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Abstract. The dispersion relation for helicon waves in a cold plasma of radially
varying density has been reduced to compact form, and the radial eigenmodes have
been computed for different density profiles. The results show a marked asymmetry
hetween the left- and right-hand circularly polarized modes: the m = —1 {iefi) mode
has a centrally peaked wave intensity and resonates with a much higher cent_ral
density than the m = +1 mode. Positive feedback is therefore possible, leading to
nonlinear channelling of the discharge. At a radius where the density falls to a certain
value, a singularity arises in the coefficients of the wave equation; care must be taken
in integrating through this point. This singularity has no physical significance. The
marked difference between the m= +1 and —1 modes in a non-uniform plasma is
caused by a difference in sign of the electron drift along the density gradient. Energy
deposition is peaked near the radius of the peak in B;, so that broad, uniform density
profiles can be obtained by using the m = +1 made and narrow, dense columns by
using the m = —1 mode. These results explain many features observed by various

groups over the past two years.

1. Introduction

Radio frequency (RF) discharges based on the excitation
of helicon waves have been used for materials processing
£1,2] and laser applications [3]. The efficiency of ab-
sorption of RF power in helicon discharges has been
» explained by Chen [4] in terms of Landau damping
acceleration of primary electrons. This hypothesis has
been confirmed by the observation of electron tails in
several experiments [5—7]. However, beginning with the
ion cyclotron frequency experiments of Okamura et al
[§], there has been poor agreement between theory and
the density profiles produced by the various azimathal
modes m = 4-1, 0 and - 1. Recent measurements of the
change of profile with changes in magnetic field direc-
tion and antenna helicity [9-11] have revealed unex-
pected results: namely, the density profile changes

dramatically from broad to narrow, depending on the
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Since the plasma density is never uniform in experi-
ment, as it is in theory, we have reconsidered the helicon
theory for non-uniform plasmas. Other workers {(e.g.
[12]) have done this previously, but the results were not
clear, since the analytic treatment was not carried far
enough before computation was begun. Our present
results show a large asymmetry between the wave am-
plitude and energy deposition profiles of the m= +1
and —1 azimuthal modes, explaining the effects noted
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above. To match the vacuum region around the plasma,
if any, we have incorporated the displacement current
term throughout—no artificial boundary is assumed.
We find a singularity in the equations which has
not been noted before. This occurs when the density
is sufficiently low that a helicon wave would be

" evanescent if the density were uniform. The singularity

occurs well within the plasma for realistic profiles and
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2. Dispersion equation

We consider the plasma in equilibrium to have an
azimuthally symmetric density profile in a cylinder
of radius @ and a uniform axial magnetic field
B, 2. There are no zero-order electric fields or velocities;
the diamagnetic drifts ‘vanish by the assumption of
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expi(mf + kz — wt), so that m= +1 modes rotate
clockwise when viewed along B,, and m = —1 modes,
counterclockwise. The governing equations are Max-
well’s equations:

V-B=10 (1)

VxE = ioB @

V x B = po(j — iwcyE) 3)
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and the helicon assumption
J = —eny(E x By)/B3. 4

Equation (4) states that the only plasma current is the
E x B drift of the electrons; that is, the frequency is so
high that the ions do not move, and is so low that the
electron inertia and gyromotions can be neglected. We
have also neglected all damping mechanisms. The sub-
seript 1 has been suppressed on 2ll first-order variables,
The vector product of equation (4) with B, yields

% By = (eny/BE)B, < (Ex By) = en(E — E ). (5)

In the absence of plasma, a cylinder supports transverse
electric (TE) and transverse magnetic (TM) modes, which
are uncoupled. Since helicon waves in the absence of
dissipation have E, = 0 [4], we would expect them to
couple to TE modes in the vacuum. Thus, we may take
E, = 0. Equation (5) then gives

E=(jx Byyen, ©)

Although this equation does not involve j,, j, does not
vanish with E_; it is given by equation (3). Using
equation (6) in (3) we obtain

