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Abstract. Helicon wave (whistler waves bounded transversely by a magnetic field surface)
propagation is investigated for a cylindrically symmetric curved (flaring) boundary using a
finite-element method where the propagation region is divided into a sequence of truncated
cones. In each conical segment, a local spherical coordinate system is used with the origin at
the apex of the cone. A vector wave equation for the fields is formulated for a cold plasma
and reduced, in spherical coordinates, to a pair of coupled partial differential equations (PDEs)
for two scalar functions. The PDEs are separable for the azimuthal eigenuaiaed. The
6-dependence is a Legendre function, with non-integer eigenvalues determined by the cone
angle. The dependence on the radial coordinatsatisfies a fourth-order ordinary differential
equation (ODE). A straightforward numerical integration of the equation frpito x, fails for

large values ofr; — x1, because of the existence of an exponentially growing solution to the
equation. Consequently, a different approach is needed. Four independent solutions, valid for
0 < x < o0, in the form of power series im (PS) are obtained which are each asymptotically
proportional to & asx — oo. Forx large, four asymptotic expansions (AE) are obtained in the
form of series in Lx times & or €. The problem then is to find four linear combinations

of the four PSs, each of which approaches one of the AEs in thelimit co by first deriving

a double-integral representation of each PS, valid fox alind then using its — oo limit to

match each AE to a linear combination of the PSs. For special valués(of= 4N — 1 or

4N, N an integer) closed-form solutions (polynomials times exponentials) result that are exact
representations of the solution for all Solutions are computed and illustrated for an outgoing
wave using the closed-form solution for special valueg,and as a function of andx using

the PS and AE, which have a large range of overlap. The propagating solutions of the ODE
are also obtained using a WKB method and are used to calculate the propagation in a slowly
diverging parabola of revolution.

1. Introduction

Low-frequency electromagnetic whistler waves are well known in ionospheric and laboratory
research. When transversely confined, they are often called ‘helicon’ waves. They develop
electrostatic components and their propagation and polarization characteristics are modified.
An extensive review of the experimental and theoretical research on the properties of
helicon waves confined to a cylinder was performed by C{i®94) He discussed the
unusually high plasma production efficiency, uniformity, and quiescence of helicon plasma
sources, and their consequent suitability for semiconductor processing and other industrial
applications.

In this paper we find exact solutions for helicon waves in conical regions, which can
be used in a finite-element method for analysing the propagation of helicon waves in a
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flaring static guide field. To be able to calculate propagation in an arbitrary flaring field,
exact solutions valid in each element are obtained. A simplified WKB approximation is
also obtained and compared to the exact solution to provide one criterion for its range of
validity. As an illustration, the method is used to calculate propagation in a guide field
which flares slowly enough to use the WKB method.

In both ionospheric and industrial cases, helicon waves are usually confined to regions
bounded by curved static magnetic fiel@y) line surfaces. Although theoretical and
experimental treatments of cylindrically confined helicon waves are a vigorous ongoing
research subject, there is very little experimental or theoretical published research on helicon
waves confined in a non-uniform field geometry. In section 2 of this paper we consider that
case by first formulating a helicon vector wave equation for an arbitBaryWe anticipate
calculating the propagation in an axisymmetric guide field by employing a method (see, e.g.,
Sporleder and Unger 1979 or Solymar 1959) commonly used for calculating microwave
propagation in horns and couplers. For guided waves in vacuum, authors usually segment
the enclosed region into either a sequence of cylinders, or a sequence of lenticular regions
with coaxial conical sides and spherical surfaces perpendicular to the axis. In this paper,
where a plasma-filled guide is considered, we use the latter approach. In each lenticular
region we employ spherical coordinates with the origin at the apex of the tangent cone. The
magnetic field lines then coincide with radius vectors on the conical surfaces and the axis,
and are approximated by them in between.

The helicon vector wave equation is reduced to a pair of coupled equations for two
scalar functions in the case that the elements of the dielectric tensor are functions only
of the spherical radius in each lenticular region (i.e. there is no transverse dependence).
Assuming, along with Chen (1991), that the normal component of the wave current vanishes
at the conical surfaces, we find solutions of the coupled equations that are separable in
spherical coordinates for azimuthally symmetric waves = 0). The #-dependence is
described in terms of Legendre functions of non-integer eigenvalu€he two coupled
radial equations can be reduced to a single fourth-order ordinary differential equation (ODE,
see equation (17)) for the radial functiorfs,, with complicated coefficients. The separation
can also be made for the small cone angle limit, and arbitrarfhe ODE is then considered
for the frequently encountered intermediate frequency case

Wi <L w K Wee < a)pe (1)

wherew, w: and wp are the wave, cyclotron, and plasma frequencies, respectively, and i
and e refer to ions and electrons.

