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ABSTRACT and SUMMARY

The following simple formulas have been derived for the loading and tun-
ing capacitors, C; and (5, in networks for matching to a load R + jX.
All impedances are normalized to Ry, and w is absorbed in the definition

of Cy, Cy.

Standard circuit: C; = [1 —(1-2R)? ]1/2 /2R
C; = [X~(1-R)/C]”
Alternate circuit: Ci = R/B, Cy=(X-B)/T?
T? = R4 X?

B? = R(T?-R)

No direct match is possible for a capacitive load (X < 0). However, if
impedances are transformed by a line of length kz, R and X above should
be replaced by

R = Ry/D, D= (coskz— Xpsinkz)?+ R2sin®kz
X = {[1—(Ri—l—Xﬁ)]sinkzcoskz+XL(coszkz——sinzkz)}/D ,

where the actual load is Ry + 7 XL



CAPACITOR TUNING CIRCUITS FOR INDUCTIVE LOADS

I. Introduction

The advent of fast personal computers makes it unnecessary to use Smith charts and such
devices for designing rf transmission lines and matching circuits. By reducing the equations
to the simplest form, it is not only possible to generate the results easily on a PC, but the
reasons for the behavior of the curves are also more transparent.

RF power supplies for generating plasmas for materials processing are usually fixed in
frequency at 13.56 MHz and come with a tuning circuit for matching to a capacitive load,
such as that of a parallel-plate RIE (Reactive Ion Etching) reactor. Newer plasma sources
use frequencies from 7 to 30 MHz and are coupled to the plasma by an antenna, which forms
a primarily inductive load. The two most common circuits, which we shall call the Standard
Circuit and the Alternate Circuit, are shown below.

Cl C2

Standard Circuit Alternate Circuit

Here, R and X are the real and imaginary parts of the load reactance, respectively, and
C, is the “load” capacitor, while C; is the “tuning” capacitor. The circuit is to have a net
impedance Zo (usually 50 + j0 ohms) to match the generator and transmission line. In this
paper, we derive explicit formulas for the values of C; and C; and give computed curves for
designing matching circuits. We point out the differences between inductive and capacitive
loads, paying special attention to how a circuit designed for capacitive loads can be adapted
to inductive loads.



II. The Standard Circuit

Terminology. For convenience, all impedances are normalized to R,. The factor w is
absorbed into the definitions of L and C'. Thus, for inductive loads, X = Xy = L; and for
capacitive loads, X = X¢ = —1/C . The impedance Z is given by

Z:[Z{1+Z2—1]"1 : (1)
where

One might think that it would be a simple matter to use a program that can handle complex
numbers, and simply solve for the real and imaginary parts of Z, set the real part to 1 and
the imaginary part to 0, and then iterate to get C; and C; for different values of R and
X . However, such a search usually gets stuck around the wrong root.

Solution. Therefore, we proceed analytically as follows.

R+ (X -1/Cy) (R+3Q)(1 - CiQ — jRCY)

L= TG (X 1/G) +jRG: —  (-GiQR+ RCT @)
where
Defining the denominator
D =(1-CQ) + RC} (5)
we can write
DRe(Z) = R(1-CiQ)+RCiQ=R , (6)
DIm(Z) = Q(1-C1Q)— R*Cy =Q—Ci(R*+ Q%) . (7)

For matching to R, , we set Im(Z) = 0, obtaining
Q=C(R+Q%, C1Q = CIR*+ C1Q? . (8)
Substituting this into Eq. (5), we have
D=1-20Q+C{Q*+ R’C{ =1-C1Q . (9)
Since Z is normalized to R,, we next set Re(Z) =1, so that
Ri(Z)=R(1-C:Q) =1,  Ci=(1-R)JQ . (10)
Eq. (8) shows that @ satisfies the quadratic

CiQ*-Q+CiR*=0 , (11)



whose solution is
2C,Q = 14 (1 —4C2RHY? (12)
The capacitor Cy, which is in @, is eliminated by substituting this value of C1@Q) into Eq.
(10):
20 —R) = 1+ (1—4CIRH)'?
1-2R = =+(1 —4C2?R*)'/? . (13)