F=u5'Vx B+ iwe,E

= i 'V % B + (iwe/eny)j x By (M
We define
a(r)si:f‘%’@ k=2 ®)
so that equation (7) can be written
ﬂof=V><B+%§#njx2. 9)

We neéxt use equation (6) for £ in equation (2) to
obtain

1
B Vx| (i
iwB x (eno (jx BO))

_g.v(’t ‘
= B, v(eno) BV- (eno) (10)

Since n, does not vary with z, it needs to be differenti-
ated only in the second term. The result is

By (.. . 0 . s Aoy s
icuB=—°(1k_)+?£_r,z—zV-J). (11)
en, Ry

If B, is uniform, the definition of ¢ in equation (8)
implies that o /o = no/n,. Equation (11} can then be
written

N DY SR
oaB = pioj + 7 #ol (V J- ;J,)- (12)
Note that the perpendicular components obey the same
relation as in a uniform plasma:
tod = aB, (13)
but the z component has two new terms. The V- term
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arises from the displacement current, as seen from the
divergence of equation (3), and the o' term from the
density gradient. Equation (9) then reduces to
,uoj=V><B+%k%Bx%. (14)
To evaluate V-j, take the divergence of equation (14):

KV xB),. (19

l' ~
HoVf =L KGV-(Bx z)=E
Finallv necing seanations (11—(15) in {(12) we obtain
rinally, using equaaoens (13)—(12) 10 (14), We obtain
k3
eB=(VxB +\|1 —= (VxB),%
i 5 _.op s
+y (k3B x % —o B,%). (16)
We define
7 =1 - (kofk)? (17)
and sanarate the » ). and 7 comnonente of panatian (16)
anc sgparale ine r, U, and z componeénis of equation {10y
B, =I’?B= — ikyB, (18)
uB, = —B, + ikyB, (19)
1 " im i
aB,=y|-(rB) ——B,| —~«'B,. 20
z ?(r ( ﬂ) r r) Kk r ( )

Eliminating B, and B, from equations (18) and (19)
respectively yields

$B, = 1? aB, -+ ikyB, @1
BBy = ~aB, —~kyB, (22)

where
B = — k%2, (23)

Having expressed B, and B, in terms of B, we can now
substitute equations (21) and (22) inio (20} io obtain a
differential equation for B,. Finally, after some straight-
forward algebra and a few fortuitous cancel]atlons we

obtain

B: + f(r)B; + ¢(r)B, =0 (24)

where
1) == ~3‘§ (25)
g(r)—E—%-——'E;‘r (1+2kﬁy). (26)

An equation similar to equation (24) has been consider-
ed by previous investigators [13-15], but its analysis
leading to our conclusions has not been done before.
The displacement current can be neglected by setting
ko = 0 in equation (17) so that y = 1. In practice, y — 1
is of order —10~%, and is entirely negligible. Physically,
this means that the coupling to radio waves outside the



plasma is weak because k is so much larger than %, that
the free space waves are highly evanescent. The density
gradient can be neglected by setting &’ = 0, in which case
we recover the uniform plasma equations [4]. Once the
eigenfunction B.(r) is known, the other components of B
can be found from equations (21) and (22). The E field,
given by equations (6) and (13), is perpendicular to B in
each cross-sectional plane, and the relation is the same
as for uniform plasmas [4]. However, the density gradi-
ent introduces a major difference in the terms propor-
tional to «’'/B in f(r) and g(r). In particular, the last term
in g{¥) depends on the sign of m and is responsible for
the changes in the observed appearance of helicon
discharges when the helicity of the antenna is reversed.
Note that the sign of k does not affect the &’ terms, since
o and o also change sign with k. Thus, changing the
direction of B relative to k should not affect the mode
patterns.