In this approximation displacement current is negligible, as is the electric wave field
along the guide field (due to high conductivity), and the wave current is primarily Hall
current. To be specific, we consider a configuration which occurs in many experiments
and processing tools in which a steady-state plasma is produced in a high magnetic field
region where it has very high mobility along the field lines and low mobility transversely.
The plasma is assumed to expand freely along a flaring magnetic field into a large volume.
Since the conserved particle flux is directed along the field lines, its divergence, as well
as that of By, vanishes. Assuming a constant flow velocity/ By is a constantiy is the
electron density). As the plasma expanBg, and hencevc., decreases untib.e approaches
w, the electrons approach cyclotron resonance and the second inequality of equation (1)
is no longer valid. In most cases of practical interest ionic effects are unimportant and
the first inequality of equation (1) is valid. Of course, since the coordinate system is
fitted to the boundary field lines and the magnetic field is divergence free, the lenticular
regions need never include the origin. Although the fourth-order ODE is more generally
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applicable, we restrict our considerations in the remainder of the paper to regions where
inequalities (1) obtain, and we scale the radiysn each region to the whistler wavenumber

in an unbounded medium = (wp/c)(w/we)Y/?, i.e. x = gr is the non-dimensional radial
variable.

In section 3 we address the general case where it is necessary to follow the solution
over the entire range of the non-dimensional radial coordinat®e calculate it accurately
for all cases of practical interest. The direct numerical approach to solving an initial-
value problem by integrating the equation numerically, for example, using thgdR
Kutta method (Dahlquist and Bjck 1974) does not work in the present case because
there is a solution to the equation that grows exponentially with Consequently,
any error in the initial value, or in the numerical computation, will eventually be
amplified exponentially as increases and will overshadow the desired solution. Our
attempts to solve the equation numerically on a PC in double precision (16 digits)
failed for radial distances(x; —x;) = 20, and so a different approach must be
taken.

Instead of direct numerical integration, we find analytic functions which represent the
solutions to the equation. The usual special functions that arise in mathematical physics (e.g.
Bessel, Legendre and hypergeometric functions) are solutions to second-order differential
equations. For the present fourth-order equation, no such previously obtained solutions are
available.

In section 3.1, we find four power series solutions to the ODE, equation (17), which
converge for alk using the method of Frobenius (Morse and Feshbach 1953). Each of these
four series is asymptotically proportional t6 for large x. However, for largex, equation
(17) has four independent solutions that approath and €. For physical problems of
interest we want to obtain outgoing and incoming wave solutioh$)@sx — oo which
are valid for allx. Consequently, we must remove the exponentially growing components
from the Frobenius solutions. This is done by finding four linear combinations of the four
series solutions which approacheand & *, respectively, as — oc. In section 3.2, we
obtain four asymptotic expansions for the solutions to equation (17), in the form of series
in inverse powers of the normalized radial distancéimes €* or e=*. For particular
integer values of the eigenvalde(¢ = 4N,4N — 1; N = 1, 2,...), the series terminates
after ¢ — 2 terms and the asymptotic result becomes exact for.alh section 3.3, double-
integral representations of the four series solution are obtained. In section 3.4, by asymptotic
evaluation of the integral representations in the limit of Igngethe connection between the
convergent series expansions and the largesymptotic expansions is made. It yields four
linear combinations of the four series solutions that approacdh and €+, respectively.

The general solution can be computed using the appropriate linear combination of the series
solutions for smalk and the asymptotic expansions for lasgeResults of the computation
are shown for outgoing waves.

In sectim 5 a WKB approximation to equation (17) is obtained and compared to
the exact solution. A sufficient condition for the validity of the WKB approximation is
k'/k « k, wherek is the WKB wavenumber an#l’ its derivative with respect te. The
condition that the rate of flare of a guide field be sufficiently gentle to render reflections
negligible has the same form, except that the derivative is with respect to the axial digtance,
As an illustrative example, we calculate the helicon wave field emanating from a source
in a finite solenoid with end windings arranged such that it produces a cylinder-like guide
field followed by a flaring field which can be approximated near the solenoid by a parabola
of revolution. We follow the waves for as long as both the WKB and the conditions of
equation (1) are met.



132 D Arnush and A Peskoff
2. Formulation

For concreteness, consider figure 1, where we index each truncated conical element by the
z-coordinate of its left-hand boundary circle. Consider a wave incident-at0 from a
cylindrical guide on the left. Conical waves propagate from element to element, with all
components of their vector fields continuous at the spherical interfaces. At the spherical
surface separating regionsandn + 1, to ensure that the fields be continuous as a function

of ¥, the field solution of the: region can be expanded in spherical harmonics of the

n + 1 region. Thus, a spectrum dfmodes is generated. For ea¢imode, to ensure

field continuity in the radial directionH,, H,, H, and H,” must be continuous and, in

the general case, all four solutions of the ODE have to be employed to satisfy the four
conditions. On physical grounds we expect that for guide fields approximated by cones
with slowly changing angles the forward propagating solution dominates. In the more
general case the backward propagating reflected wave and the two exponential solutions
provide corrections necessary to account for the curvature of the transverse boundary.

T T i i 1

0 4 8 12 16 20

Figure 1. Construction of a finite element (conical
segmentation) in flaring fields. In a plane which
includes the axis of symmetry, boundary points

b, are selected at uniforma-coordinate intervals
(for example). A, is the intersection of the-axis
and the line which includes, andb, 1. Thenth
conical segment is bounded by the cone with its apex
at A,, and the spherical surfaces with centres at
A,, and radii given by the distanced,(, b,) and
(A,,, A)H»l) + (An» bn+1)-

For z < 0 (in the cylinder) we have an incident and a reflected wave, and a solution
which decreases exponentially to the left. In the interior elements, we have all four solutions.
If there areN interfacial surfaces in elemem + 1, which includes the point at infinity,
we have an outgoing wave and a wave that decreases exponentially to the right. For a unit
incident wave, there areM functions and & equations corresponding to the conditions at
the surfaces. If we terminate the angular eigenfunction seriés itis necessary to solve
4L N simultaneous equations inL& unknowns.

