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Introduction

A flute instability of a partially ionized, magnetized plasma with a transverse electric field was
shown by Simon /1/ and Hoh /2/ to be responsible for the violent instability of reflex
discharges which allows electron current to cross the magnetic field. The main cause of this
instability is the difference between the electron and ion E x B drifts due to ion-neutral drag.
This effect is not present in collisionless plasmas, but the instability is still found if the ion drift
is slowed by the finite Larmor radius effect /3//4/. In a recent experiment by Sakawa /5/,
clear evidence of this collisionless instability was found in a plasma which was much smaller
than the ions’ Larmor radii. The observed frequency was much higher than the ion cyclotron,
diamagnetic drift, and E x B frequencies, thus eliminating both the E x B and the drift
instabilities. The ions trapped in the potential well of the E-field had nearly straight-line
orbits, with only a small curvature due to the Lorentz force. The ion fluid then has an E x B
drift much smaller than that of the electrons, even though there are no collisions.

It is easy to show that such a fluid suffers from a strong flute (not drift) instability with a
phase velocity close to that of the slow ion drift, as observed. The equilibrium, however, has
to be treated kinetically, since the system is much smaller than the ion orbits; and it is the
equilibrium which is difficult to treat. An expansion in a small Larmor radius parameter would
not be suitable; rather, the curvature of the ion orbits is the small quantity. By choosing a
particular functional form for the electric field profiles, we have found a simple way to model
the equilibrium in both plane and cylindrical geometries. The cylindrical case is applicable
to beam-plasma experiments /5/, while the plane case can be used to devise experiments to
clarify the edge physics in tokamak H-mode boundary layers which are thinner than the ion
Larmor radius.

Equilibrium: plane geometry

Consider a plasma confined between infinite planes at ¢ = £, embedded in a uniform magnetic
field B = Bpz. A jet-like E x B velocity distribution in the y direction in the slab can be
modeled by the following analytic functions:

¢ = ¢otanh ¢ (1)
E = —(N/L)¢'2 = —(N/L)¢osech?¢3 (2)
p = (N/L)eo E. = 2eo(N/L)? posech®Etanh £ (3)
where
E=Nz/L (4)

¢ is the potential, p is the charge density, and N is a parameter for adjusting the sharpness
of the profile. These profiles are shown in Fig. 1 for N =2. We take ¢o > 0, so that I, <0,
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and ions are driven to the left. The magnetic field is so weak that the ions bounce between
their birthplace and the left wall in nearly straight lines, but there is a small curvature to the
orbits, giving the ions a drift in the y direction. For a tokamak edge layer, the left boundary
would be the main plasma, and the right boundary would be the first wall. For a cylindrical
beam-plasma experiment, the left boundary would simulate the axis, and the right boundary
would be the wall.

We next construct a density profile that is consistent with this potential profile. Let v(¢, &)
be the velocity of an ion, located at £, which was born (at rest) at & . Its kinetic energy
%Ava(f, &o) is gained from the potential drop between & and £. Thus,

v2(€, &) = (2e¢o/ M)(tanh& — tanhé) . (5)
The y component of the ion equation of motion reads
dvy /dt = —(e/M)v;B = —Q.v; , (6)

where €. is the ion cyclotron frequency. The Lorentz force accelerates the ions in the y
direction at the rate

dvy,  dvy dxz  duy Coduy

R . A @
The velocity v, of an ion at ¢ which was born at & is thus

vy(€, §0) = —Qe(z —20) = (L/N)Qe(b—&) - (8)

Note that this depends only on position; it is independent of the strength of the E-field. Com-
bining Eqgs. (7) and (10), we find for the z velocity component,

vi(€, &) = v? - vz = (2e¢/ M) (tanh&o — tanh&) — (LQ./ N (& - €)* . (9)

Let the ions be created at a rate S(z¢) m~3 sec™!. Since the flux nv, is conserved, the
density at = due to a source S(zg)dzo is proportional to 1/|v.(z, zo)|. The constant of
proportionality is 0, 1, or 2, depending on whether the ion is turned around before reaching z,
is absorbed at the left boundary, or is reflected at — L or turned around at a radius between — L
and z. For simplicity we assume a reflecting boundary. Integrating over all source positions
upstream of ¢ and changing to the variable £, we obtain

2L /5"‘“ 5(£o)déo
N Je o va(§ &o) |

Here, £max is the smaller of N and that value of & beyond which v2, given by Eq. (9),
becomes negative, indicating that the ion turns around before £. One needs only to end the
integration when v, becomes imaginary. The integrand is singular at two points: £ = £y, and
v? = ’uz , but these are obviously integrable singularities because the density physically has to
be finite if the source 5 is finite. The experimental density profile can be matched by choosing
a suitable function S(&). Fig. 2 shows sample n; profiles which are consistent with Eq. (1).

n(§) =

(10)

To obtain the ion fluid drift vo, at any position z, we need only to sum over all source
positions the values of v,(¢, &), given by Eq. (8), weighted by the source strength 5( &) and
the residence time 1/|v,|, and normalize:

2 ft S(60) déio .
o) MEe T ()

The corresponding profiles of vy are also shown in I'ig. 2.

vo(§) =
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Equilibrium: cylindrical geometry i
I

In the experiment in question /5/, a beam of electrons injected along the axis depresses the!
potential there and gives rise to a nonuniform radial electric field. The corresponding sheared !
E x B drift is in the # direction and falls to zero at » =0 and r = a. This situation can be|
modeled by a consistent set of Bessel functions: |

¢ = —dolJo(Tr) - Jo(w1)] (12)

g 0
Er - 5%3_ = (250 Z)_T JQ(TT) = —¢0TJ1(TT) (13)
p = €& bg; (7‘ Er) = ——60¢o T2 JQ(T’I‘) s (14)

where w; is a zero of J) ; lor instance, the first zero is w; = 3.83. That Eq. (16) is true can be
verified by substituting for E, from Eq. (15), taking the r-derivative of p in both parts of the
equation, and recognizing the differential equation that defines Jj . Setting T' = w;/a ensures
that both ¢ and FE, vanish at r = a. These profiles are shown in Fig. 3.