Squaring this removes the ambiguity of the two roots, and we obtain

(1-2R)?=1-4CIR? (14)
Cy=[1-(1-2R)?*"?)2R . (15)
To obtain C5, we equate the expressions for ) from Eqgs. (10) and (4):
Q=(1-R)/Ci=X—-1/C, , (16)
obtaining
1— R\
02_()(— = ) . (17)
In conventional units, the result is, finally,
1 2R\*]"/*
o = mr-0-F)] a
1 -1
Cg = \f«c)X — —RZE‘?‘] . (19)
Ch

Discussion. Note that the loading capacitor C; depends only on R and is independent
of the load reactance. For an inductive load (R, L), Eq. (19) gives

Ci' =w?’L — (1 - R/R,)/Cy . (20)

There is therefore a critical inductance Ly = (1 — R/R,)/w?C; below which there is no
positive solution for C,, and for large L’s, C, depends only weakly on L. For a capacitive

load (R,C), Eq. (19) gives

=z (-%) (21)

We see that O is negative in the usual case R/R, < 1, so that this circuit cannot be used
to match to a purely capacitive load. For R/R, < 1, we can expand Egs. (18) and (19) to
obtain the approximate formulas

WOy ~ (RR,)™V? wCy = [ X — (RR)V?]™ (22)
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There are three mitigating factors which allow the Standard Circuit to be used with ca-
pacitive discharges, however. First, Eq. (21) is valid only if the matching circuit is connected
directly to the load. If the connection is made through even one foot of cable, there will
normally be sufficient inductance to exceed L¢ . Second, a small inductor consisting of, say,
two turns of tube or wire can be inserted between C); and C3 to provide the inductance.
Third, a parallel-plate discharge is not a pure capacitance when there is plasma present, be-
cause the sloshing of the electrons occurs with a time lag which is effectively an inductance.

An inductive antenna would not be sensitive to these delicate effects, and would give rise
to more stable tuning with this circuit. Tuning curves based on Egs. (18) and (20) are given
in Fig. 1 to 4, in both dimensionless and dimensional form. The characteristic impedance
is in all cases assumed to be 50 ohms, and curves are given for 13.56 and 27.12 MHz.
For other frequencies, one simply scales L or C by the frequency ratio, since wl and wC
are invariant. One notes that the curves are much less sensitive to R than to L, because
the values of R chosen are much less than the values of wL. If the reactance were not
dominant, there would not be a need for a matching circuit in the first place.

ITI. The Alternate Circuit

Using the same terminology as before, we have for the second circuit

Z = Zy+ 2y, Zy=—j3/Cy

. 1\ R+3jX
4y = C —_— = - - 23
= (e mw) - e =

The impedance looking into the circuit and load (R, X) is then

S R+IX (G C)(R4X) - =
T I1iG(R+iX) G Ci(l- XC;) + JRCIC;

Defining the abbreviations

YEl—XCQ, CECI+C2 s (25)
we have
7 - RC-j(1-XC) 1 RCY — RCy(1 — XC) —j[Y(1 - XC) + R*CC,] (26)
~ CY +jRCiC, Gy Y? 4 R2C?
In terms of the denominator
D=C, (Y + R:CY) (27)
the real and imaginary parts of Z are given by
DRG(Z) = R[C — XCCz - 02 + XCCz] = RCl ) (28)
DIm(Z) = -Y(1-XC)- R*CC, . (29)
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Setting Re(Z) = 1, we obtain
D == RCI

Using this in Eq. (27) we obtain
Y?+RCZ—R=0
Setting Im(Z) =0 and splitting C into C; 4+ C5, we obtain
YV - XCy) + R°C,Cy + R*C? =0
Two of these terms can be replaced by R, according to Eq. (31), so that
— XCi(1-XC) + R?C1Cy+R=0
Defining
T° = R* + X% |
we find a relation between C; and Cj:
¢ (T?C,— X)+R=0, C1 = R/(X — T?C,)
Ca can be found from Eq. (31), which yields the quadratic
1-2XC,+T?C}-R=0

The solution is

T202 = X :{: B 3
where
B'=X?—T%1—-R) = R(T* - R)
Substituting T2C, into Eq. (35), we find

C= et B
'" X-(X£B) B

Note that only the negative sign in Eq. (37) will give a positive value for C; ; thus, Egs.

and (39) give
Cy = (X - B)/T?