2.1. Vector wave equation

We form an orthogonal curvilinear coordinate syst&n,, &, whereé3 is the unit vector
alongé&s. Assuming exp—iwt) time dependence, most of the dominant physical properties
of helicon waves can be obtained using the dielectric tensor for a cold collisional plasma
(see e.g. Stix 1992),
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where the three tensor directions at any point coincide with the three orthogonal curvilinear
coordinates, and

1 w? (w—i—ivj)

—(R+L)=1-

=5 R+ ) = Z (w+ |vj) —o? (3a)
_E_ B Ej Wej W, pj
B Z(R b= Z o(®+iv))? — a)gj (30)
=1- Zw(w+|l)] (3C)

where j is the speciesg; the sign of its charge ang} is the collision frequency. Using
equations (2), (3), and Maxwell's equations, we readily obtain

V x B/ug=J — iweoE = Jp = —iweo[SE| + PEsés +iDE&s x E] (4)

whereE, = E — E3§3. Equation (4) can be inverted to solve fBrin terms ofV x B.
Using wB = V x E, we obtain

E = Q)Lso[iﬂlés x Jr + (B3 — B2) Ir + Ba€s x (€5 x Jr)] (53)
KB =V x [ifrés x (V x B) — oV x B) + Pa(V x B)aks] (50)
where
ko = 8 B1= LoR = o
c 2RL  D?-—§? (6)
R+L S 1
Po==%pL “pi_ge A B=ptpe

The coefficientsf; and B3 — 8, are dimensionless Hall and conduction impedances,
respectively. The third coefficienfis, vanishes in the absence of displacement current.
In vacuum,B; = B3 = 0, B2 = —1, and equation (5) reduces to the vector Helmholtz
equation (V2B + k3 B = 0). For intermediate frequencies typical of laboratory values
(ng = 10 cm™3, By = 1 kG andw/27r = 27 MHz and hences = 1.7 x 10°, wee =
1.8 x 10'° andwpe = 1.8 x 10! rad s1), the inequalities in equation (1) obtain, and

B = ~10% = P and = 2.

Wee

W Wce ~

2
a)pe

Hence,B1 > B2 > B3. Note that in this limitg; is independent of collisions. At lower
magnetic fields, in thas — w limit, B, approache; but 83 remains negligible.

2.2. Vector equation separation in spherical coordinates

We employ the multipolar potential method, used by Morse and Feshback (1953) to separate
the vector Helmholtz equation in five confocal quadratic coordinate systems, by applying it
to equation (5) in spherical coordinates and assuming that

B=M+N M =V x (#ry) and N =VxVx@#ry). )

Sincer-M =0andr-V x N =0, M and N are interpreted as transverse magnetic and
transverse electric wave fields, respectively. For the vector Helmholtz equatfcemd N

and hencap and y are decoupled, and each scalar function satisfies the scalar Helmholtz
equation, e.gV2y + k3@ = 0. For the helicon wave equation, we insert equation (7) into
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equation (5), and find tha¥Z and N are coupled. The insertion yields an equation of the
form

VxP(x,#)=0

P = [ip1# x (V x B) — fo(V x B) + 3+ (V x B)?| — k3[fri+ V x (7ry)].

Equation (8) is solved if we can demonstrate that there exists a scalar fungtisach that
Py, x,7)=-Vf. 9)

Equating the vector components of equation (9), we find that it is satisfied for

. 0
f=ipurViy + By (rW).
r

Using this relation to eliminatg' from the component equations, we obtain

2 0 2 2 dgz 9 ) 92
korgp = aT('ﬁer X)+ﬂ2”v '-I-"i‘ﬁa(”w) — B3 |rVy— ﬁ(”w) (10a)

®)

. 0
Korx =By (r0) + BorV2x . (10b)

The 81, B2, and 83, and hence the plasma parameters, may be functionshaft not of

or ¢. In the intermediate frequency approximation of equation (1) this condition requires
thatng/ By be a function of- only. Thus, in contrast to the usual treatments of cylindrically
confined waves in which exponentialdependence of the fields is assumed from the start,
the equation is separable for plasma parameter variation along, but not transverse to, the
direction of wave propagation. Sinak and ¢ derivatives in equations (&) and (1®)

appear only a2, we expandp and x in the angular eigenfunctions 612, the spherical
harmonicsYy,,, (9, ¢) = P;"(cos®) exp(img), where P} (cosy) is the Legendre function:

rU=Y Fon (M) Yen® @) and  rx =Y Genl) Yeu(®, ¢). (12)

£,m L,m
The separation constants and m are determined by the boundary conditions. Since
0 < ¢ < 2m, and the fields are continuous,is an integer and the-modes are independent.
Defining the operatoD?