The coefficients in equation (24) are singular at
B =0, or o = k? (for y = 1). This is the radius where the
density becomes too low to support a uniform helicon
wave. That is, in a uniform plasma, the dispersion
relation is

a* =T+ k* (27)

and when o? is less than k2, the transverse wave number
T becomes imaginary, and the wave changes to a surface
wave. Since numerical integration is necessary anyway,
the decomposition into body waves and surface waves is
not meaningful. This singularity, which appears only
when there is a density gradient, is only a mathematical
problem and has no physical significance. In a non-
uniform plasma, the wave fields vary smoothly over this
point, but care must be taken to avoid numerical diffi-
culties.

The boundary condition to be satisfied by the eigen-
functions of equation (24) is j.(a) = 0 for an insulating
tube of inside radius a. If the density is finite at the wall,
equation (13) requires that B, be zero there. Equation (6}
gives E, = 0, which is also the boundary condition for a
conducting wall. If ng, and hence &, vanishes at the wall,
the helicon wave has to be matched, in principle, to the
radiation field. However, in practice, the layer in which
the displacement current dominates the conduction cur-
rent is so thin that Lttle error is engendered by taking
B.(a) = 0. Equation (24), then, is to be integrated subject
to this and the condition that all fields be finite at r = 0.

3. Calculations

Density profiles with a peak on axis are modelled with
a two-parameter family of curves:

|_1 f"ﬂ plr) (28)
iy \a/ |

where p(r) is the proﬁle factor. Typical profiles for
various pairs (s, ¢} are shown in figure 1.
Lengths are now scaled to the tube radius a, so that
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Figure 1. Densily profiles represented by the parameters s
and £

r—rfa, k—ka, & — oa, etc. Equations (24)—(26) retain
the same form when the dimensionless quantities are
used. Since o' /o = p’/p when B, is constant, equations
(24)—(26) can be written

B + f(r)B; + g(r}B, =0 29
1 pr 2“2
gl 22 (30)
0-7-2%
2 r 2,2
g(r,=ﬁ_m_z_m_°‘2(1 e T
y ¢ kyrp\ g/

where all quantities are dimensionless. Equation (29) is
then integrated, starting at r = 0 with B, = 1, B, = O for
the m =0 mode, and B, =0, B, =1 for all other m
numbers, and using the coefficients f(r) and g(r) given by
equations (30) and (31). At each step B, and B, are
computed from equations (21) and (22). The values of &
and kg (actually, ka and kya) are fixed by assuming a
wavelength and a frequency. In the curves given here, we
ha talan £ 2712840 1 — Yo and

4 — & A
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The eigenvalue o, representing «a at maximum density
(on axis), is then varied until B, vanishes at r = 1.

The singularity that occurs at § = 0 requires special
treatment. If a grid point falls close to the radius where
o3(r) = k%2, the coefficients f{r) and g(r) become ex-
tremely large. When this happens it is immediately
obvious because the curves of B(r) are discontinuous
there. Decreasing the grid spacing does not automati-
cally avoid ‘stepping on’ the pole; that is, that the grid

nn1nf fall actrmmnfrlr‘a“‘r ﬂrn'nnr] tha ('lnalﬂarlf'u WB
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have used an adaptive step size scheme in which the
integration starts with a step length d_ ., and 4 de-
creases in proportion to § down to a minimum value
d..:.- Even so, it was sometimes necessary to adjust d,,,,
or d_;, to obtain smooth behaviour of B{r) through the
singularity. From equations (21) and (22), it would
appear that B, and B, become infinite as § goes to zero.
However, at this point B; is related to B, by

B = —(m/r)B, (32)

as can be verified by inserting the leading terms in
equations (30} and (31) into equation (29). Then the
right-hand sides of equations {21} and (22} also vanish
precisely at the point where o = ky and B, and B, are
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found to vary smoothiy over the singular point. Sudit
[16] has subsequently verified that the singularity is
mathematical and not physical, by deriving and comput-
ing the equation for B, That equation has regular
coefficients.