The kinetic energy %,M v%(r, 7o) of an ion at r which was born at rest ro has been gained
from the potential drop between rg and r. Defining z = Tr, we can therefore write

2e¢q
M

v?(2,20) = [Jo(2) = Jo(20)] - (15)

The Lorentz force curves the ion orbits, which would otherwise be straight lines through the
axis, as the ions bounce in the dc potential well. The # component of velocity can be found
from the conservation of canonical angular momentum:

Py = Mrvg + LeBor® = LeBord (16)
where %Bor is the vector potential Ay in a uniform field, and we have taken (for the time
being) vy to be zero at r = rg. Solving for vy, we have
Q. 25 — 22
2T z

ve(z, 2z0) =

(17)

i
Eqs. (15) and (17) give l

W2z, z9) = VP — v} = 2;‘;" [Jo(2) — Jo(z0)] — (%) <z0_z ) . (18)
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To calculate the density, we again integrate over a source distribution S(zg), weighted by
the residence time 1/|v,| and a geometrical compression factor 29/z due to the cylindrical
geometry:

fmax 29 S(20) dz
n(z) = 2/ 2o _5(z0)dzo_ ) (19)
2 z |ve(2, 20) |

Ilere, Zmax is the smaller of w; and the value of zp at which v2, given by Eq. (18), is zero;
beyond that, the ions do not reach z. Since all ions are “reflected”, they contribute twice to
the density at any radius. The factor 2 included for this is not important, since S(zp) is to be
adjusted to fit the experiment anyway. The fluid drift vy in the 8 direction is given by the
weighted average of vy, as given by Eq. (17):

’1)0(2) = 2 /Zmax vo(z’ ZO) Z_O M . (20)

n(z) z |ve(z, z0) |

Examples of n and wvg profiles are given in Fig. 4.
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Although the ions are born with very little energy, a small amount of angular momentum at
large radii could greatly affect the ions’ turnaround radius, and thus the density at small radii.
To examine this effect, we can add a thermal velocity vg(ro) = Lv;. A term mrvg(rg) is then
added to Eq. (16), resulting in a term wvg(ro) added to Eq. (17), with corresponding changes in
subsequent equations. The results, which we cannot show here, indicate that vy(ro), has more
effect when it is in the same direction as the Lorentz force, but that the effect is small unless
$Muv} is comparable to ego.

The instability

Since the instability is basically a fluid effect, we use the fluid equations. We confine ourselves
here to plane perturbations of the form exp i(ky — wt). For the ions, the linearized equations
are:

M (%—‘t—, + vo-Vv+v-Vvo> = e(E + v x Bo) (21)
on
—a—t+n0V~v+v-Vno+nV-v0+v0-Vn:0 . (22)

Here, wo(z) is the averaged velocity computed above. Irom the electron equations, we obtain
the modified Boltzmann relation /6/ appropriate for k=0 and finite Vno and Eo:
n ep w, ()

— = . 23
no KT, w—wg(z) (23)

lere, w, is the clectron diamagnetic drift frequency —k(KT. /eBo)ny /[ no, and wg is the
E x B drift frequency —kFo/ Bo. Solving I2q. (21) for the first-order ion fluid velocity v,
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substituting into Eq. (22), and eliminating n with Eq. (23), we obtain a second-order differential
equation for ¢(z). We keep all z-derivatives (') in both zero- and first-order quantitics. The
result can be written in the form

¢+ f(2)¢' +g(z)d = 0 . (24)
Defining &(z) = w — kvo(z) and

, 2T kv + Q. vf {
(o) = (o) male), ofe) = AT (25)

we can write the coefficients as

J(z) = 6(z)+ () (26)

Q. 6+« 6 @2 — Q. (Qe + vh)
— 2 ¢ 0 ‘
g(z) = k|14 2 2 o0 o) , (27).

where all the quantities are z-dependent except k, Q. , and w. Eq. (24) is to be integrated
between —L and L using the self-consistent profiles of ng, Ep, and vy computed above
to obtain the eigenvalues of w. By eliminating the velocity shear terms, one can study the:
Kelvin-Helmholtz effect on this instability. ‘

The basic instability can be uncovered by making the local approximation g9(z) = 0. Thisj
yields a cubic equation for @:

L_JG-}—(IC/(S)QC(CJ_z—wd&T)—Qde =0 , (28)
where
wyg = wg —kyg (29)

is the difference between the electron and ion E x B drifts. The unstable root can be seen by
taking the limit wg > Q. and small vg, so that @~ wg & wr;. The last term in Eq. (28) can
then be neglected; and, for ng /no < 0, the resulting quadratic equation yields

w = kvg+ kQe/2|6] +i(kQewq /|6 )2 | (30)

The frequency is of order kvg, and the growth rate depends on the difference between electron
and ion drifts in the equilibrium.
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