. P+
T g2 2
inserting equation (11) in equations (10), using the second-order differential equations that

exp(img) and P,"(cos?) satisfy, and the orthogonality of the exp¢) to eliminate the
sum overm, we obtain

(12)

L+ 1) . oo

Z {kSFZ.m - IBZD(?FE,m - ﬂéFLf/,m - IBST Fl,m - (Iﬂng?GZ,m) } Pg = O (1$)
€
Z {kSGLm - ﬂZDEGZm + iﬁlFé,m} Pén =0 (13))

4
where the primes denote differentiation with respect.td®Ve assume that for each, the
component of the current perpendicular to the boundayyyanishes. Using equations (4),
(5), (7), and (11), we obtain at the conical boundatys= ¥,

d m
Jy = 1 — P — ——B1P" | F,

norJy Xe:”:( +'82)dl9 Ji SinﬁlBl Z] Lm

H d m m m
+ ||:,31dl9pe _(1+,32)WP5 :|D?Gi,m}

= 0. (14)
172190
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For separability, it is required that there exists a set of eigenvalués safich that for
each eigenvalue, the curly-bracketed expression in the boundary condition (14) vanishes
for all . For these eigenvalues &f the P;"(cosy) would then be an orthogonal set of
eigenfunctions. As a consequence of the orthogonality, the expressions in curly brackets in
equations (13) and (13), for each¢, must vanish, leading to a pair of coupled differential
equations forfF, ,, and G, ,. The expression in curly brackets in equation (14) does not
separate into a function of times a function ofi, unIesng,m/Df Gy is independent
of r. But this can be seen to be impossibleFif,, and G, ,, are solutions of the coupled
differential equations arising from equations (13). (The functiénand G would be over-
prescribed: three non-redundant equations for two unknown functions.) Thus, separability
can occur only if both expressions in square brackets in equation (14) vanish simultaneously
for all . This is in turn possible if either

d m
=1 d —— P"(cosv) — P! (cos® =0 15
B1 + B2 an [ i b (cos®) sing 1t (cos )} - (1%)
or
d
m=0 and — P/"(cosy) =0 (150)
do v,

are satisfied. The conditiofy = 1+ B, in equation (18) is not physically realizable for
the intermediate frequency case equation (1). Consequently, separability is only achievable
for the azimuthally symmetric case = 0. In effect, the transverse electric and magnetic
modes satisfy functionally different conditions at the boundary, and their coupling by the
helicon interaction prevents the general simultaneous satisfaction of both. Forfiked
the larger limit, G,/r? can be neglecteds; and G approach proportionality and hence
the equation can be satisfied approximately for gacFhe result might be anticipated from
the fact that for large and fixedrdy, a conical segment approaches a segment of a cylinder
in which higher order modes are separable. For further insights from comparison with the
cylindrical case, including a generalization of the familiar helicon dispersion relation of
Chen (1991), see the appendix. Unlike the case wiRftécosy) covers the domain of
0 < ¥ < 7, the eigenvalues,, are not integers. The goal of the remainder of this effort is
to analyse the axisymmetric cage= 0.
Settingm = 0, and using the orthogonality of th® in equations (13) and (13), we
obtain
(e+1
2
k3Ge — B2D?G, +ip1F, =0. (15d)

k§Fe — BoDZFy — B5F, — Ps Fe — (iﬁngzGe)/ =0 (1%)

F, can be eliminated from equations ¢}3and (13/) to obtain a single fourth-order ODE
which is valid for anyg;, B8, and B3 which are functions of only.

2.3. Intermediate frequegan = O waves

We now proceed to investigate the solutions to equations) @ (13/) in the intermediate
frequency regime of equation (1) far = 0. Neglectings; and g,, defining the function
H, = D?G,, and eliminatingF, = i (81H,)' / k3, equations (18 and (13/) can be reduced
to the single equation

@[, & (e+1y, &
o2 | Prgs Bt | = 5 a0 — g = 0. (16)



136 D Arnush and A Peskoff

To explore the solutions to equation (16), we assume, as explained in the introduction, that
there is no plasma production and negligible transverse plasma transport in the flaring field.
In that case, we expect th@i o« Bo/ng will be constant. Equation (16) then takes the
deceptively simple form

d* (+1) &

aea e~ desz—Hz—o (17)

where we have used the general definitiory 6f ko/ﬂl/2 The fields take on a simple form
in terms of H:
L+1 o
Bio= fag PH] + = P /(OH]" —ipH))
o (18)
Eg'()— 7P (19Hg IQDHZ)
qx

We can exploit the connection between small angle cones and cylinders to egtinféie
second-order differential equation for the Legendre function becomes Bessel's equation in
the small angle approximation, sin~ ¢. This provides an approximation t8, which

is accurate to about 1% in finding the zerosRjfat 9o = 1 (¢ ~ 3), and improves for
larger¢. For:

Jy=—J1(jr.) =0 Py(cos®) = Jo([€ + 3] 9) b = Jl;’: -3 (19)

Noting the appendix, equation (1%, for r ~ a/9% we havel/x ~ (jl,,l/l‘}o) (o/a/q) ~
T/q, showing directly the correspondence between the cone and cylinder, equations and
eigenvalues.