The difference in profiles of B, among the m=0,
m= +1, and m = —1 modes is shown in figure 2 for a
parabolic density profile (s = 2,¢t = 1). Since energy ab-
sorption roughly follows the profile of B,, it is seen that
broad discharges are best produced by the m= +1

as given above, but the curves are almost universal
because e affects only the small displacement current
correction, and k& and r are scaled to the radius a. The
absolute value of k is important only when one con-
siders damping and antenna coupling. The position of
the singularity is apparent in the curve of the m= +1
mode where the effect of adaptive step size appears as a
change in the density of points.

Comparison of all three components of B for the
m = +1 and —1 modes is shown in figure 3 for uniform
plasmas and figure 4 for parabolic plasmas. The curves

Field shapes for parabolic plasma
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Figure 2. Radial profiles of B, forthe m=0, +1, and —1
azimuthal modes for a parabolic density profile. The density
of points for the m = +1 curve shows the effect of adaptive
step size.
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Figure 4. Comparison of profiles for the m= +1 and —1
modes for a parabolic density profile.
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density profiles shown in figure 1.



for uniform density were computed by the shooting
technique and agree with the analytic solution in terms
of Bessel functions [4]. The values of ¢, for each case
are also given. The marked difference between the right-
and left-handed helicons is evident even in the uniform
case.

Figure 5 shows the B, curves for various density
profiles for the fg) m=0, (B m=+L, and (& m= —1
modes. As expected, the wave profiles become steeper
with the sharpness of the density profile. Figure 6 is an
example of one of the other computed curves, in this
case the B, component of the m = —1 mode, as the
density profile is varied. The zero crossing point, which
is easy to measure experimentally, progressively moves
separates the inner and outer regions of the B field
patterns shown below.

The self-channelling effect of the m = —1 mode is
clearly seen in figure 5(c). as the density steepens, the
wave pattern i8 narrower, causing the ionization to
occur ever closer to the axis. Figure 7 shows the profiles
of ali three components of B for the m = —1 mode for
the narrowest density profile we have computed
(s =2, t=10). These curves show what might be
expecied for the final, self-focused state for a diffusion
limited, maximum density plasma column.

The value of «, for the lowest radial mode varies
greatly with the azimuthal mode. Figure 8 shows the
increase of oy with the parameter ¢ in equation (28), as s
is held constant at s = 2. As the discharge narrows, ¢
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Figure 6. Behaviour of the radial profile of B, as the density
profile is changed, for the m = —1 mode.
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Figure 7. Bfield profiles for the m = —1 mode in a sharply
peaked density profile.
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Eigenvalue vs. profite sharpness
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Figure 8. Variation of the eigenvalue «p with density
peaking parameter ¢ for the m= —1, 0, and +1 modes.

increases and a,, increases almost linearly with ¢ for the
m = —1 mode, while it remains nearly constant for the
m= +1 mode. The m =0 mode lies in between. At
t = 0 (uniform plasma), o, for the m = ~1 mode is only
50% higher than for the m = +1 mode. At ¢ = 10,
however, &, for the m = —1 mode is almost an order of
magnitude higher. Since, from equation (8), «, is propor-
tional to the peak value of ny/B, much higher peak
densities can be expected from the m = —1 mode; or,
conversely, for the same peak densily, much lower B
fields are needed. The positive feedback effect increases
the value of ¢t and further increases o, Each point in
figure 8 was obtained by numerical integration for B as
described above; the field profiles cannot all be given
here,

As k is increased keeping the tube radius constant,
the effect of the k term in equation (27) becomes more
important in determining the value of & For a fixed
frequency this corresponds to shortening the antenna
and slowing down the wave velocity. Figure 9 shows the
variation of &« with wavelength 2z/k in a uniform plasma
for the m = +1 and —1 modes, and figure 10 shows the
corresponding change in the B_ profiles. The range of
wavelengths computed in figures 9 and 10 corresponds
to resonant electron energies of 30eV to 7.7keV.