Here again, a capacitive load with X < 0 cannot be matched directly by this circuit.

Converting back to normal units, we can write the solution as
wCy = (R/R,)/R.B

wCy = (X —R,B)/(X?+ R?)

where
1/2

R,B=(R/R,)"*[X*+ R(R— R,)|

5
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For (X/R,)? > R/R,, approximate solutions are given by
wC; ~ (R/R)?*/X (44)
wCy = [1—(R/R)?]/X . (45)

Note that C; contains the small factor (R/R,)!/?; the advantage of the alternate circuit is
the smallness of ;. In these formulas, X is to be replaced by wlL ; there is no solution for
capacitive loads. The reactance can be changed by addition of a transmission line, as in the
next section. Figs. 5 to 10 are tuning curves for the Alternate Circuit in both dimensionless
and dimensional form. Frequiencies of 13.56 and 27.12 MHz have been chosen, but these
curves can be scaled easily to other frequencies.

IV. Impedance Transformation with Transmission Line

Capacitive loads can be transformed into inductive loads, and vice versa, by adding a length
of transmission line between the load and the matching circuit. In doing so, the value of
R seen by the matching circuit may become much higher than the real resistance of the
load. This has the effect of decreasing the size of the tuning capacitors and increasing the
impedance of the whole circuit. Since we neglect the losses in both the line and the match
box, the power delivered by the rf generator will still end up in the plasma, but the generator
will have to produce higher voltage at lower current in order to do it.

In a transmission line of impedance R, = (L/C)/?, where L and C are the inductance
and capacitance per unit length, the phase velocity is v, = 1/(LC)*? = 1/R,C , and the
propagation constant is* k = wR,C = 27/)A = 2rfR,C. If the antenna impedance is
Zr, = R+ 37X, the impedance seen by the tuning circuit after a line of length z is inserted
is

7 - Zrcoskz + gsinkz

= 46
coskz+ jZrsinkz (46)
This can be split into real and imaginary parts with the result
DRe(Z) = Ry
DIm(Z) = (1— IZL|2> sinkz cos kz + Xp(1 — 2sin® kz) (47)
where
D = (coskz — Xpsinkz)? + Risin’kz . (48)

Here all the impedances have been normalized to E,. For inductive and capacitive loads,
respectively, X really stands for

XL = (w/Ro)lﬂ‘GLﬂH 5 XC = 1012/R0w pF - (49)

Fig. 11 shows R and X as a function of kz for Ry = 2/50 and X =2 x1077w/50. It

is seen that these show a resonance behavior in the region where D has a minimum. Since,

6
*If & is known instead of R, and C, k is simply & = k,Veg = (w/c)Vex.



as noted before, the values of R}, are likely to be much less than those of X;,, the resonance
peak for R depends on X much more than on Ry, as seen from Eq. (48). The sign reversal
posiiton for X also depends more on X than on Ry, as seen from Eq. (47). Various
curves for R and X as functions of Ry and X, in both dimensionless and dimensional
forms, are given in Figs. 12-17. The line length needed to transform a capacitive load to an
inductive load is apparent.

V. Combination of Tuning Circuit with Transmission Line

The results for the last three sections can be combined to give the values of 'y and C, for
the standard and alternate circuits to match to a load Ry, X through a transmission line
of length z. There are too many combinations to plot fully, so we have chosen two cases
to give in dimensionless units. Fig. 18 gives the capacitor values vs. kz for a normalized
inductive load which corresponds to Ry = 2 ohms, L = 0.2 uH, at 27.12 MHz. Fig. 19
gives the capacitor values for a normalized capacitive load corresponding to Ry = 2 ohms,
C = 200 pF, at 13.56 MHz. Note that the capacitive load requires a minimum line length
for C; to be positive, while the inductive load cannot be matched if the line is so long that
the effective load becomes capacitive. The advantage of the alternate circuit in reducing the
size of the capacitors is clear from these two figures.