3. Solution of the ODE

3.1. Power-series expansion

To develop the power-series representation of the solution to equation (17), we assume that
oo
H(x) =) A,x"* (20)
n=0

and insert equation (20) in equation (17). For compactness, we have omitteduhscript
of H,(x). It is assumed in equation (20) and henceforth ttiat), A,, ands depend ory,
without so indicating. The requirement thag # O provides four possible values fa:

(51,82, 83, 82) = (£+3,1,0,2-2). (21)

Gathering the coefficients of equal powersxoéind requiring that they vanish provides the
recursion relation

n+s—s)n+s—s))(n+s—s3)(n+s—s4)A, =A,4. (22)
SettingAp = 1, we may solve ford, provided?¢ does not take on the particular values
¢=4N+2, AN+3, or 2N -} (23)
whereN is a positive integer. With that restriction, we obtain the four independent solutions:
4
F(1+ s —-si) /4 1 4n
H(sx) =) T] k) ) (24)

F(n+1+(- si) /4 nl \4

n=0

i

l
i

#II
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A straightforward formula forH when ¢ takes on the values forbidden by equation (23)

is available (Morse and Feshbach 1953). We will not repeat it here because, m5iisce

a continuous function of, those values are easily avoided in any practical calculation.
For the accuracy required in the graphs in figures 5 and 6 the functions are computed at
¢ = N +0.001 instead of¢ = N. The series equation (24) converges in the finijglane.

For largex, the largen successive terms of each series approach every fourth term in
the series for & Consequently, it can be shown by comparison that all four series grow
exponentially.

3.2. Asymptotic expansion

In thex — oo limit, equation (17) approaches the simpler fourth-order equation

(i—lj — H=0. (25)
Four independent solutions to this equation are

H(x) =¢e™ (26)
where

(P1, P2, p3, pa) = (i, =i, +1, =1) (27)

are the four roots ofp* = 1, corresponding to an outgoing wave, an incoming wave,
exponential growth, and exponential decay, respectively.

To develop asymptotic expansions for the solutions to equation (17), first we find the
solution for p3 = +1. We assume a form for the growing exponential solutiorny as oo,

M
H(x) = €w(x) “e"ZBn% (28)
n=0

where(M + 1) is an optimum number of terms used to represgit).
Substituting equation (28) in the differential equation (17)Hx) yields the differential
equation forw(x),

d*w dPw

00+ 1)\ dw 200+ dw £LE+1D)
—— 44— 6 — — 4——— ") — —
ae T dx3+< )dx2+ & x?
Substituting the series in inverse powersxafrom equation (28) in equation (29), and
equating terms with like powers af, we get the recursion relation

w=0. (29

x2 x2

Bo=1 By — _m:l) Bzz—z(g—; D2 e+ 1)
AnB, = [6n(n — 1) — (€ + D] By_1 — 201 — 2)[2n(n — 1) — £(€ + )] By_2 (30)

—n—2)n—3J)[nn—-1) — L€+ 1)]B,_3 for n>2.

By computing theB,, for integer values of using recursion relation (30), we find that
if £=4N — 1 or 4N whereN =1,2,3,..., thenB, =0 forn > ¢ — 1. Consequently,
for these particular values @f the series in equation (30) terminates after a finite number
of terms. For these values 6éf it yields an exact solution of equation (17) in the form of a
polynomial in I/x times an exponential. This solution is valid for all For other values
of ¢, the series does not terminate, and the expansion is only asymptotic to the solution.
In the computations described below, we find that truncating the asymptotic series after the
B, term, wheren is the largest integer less th@nyields an accurate representation of the
solution for largex, i.e. x > <.
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If H(x) is a solution of equation (17), theH (px) is also a solution. Consequently,
four independent asymptotic solutions of equation (17) are give{byx). We denote
these four solutions by, 1(x), ke 2(x), hes(x), andh, 4(x), respectively. As an example,
for £ = 3,

3
hs j(x) = (1 - ) e’i* (31a)
pjXx
and for{ = 4,
5 5
ha j(x) = (1—+22>ef'f". (31b)
pjx  p;x

Figure 2 shows the real and imaginary parts of the outgoing wayggsand /g 1.

Equations (34) and (3D) indicate that all four solutions diverge at= 0. One can
construct an outgoing wave solution that does not become infinite at the origin, using the
solutions in (3%) and (3d), by taking the linear combinations

h3s(x) =hsz1—ih3a
has(x) = ha1+hag. (31)

These are two outgoing waves foe= 3 and?¢ = 4 that are finite at the origin. In fact, we
will show later that these are just two special cases of the general result that

hes=he1+€ % hyq (31d)

is an outgoing wave, finite everywhere. In the largasymptotic limit,z, 4 is exponentially
small, and consequently, ; andi, s have the same asymptotic limit.

In figure 2, the real and imaginary parts/ofs for ¢ = 3 and 4 are shown, along with
the corresponding, 1. Note that R¢h, 1} for £ = 3, and In{h, 1} for £ = 4 are not infinite
atx = 0. This may be verified by multiplying the polynomials in equations:{3nd (3b)
by the series expansions of the exponentials, and substituting in equatign (31

(b)

o mih |

4,1

h3’ I(x) and hs, 5(x)
h4’ 1(x) and h4’ 5(x)
=)

) oy
2 Refh, ]
Re{lll4,s]

0 5 10 15 2 “o 5 10 15 20

distance, x distance, x

Figure 2. Exact solutions for the real and imaginary parts of the ‘pure’ outgoing wavey),

for I = 3 and 4. The exact solution for the imaginary part of the outgoing wave finite at
the origin Imfy; 5(x)] is shown for/ = 3 and Ref; 5(x)] is shown forl = 4. Forl = 3,
Ref; 5(x)] = Refry 1(x)]. Forl =4, Im[h; 5(x)] = Im[A;1(x)]
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3.3. Integral representation aff,(x)

We start the task of obtaining an integral representationHfioby using the two series for
the ordinary and modified Bessel functions of orddAbramowitz and Stegun 1964), and
defining a new functiong (¢, z), by

D, 2) = 3(z/2) " [Je(@) + L(2)]

_ i (z/2)™ 32)
— )T (2n+L+1)

where the(z/2)?" terms in theJ, and I, series withn odd have cancelled. We will find
two integral transforms ofb (¢, z) to transform the sum in equation (32) into the sum in
equation (24).