We have also studied the eigenfunctions for higher
order modes. Figure 11 shows, for instance, the second
radial mode (n = 2) for m = 0 in a parabolic profile. The
eigenvalue o, nearly doubles from 5.534 to 10.05, indica-

Eigenvalue vs. k, uniform density
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Figure 9. Variation of the eigenvalue « with parallel
wavelength for the m = 41 and —1 modes in & unifarm
plasma. The tube radius was fixed at 5om.
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Figure 11. Bfield profiles for the second radial mode of
m=0 in a parabolic density profile.

ting a large increase in resonant peak density. Figure 12
shows this density increase for three azimuthal modes as
the n number is increased. Figure 13 shows the field
components for the m= —2 mode. In going from
m= —1toms= —2, the value of ¢, increases from 8.303
to 11.97, although the fields are peaked at a slightly
larger radius.

Finally, the patterns for the electric and magnetic
wave ficlds are shown in figures 14—16. In figures 14 and
15, the m= +1 and —1 mode patterns in a cross
sectional plane, respectively, are compared for flat and
parabolic density profiles. In figure 16, the B lines in the
y—z plane are also shown. These projections indicate
that individual B lines have all three components and
therefore spiral in a complicated way.

" 4. Energy deposition and physical mechanism

Absorption of the RF energy occurs at the rate E-j,
which has only the term E_j, because the current is
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Figure 14. Field line patterns for the B field (full curves} and
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Figure 15. Field line patterns for the B field (full curves) and
E field (dotted curves) in the x—y plane for the (a) m= +1
and (b} m= —1 modes in a parabolic plasma.

perpendicular to E in the transverse plane. Although E,
vanishes in the undamped limit, it arises in the presence
of damping in order to drive the current j,. Without
considering the details of the damping mechanism, we
can say that the energy W absorbed per unit volume per
second is approximately njZ, where 5 is an effective
resistivity, and j, is, for weak damping, given by the
undamped solutions given here, The current j, is given
by equations (12) and (13}

. igg o . i
z=|sz+-——r2[x Bz+__
Kol % ocj ( T

We have simplified this discussion by making the ex-
tremely good assumption that the V-j (displacement

B,). (33)
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current) term is negligible. If either Landau damping or
electron—neutral collisions is dominant, # is propor-
tional to 1/n,, and hence to 1/x. The absorption rate is
then proportional to «jZ, or

14 IIIB L (34
ma z ka r o )

The term containing ¢’ in equations (33) and (34) repre-
sents the space charge that arises from current flow
along the density gradient. This space charge has to be
dispersed by current flow along z, since V-j = 0 in the
absence of displacement current. Thus, the density in-
homogeneity contributes a term which either increases
or decreases j, (and hence the absorption rate), depend-
ing on the sign of iB,«’ relative to that of B,. This phase
relation depends on the rotation direction of the mode,
as can be seen from a modification of equation (21):

) ma

iB, o~ oy B.. (35)
Here we have neglected the Bl term in equation (21}
because most of the absorption occurs near the maxi-
mum of B, and in a region where a® » k2. Substituting
equation (35) into equation (34) gives

2
WocldlBﬁ'(l—EEE-l—). (36)
r 13

Since «’ is negative, we see that the o term increases i
if m > 0, and decreases W il m < 0. Note that the sign
of k does not matter since o« contains k.

The radial variation of W is shown for the m = +1,
—1 and 0 modes respectively, in figure 17(a)-(c). We see
that the deposition profile generally follows that of B,,
but the magnitude of the absorption rate is affected
differently by the density gradient term for the m = +1
and —1 modes, as explained above. This term has little
or no effect on the m =0 mode, as expected from
equation (36). The location of the singularity in the
computation is marked by the vertical line, which is a
plot of f(r), showing that the difference in the radii of
maximum energy absorption is not related to the posi-
tion of the singularity.

0] |1l

Figure 16. B field pattern forthe m=1 modeinthe y— xand y — =
planes for a parabolic plasma. The z scale {right diagram) has been

shrunk.
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Figure 17. Energy deposition rate W against radius, as
compared with the B; profile, for the (a) m = +1, (b)

= ~1 and (¢) m= 0 modes in a parabolic plasma profile.
The deposition profile without the density gradient effect is
shown as W_. The vertical line is a plot of fr), showing the
location of the pole in this coefficient.

