turn
into ion cyclotron waves; but we would expect right-hand polarized helicons to be
relatively unaffected, with a frequency change typically less than a factor of 2.

{4) Non-uniform plasma. When the equilibrium density or magnetic field varies with
radius, the parameter % is a function of r, and equation (11) has to be solved numeri-
cally. If the plasma is also inhomogeneous in the z direction, equation (11) is a
differential equation in two dimensions. In what follows, we assume that B, is uniform
and that the average density {(ny(r))> can be used for ny.

(5) Energy transfer to primaries. The calculated Landau damping length [equation
(108)] is rather long in most experiments. The r.f. energy is coupled directly to the
primary ¢lectrons, but the trapping and acceleration of the primaries in the wave and
the scattering and finite gyroradius effects on them require a kinetic treatment which
1s beyond the scope of this paper.

{(6) Discharge physics. The plasma which is created by an r.f. antenna depends not
only on the dispersion relation of the waves but also on diffusion and mobility,
ionization by a distribution of fast electrons, collisional and Landau damping, antenna
coupling, and so forth. In particular, the behavior of the ionizing electrons—the
effects listed in the previous paragraph—is difficult to predict and is best studied
experimentally.

The most extensive studies of helicon sources have been conducted by Boswell and
his collaborators. It was recognized early on (BosweLL, 1970) that m = 1 antennas
could produce large peak densities 7 of order 4x 10'? cm™* with only 600 W of 8-
MHz power. However, the system was clearly not optimized, since inserting ¢ = 5
cm, B = 750G and {n)> = 2x10'? cm~* into equation (124) leads to E, = 578 eV,
which is well beyond the ionization maximum. In a later experiment with the same
diameter, Boswell 7 al. achieved nearly /i = 10'* cm™ . The most complete measure-
ments reported by BosweLL (1984) were in argon, withe = 5cm, L = 120cm, /= 8.6
MHz, B < 1.6 kG, and an m = | antenna of half-wavelength 25 cm, Thus the antenna
is optimized to exite waves corresponding to E; = 53 eV. Indeed, the plasma was
observed to be essentially 100% ionized on-axis. The reported vaiues of (), however,
were too low for agreement with equation (124). At 750 G and {ny = 1.2x 10*2em ™7,
for instance, E, would be 1.6 keV. The computed value of E; is so sensitive to n,
however, that using the peak density of 5x 10'? cm~* would lead to the reasonable
value E; = 92 V. The efficiency of absorption of the r.f. energy was 1000 times what
would be expected from collisions. Landau damping can explain the efficiency if the
density was underestimated. In this experiment the wave pattern was observed in both
the radial and axial directions. As B was increased, » followed a constant B/r curve,
but not continuously. The density jumped from one value to the next; perhaps this is
connected with standing wave patterns in the axial or radial directions.
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Evidence for the ionization mechanism described in this paper may have been seen
unintentionally in an ion cyclotron heating experiment in the RFCXX magnetic
mirror device in Nagoya, Japan (SATo et af., 1983 ; OKAMURA e al.,1986). By using
two Nagoya Type Il antennas 90° apart, it was possible to excite either left-hand
polarized (m = — 1) or right-hand polarized (n = + 1) modes in the uniform 10-kG
field of the central cell. Other parameters were @ = 5 ¢cm, P, = 400 kW, f=13.7
MHz and hydrogen gas. As was intended, ion cyclotron heating was observed with

m = —1 gver a narrow range o of m':gnotlr\ \qnlrl unth 009 =« ”iﬂ < 1. The tuhe was

v Liv =~ 1.

filled uniformly with plasma at 7, =~ 20 eV and n = 2 x 10"? cm” Withm = +1, the
polarization which rotates against the ion gyration direction, it was found surprisingly
that the density was much higher, peaking on-axis at 7x10'? cm~? in a narrow
column of radius 1.5 em. The ions were not heated, and T, was also lower at ~ 10
eV. Efficient ionization was observed over a much wider range of magnetic field
(0.55 < wff), < 1), and the density scaled lincarly with the gas puffing rate. Since the
right-hand mode is insensitive to ion cyclotron effects, all these ohservations are
consistent with helicon ionization with the m = +1 mode. If we take (> = 3 x 10'?

m~’, B=10*G and ¢ = 5 cm, equation (124) predicts £, = 458 eV, which is rather
large. However, it is reasonable to assume that the ion mass effects slow down the
wave by a factor of order 2; in this case E; becomes ~ 100 eV, which is close to
the ionization maximum for hydrogen. The only observation which does not fit
this picture is that the energy deposition is peaked on-axis.

After the first version of this paper was circulated (CHen, 1985), three groups have
investigated the Landau damping of helicon waves. SHoit (1986, 1987, 1988) achieved
A> 10" em~?in argon, witha = Sem, P,; = | kW, f= &10 MHz and B = 0.5-2
k(@. As in most other experiments, only a low-density, non-resonantly produced
plasma was produced at low r.f. power (P < 300 W); but the density jumped
discontinuously with increasing P, ;. as would be expected when #/B reaches a value
fitting the helicon dispersion relation. Shoji also tested helical antennas with various
numbers of turns but found no advantage over the straight, j-wavelenpth Nagoya
Type I1I variety. An unexpected dependence on ion mass was found in Shoji’s exper-
iments. Efficient ionization, characteristic of helicon sources, was found only with
A and Xe. With lighter gases—Ne. He, D, and H,—ionization was strong only in a
narrow peak near the lower hybrid frequency.

Evidence for the production of fast electrons was seen by CHEN and DECKER (1989,
1990) in an experiment with a = 1 em, B = 0-1000 G, f'= 31 MHz and argon gas.
Peak densities of order 3% 10'2 cm~? were measured with 800 W of r.f. power. A
floating endplate was found to be charged to V; > —250 V though 7, was only a few
electron volts, and | V| increased as the endplate was moved away from the antenna,
suggestive of wave acceleration. The measured value of B/n was consistent with
E = S0 eV. Furthermore, as B was lowered, IV,I took a sudden jump downwards at
B 40 G, exactly the ﬁeld at which a 50- eV electron would hdve a Larmor radius
equal to the tube radius. Apparently, the primary electrons acquire perpendicular
velocity by elastic scattering, and a portion of them is lost when magnetic confinement
is lost.

In recent work geared to industrial applications, PERRY and BosweLL {1989) made
a plasma suitable for plasma etching, obtaining an SF plasma of density > 10'2

m~* with ¢ = 7.5cm, B =50 G, f=13.56 MHz and P,; = | kW. If we assume
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{ny =3x 10" em™’, equation (124) yields E; = 50.7 eV, a very reasonable value,
Znu and BosweLL (1989) excited an argon laser in a 4.5-cm diameter by a 160-cm
long tube, achievingn = 8x 10" ecm™ at P, = 3.5kW, B =900 Gand /= 7 MHz
The density profile showed a HWHM of only 0.6 ¢m, and it is possible to choose
different values of a and of {#) to use in equation (124). The resulting values of E,
range from 14 to 100 eV, a range consistent with the observed excitation of Ar* and
Ar*™ lines.

These recent experiments have given preliminary confirmation of the Landau
acceleration mechanism in helicon wave plasma generators, indicating that the efficient
production of a controllable fast clectron population may be possible for industrial
applications.
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Errata

Eq. (19): By should have a minus sign in front.
Eq. (41): Zy” should be Z.
Eq. 43): + sign between main terms should be —.

Fig. la: k should point to the left.