First, we use the integral representation of the beta function and the duplication formula
for the gamma function (Abramowitz and Stegun 1964) to obtain

1 1
/ p-12 (L 2 — giieg-an PP DT+ ) (33)
0 Flp+DI(p+q+1)

which is valid forp > —3, ¢ > —3.

Next, we define an integral transform @f(¢, z) by

1
V(a,b,y) = / ® (2a, yt**) (L — 1)~ Y2 gr
0

oo (y/2)4nfoltnfl/2(1 _ t)bfl/Z dr

:; ) T(2n + 2a + 1)

ver(p 4 1) 3 SL (34)
-7 2) 2 i @i+ 20+ D 45+ 1)
forb > —%. The last equality in equation (34) was obtained using equation (33) pith:
andq = b to evaluate the integral. In equation (34) we have eliminated the unwédigd
that was present in the denominator of equation (32), and introduced &mel " (n + b+ 1)
needed in the denominator of equation (24).
Finally, we define an integral transform @(a, b, y) by

1
Q(a,b,c,x) = / Y (a, b, xs1/4) 1- s)"_"_l/zs“_l/2 ds
0

00 2n el pyq— c—a—
N L S Lot it
i~ plh(2n+2a+DT(n+b+1)

o (x /™

=2%gr (b—}—%) F(c—a +%) Z

o nTm+a+DI'n+b+HI'n+c+1)
(35)

fora> —3,b > —3,c—a > —5 . The last equality in equation (35) was obtained using
equation (33) W|thp =n+a andq = ¢ —a. In equation (35) we have eliminated the
'(2n + 2a + 1) that was present in the denominator of equation (34), and obtained the
final two gamma functiond’(n + a + 1) andT'(n + ¢ + 1), needed in the denominator of
equation (24).
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For convenience, we defin€, which is the sum in equation (24) without the factors
that are independent af
= (x/H™

H~ ’b7 9 = !
@ b, ¢, x) ;n!l"(n+a+1)F(n+b+1)F(n+C+1)

(36)

Combining equations (34) and (35), we have the double-integral representatifi for

();/4)_&1 . /lsa/Z—l/Z(l _ S)L‘—a—l/z
27T (b+ 3) T(c—a+3) Jo

1
x </ 22— 1)PY2 gy (xsM 4 YA) + Iy (x4 dt) ds (37)
0

I:I(a,b, c,x) =

—a>-1

1
fora>—§,b>— >

e
4. Constructing propagating and exponentiating solutions

4.1. Asymptotic behaviour of equation (24) fof — oo

Using the integral representation of equation (37) and the known large-argument asymptotic
behaviour of the Bessel functions (Abramowitz and Stegun 1964)

Jou (xsl/411/4) ~ (7'[)6/2)_1/25‘_1/81‘_1/8 COS()csl/‘ltl/4 — (a + 211) 7'[)

12a (xsl/4tl/4) ~ (2ﬂx)71/2S71/8t71/8 eXp(XSl/4tl/4)
for real argumentscs'/4t1/4 of J,, and I,,, we can evaluate the asymptotic behaviour of
equation (37) in the — oo limit. The contribution to the integral from the, term grows
exponentially, whereas the contribution frafg, decreases with increasing because of

the rapid oscillation of/,,. Consequently/,, will not contribute to the leading term in the
asymptotic expansion and can be ignored. We have, therefore,

(27T)—3/2x—1/2(x/4)—2a /‘lsa/z_l/z(l_s)c—a—l/z
F(b+3)T(c—a+3)Jo

1
X </ 72Y2(1 — )b Y2g 8B exp (x5 M AT dr) ds. (38)
0

ﬁ(a,b, c,x)~

Furthermore, in thex — oo limit, the major contribution to the double integral in
equation (37) or (38) comes from the immediate vicinitysol= 1,7 = 1. To obtain
the leading term in the asymptotic expansion, we can repl&@e®?® and:=/2-58 py 1.
(To find higher order terms, we could expand about 1 ands = 1, but for our purposes
we only need this first term.)

Making a change of variabless = u®* ¢ = v* we can make the additional
simplifications,
L—s) Y2 5[40 — w)]ceV? as u—1
Q-2 5[4 - )] Y2 as v— 1.