The reason for the difference in width of the m = +1
and m = —1 mode patterns is not as easily explained in
terms of particle flows, but can be understood in math-
ematical terms. This difference is significant even for a
uniform plasma. In figure 3, we see that at r =0, B, and
iB, have the same magnitude but different sign for
m= 4+1and —1. This is becauvse V- B =0, and the B,/r
and (im/r}B, terms in that relation dominate at small
radii, while B, goes to zero by symmetry. As the radius
increases, B, decreases smoothly to zero in both cases to
satisfy the boundary condition at r = a. However, B, has
to change sign to create the loops in the B field patterns
of figures 14 and 15. At the boundary, since j, = (V x B),
vanishes, the terms (im/r)B, and ikB, must be equal
Since B, and B, started out with opposite sign at r = 0,
and B, has changed sign, B, does not change sign if
m > 0, but changes sign if m < 0. Thus, the B, profile has
to be narrower for m < 0 than for m > 0. Since the
energy absorption follows the curve of B,, the left-hand

g6

polarized modes create more centrally peaked density
profiles, which further narrows the B, profile. Thus,
left-hand helicons favour the production of dense,
narrow columns, while right-hand helicons favour the
production of broad, uniform discharges.

We note, however, that even right-hand helicons can
undergo self-channelling into narrow columns if the
left-hand helicon is not present. This was apparently
observed by the Nagoya RFC-XX group [8] in an
experiment on ion cyclotron resonance heating, There,
the m = +1 mode produced a dense, narrow plasma,
while the m = —1 mode produced a broad density
profile, ostensibly in contradiction to our present con-
clusions. However, the Nagoya experiment had an addi-
tional heating mechanism (ICRH) which was operative
with left-hand polarization, and hence the m = —1 heli-
con mode described here could not be observed. With
right-hand polarization, ICRH could not occur, and the
m = + 1 helicon wave was responsible for the ionization.
This gave rise to peaked profiles consistent with our
computations for the m = +1 mode. It is just that the
even narrower plasmas characteristic of the m= —1|
helicon mode were masked by the ICRH effect. Note that
for frequencies just below the ion cyclotron frequency,
the radial current is still given by the electron E x B drift,
as is the case in this paper, because the ion E x B drift is
greatly reduced by the finite Larmor radius effect.

5. Design of helicon sources

The dimensionless graphs given in this paper can be
used to optimize parameters for helicon plasma gener-
ators. We may set k, = 0, since the displacement current
is negligible in any practical device. The first step is to
fit the measured or conceptual density profile to the
form of equation (28) to obtain the values of s and ¢ for
the best fit. For s = 2, the value of o, can be read from
figsure 8 for the most common azimuthal modes; for
other values of s and m, plots like that of figure 8 would
have to be calculated using the shooting procedure
described here.

The dimensionless parameter ¢, is given by

If the operating density is below about 103 ecm ™2 so
that Landau damping is effective, it is best to decide first
on the value of E,y, the energy (in eV) of an electron
moving at the phase velocity w/k of the wave. In that
case, equation (37) can be written as

Piz_ 33 %0

3 Qom

EGM (38)

where 1, is the density in units of 10'*cm™~?, B, is the
magnetic field in kG and a_, is the tube radius in cm.
To decide on the radius, an important consideration is
the aspect ratio of the antenna, which, for good coup-
ling, has to be not too long and not too short. A value



of 0.5-1 for ka is reasonable. Since w/k is already fixed,
this fixes a for given w, or w for given a, Equation (38)
then gives the peak density which will support a helicon
wave at any given magnetic field.

if the densiiy is so high that pariicie resonances are
not important, there is no constraint on w/k. In that
case, equation {37) can be written

M3 ka
—==1. 39
Z, 7.90a, T (39)

where f3 is the frequency in MHz and «,, is dimension-
less.
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