VI. Conclusion

We have shown how inductive loads are much more easily matched by capacitor circuits than
capacitive loads are, and we have reduced the equations to trivially simple form. Matching
circuits designed for capacitive loads have to have added inductances, and these can be
removed when using inductive loads. We have also shown how the alternate circuit can
reduce the required capacitances, but of course the voltage ratings of the capacitors may
have to be raised. These computations, which neglect losses in the circuitry, are useful only
for preliminary design of matching circuits. In practice, there are resistive losses in the
inductive elements of the circuit, especially in eddy currents induced on nearby, grounded
conductors. The final design is best done by trial and error (with insight, of course).



Loading capacitor for standard circuit
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Figure 1: Standard circuit: normalized loading capacitance vs. normalized load resistance.

Tuning capacitor for standard dircuit

100.0
\ R (ohms)

100 =A==\
o h— —05
X _
o~ AEAN
R \\§ 5.0
% !

10 S

P ——
0.1
0.0 0.5 10 1.5 20 25 30 3.5 40
wl /Ro

Figure 2: Standard circuit: normalized tuning capacitance vs. normalized load inductance, for
two values of load resistance.
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Figure 3: Standard circuit: Loading capacitance vs. load resistance, in practical units, for two
frequencies.
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Figure 4: Standard circuit: Tuning capacitance vs. load inductance, in practical units, for two

frequencies.



Loading capaditor for alternate circuit
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Figure 5: Alternate circuit: normalized loading capacitance vs. normalized load inductance,
for three values of normalized load resistance.
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Figure 6: Alternate circuit: normalized tuning capacitance vs. normalized load inductance for
three values of normalized load resistance.
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Tuning capacitor for alternate circuit
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Figure 7: Alternate circuit: normalized tuning capacitance vs. normalized load resistance, for
: four values of normalized load inductance.
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Figure 8: Altcrnate circuit: loading capacitance vs. load inductance, in practical units, for
three values of load resistance and two frequencies.
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Loading capacitor for altemate dircuit
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Figure 9: Same as Fig. 7, on an expanded vertical scale.
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Figure 10: Alternate circuit: tuning capacitance vs. load inductance, in practical units, at two
frequencies, for R = 2 ohms.
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Figure 11: Effective load impedance vs. transmission line length, in normalized units, for a
normalized antenna impedance corresponding to 2 ohms and 0.2 uH at 27.12 MHz.
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Figure 12: Same as Fig. 11, but in practical units.
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Load after transmission line
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Figure 13: Same as Fig. 12, but for a capacitive load of 200 pF.
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Effective load resistance vs. transmission line length, in practical units, for an an-
tenna inductance of 0.2 uH at 13.56 MHz, and for four values of real load resistance.
Note that the effective R increases greatly, but the position of the peak is insensitive
to Ry, .
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Figure 15: Effective load resistance vs. transmission line length, in practical units, for a real

load resistance of 2 ohms at 13.56 MHz, and for four values of antenna inductance.
Note that the position of the peak depends on L.
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Figure 16: Effective load reactance vs. transmission line length, in practical units, for an an-
tenna inductance of 0.2 uH at 13.56 MHz, and for four values of real load resistance.
Note that the effective X changes sign at a critical length which.is insensitive to Ry, .
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Reactance transformation by line
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Figure 17: Effective load reactance vs. transmission line length, in practical units, for a real

load resistance of 2 ohms at 13.56 MHz, and for four values of antenna inductance.
Note that the critical length depends on L.

Tuning circuits with transmission line
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Figure 18: Normalized loading and tuning capacitances vs. normalized line length, for both
the standard and alternate circuits, for a normalized antenna impedance which
corresponds to 2 ohms and 0.2 uH at 27.12 MHz.
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Tuning circuits with transmission line

R- 2 ohms, C-200 pF, 13.56 MHz
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Figure 19: Normalized loading and tuning capacitances vs. normalized line length, for both
the standard and alternate circuits, for a normalized antenna impedance which
corresponds to 2 ohms and 200 pF at 13.56 MHz. Note that a line length of at least
one radian is required to match to the capacitive load.
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