Introducing these changes of variables and limiting forms in equation (38), we have
77 —3/292a+2b+2c+1/2 \.—2a—1/2

Fr(b+3)r(c—a+i)

1 1
X / (L— w2 (/ (1 — v)P~ 12w dv) du . (39)
0 0

H(a,b,c,x)~
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To obtain the asymptotic limit of equation (39), we first evaluate the asymptotic limit
of the following integral in the8 — oo limit:

1 B
/ (1—¢&)efds = ﬂ—“—leﬂ/ wedw > BT (e + 1) (40)
0 0

where 1- & = w/f, and the integral representation of the gamma function is used to obtain
the limit. Using equation (40) twice in succession in equation (39) as oo,

1 1
/ (1 o u)cfafl/Z </ (1 o U)bfl/Z gruv dv) du
0 0

1
T (b + %) x—h—l/Z/ (1- u)c—a—l/Zem du
0

—>T(b+ 3 (c—a+3)x " te. (41)
Substituting equation (41) in equation (39),
I:I(Cl, b, c, x) ~ n,—3/222a+2b+2c+1/2x—a—b—c—3/2ex . (42)

In the derivation of equation (37), it was required that> —31, b > —1, and
c—a > —%. By making the correspondence betweens andc in equation (36), and
s; — 8¢ in equations (21) and (24), we find that the inequalities can be satisfigd=fot, 2
and 3. But for thes; = 54 = 2 — £ with £ > % no selection ofz, b, and ¢ satisfies the
inequalities, the integral representation fdrdiverges, and the derivation of equation (39)
in this case is not valid. However, by analytic continuation (Morse and Feshbach 1953) the
asymptotic result of equations (41) and (42) must be valid, even in this case. This is true
because equation (39) is an analytic functionaob or ¢, which we have shown agrees
over a range ofi, b or ¢ with the leading term in the asymptotic expansionHf(x), but
is itself analytic over alk, b, c.

Inserting the factors in equation (24) that were omitted from equation (36), and using
the result

a+b+c=s— g
obtained from equation (21), we have the asymptotic result as oco:

H(s,x) = C;e"

—¢—-3 s—1 K} s+L—2
=@y ¥2rir (1427 T (1 r(i1+-)rf1+=—"-=).
C, = (27) +— +> (+4) +=

(43)

4.2. Connecting the power series and asymptotic expansion

We now can find the four linear combinations of the four solutions to equation (24) around
x = 0 that approach'g e, € and €* asx — +oo. By exploiting the symmetry
properties of H (sj,x) in equation (24), we may generalize the result of the previous
section to deduce the asymptotic behaviourxas> —oo, and +ioo from the behaviour
asx — +oo. Equation (24) may be written as

H(s,x) = x*Fy(x%) . (44)
SinceF, is a function ofx*, we see that

lim F,(x) = lim F,(x* = lim FGx* = |x|~C,e" (45)
xX—00 xX——00 x—%ioco
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whereC; is given by equation (43). Substituting equation (45) in equation (44),
lim H(s,x)= lim x'|x|~*C,&" =& C,e"!
X—>—00

X—>—00

lim H(s,x)= lim x*|x|°C,e™! = et /2C el

x—tioco x—=tioo
in which we have defined the phase.ofn the range-n < (phase ofx) < 7. Using the
results in equation (46), we can write down the linear combination of the four asymptotic
solutions for|x| — oo that give the asymptotically correél (s, x) along the positive and
negative real and imaginary axes:

lim H(s,x) = C,[e""/2d" + €"*/%e7™ 4 &' + & e ] . (47)

|x|—00

(46)

Denoting the analytic continuation of the folix| — oo solutions &% and €~ in
equation (47) by 1(x), he2(x), hea(x) andh, 4(x), respectively, and deleting the subscript
£ for convenience, it follows that

H(s, x) = Cy [€7™*hy(x) + €"*/hp(x) + ha(x) + €™ ha(x)] (48)

where, agains can take on the four values given in equation (21). Equation (48) is a
system of four equations that can be inverted to obkairk,, i3, andhg, which are each a
linear combination of the four functiond (sj,x), j = 1,2 3,4, and which approach’e
e, " and €7, respectively, ag — oo.

Substituting the four values ofin equation (48) and writing it in matrix form, we have

H(Z + 3’ X)/Cg+3 ie—inZ/Z _ieinK/Z 1 _eirr( hj_(x)
H(1,x)/Cy _ —i [ 1 -1 ha(x) (49)
H(,x)/Co - 1 1 1 1 ha(x) |’
H(2—10,x)/Coy —grtiz _gintj2 g grint ha(x)
This matrix may be inverted and, after lengthy algebra, the result is
1 4
hi(x) = ) ZAin (sj, x)/Cs, (50)
j=1
where
g7l 14
D=8 (cosn( + sir® % + cos 7T2> (51)
and
A iB B iA*
A* —iB* B* —iA
E —B B —FE
where

. ol . g4
A=1-sinmtl —cosrnl— 2 sm7 —i(1—sinmf +cosnl + 2 cos7

B = 2| cosr{ + sin ¢ + cos ¢
— - -
2 2 (53)

44 e
E=-2[1-sin— 4+ cos—
( 2 " 2)

C = —E(cosnt —isinmt).

The elements of the first row of the matrix (52)}4,;, i.e. the coefficients for
computing the outgoing wave, can be found by applying the Gaussian elimination method to
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equations (49). The other three rows can then be obtained from the first row by exploiting
the symmetry properties aff (sj, x), equation (46), which imply equation (50), we have

4
lim hy(x) = € = lim {ZAle(sj,x)/Csj}.
X—>00 X—>00 j:l
Replacingx by —x in equation (35), and using equation (46), we obtain

4
i . 1
e — lemoo {jg_l Ale (Sj, —x) /Csj} B

4
= lim {ZAlj ém/-H(sjvx)/Céy}Ll)
j=1

Agj = Ay €™ (54a)
Az = Ay e'm/? (54b)
Agj = Aq;€m9/2. (54c)

Note that if £ > 2, hy(x), ho(x), ha(x), and ha(x) all approach infinity asx — 0,
because they each contal (s4,x). In particular, hi(x) ~ € asx — oo, and
hi(x) ~ constantx x2~¢ asx — 0. We can construct a linear combination /af(x) and
h4(x) that is bounded at = 0. And sincehs(x) ~ € * asx — oo, this combination is still
asymptotically an outgoing wave as— oo. Denoting the outgoing wave that is bounded
atx = 0 by hs(x), using equation (59 with s; = 2—¢, we have, after some manipulation,

hs(x) = hi(x) — ha(x)A1a/Ags = h1(x) + ha(x)€™"/?

. He(£+3,x) < Tl .. n@) H,(1, x)
=B|Q+1)————= +|CcOoS— —i+isin—
[ Coys 2 Cy
. ml mf\ H,(O, x)
— |14 sin— 4 cos—- 55
( e 2> Co } (55)

where B is given in equation (53). Note that, of course, there isHh@2 — ¢, x) term in
equation (55).

The full curve in figure 3 displays the real part of the outgoing waye(x) for
¢ = 8.5, computed from the linear combination of the four seriégs;, x) given in
equations (50)—(53). (This value @éfcorresponds, see equation (19), to a cone angle of
o = j11/ (Z + %) = 0.43 rad= 24°.) The computation was done on a 486 microcomputer
in double precision (16 digit accuracy) using a Microsoft Fortran 77 program. The gamma
functions were computed using the approximation derived by Lanczos (Bre$4994).
It is seen in figure 3 that the series computation breaks down fgr32. The breakdown
occurs because we are computing a linear combination of the four fun(mom, x), each
of which is proportional to &= €*? ~ 10'4, to obtain a quantityz, 1(x) which is~ 1. The
broken curve is computed from the asymptotic expansion, using the recursion relation (30).
It coincides with the linear combination of th# (s;, x) series over the range®< x < 32
and extends the solution to arbitrarily large It breaks down, however, for < 2.5.

Figure 4 shows the result of the same computation for the funétigm(x), which is
finite at x = 0, obtained using equation (55), rather than &gk 1(x), which is infinite
atx = 0. For¢ = 85, at smallx the computation using the linear combination of the
H(s;, x) series is accurate, at largethe computation using the asymptotic expansions is
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accurate, and for a very large intermediate rande 2 x < 32, they are both accurate
representations of the solution. We have illustrated the computations in figures 2 and 3 for
¢ = 8.5 in order to compare the computation using equations (31)—(34) and (38@&@.5

with the computation using equations (47) and (49), shown previously in figale fof

the comparable valué = 8. The results shown in figures 2 and 3 have the same general
form as the results fokg1(x) andkgs(x) in figure 1¢), as one would expect. Below, we

will show the dependence ahover a wide range.

It should be noted that, although we have an exact solution in the form of a finite
polynomial times an exponential for special values fof= 3,4,7,8,11,12, ..., the
computation ofz, 5(x) from these solutions at small and large?¢ presents computational
difficulties. The finite value of these functioms s(x) at x = O is the result of a delicate
cancellation of large terms in the polynomial-exponential product solufighsand 4, 4.
Consequently, the linear combination of the four infinite seﬁ@sgsj, x) is the method of
choice for computingi, 5(x) for large ¢ and smallx.

For the most general problem that can be approximated by a sequence of contiguous
segments of truncated cones, as described in the introduction, all four solﬁﬂc(njs x),

j =12, 3,4, are needed to satisfy boundary conditions between adjacent conical segments
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(or, equivalently, all four solutiong, ;(x)). We have not shown the results of numerical
computations of the functiong, (sj,x) because they are not very informative. The
oscillations that we have seen in the solutions as a functiow, adlthough obviously
present since they emerge after performing the appropriate linear combinations, are totally
obscured in the individual (s;, x) functions by the exponential growth present in each
function.

In figure 5, the real and imaginary parts of the outgoing wave that is finite=at0,
hes(x) are shown for 0< ¢ < 28 and 0< x < 30. The computations were done using
the linear combination (55) of the four seri (s;, x) for 0 < x < 20 and the asymptotic
expansion for 20< x < 28. We see that fof = 0, the function settles down to its
asymptotic form & very quickly. (The solution for = 0 is justhgs(x) = €* + e7*.)

For increasing, it also approaches*e but only after oscillation-free intervals af which
increase in length aéincreases (much like the behaviour of the Bessel funcfign), for
example, except that in the present case the oscillation is undamped). Therg2phase
difference between the oscillation of the real and imaginary parts. In figure 6, the real and
imaginary parts of, 5(x) = d?h 5 (x)/dx? are shown. According to equation (18),s (x)

is required for calculating the radial component (along the axis of the cone) of the magnetic
field, and together witlk, 5(x) for calculating the two components (transverse to the axis)
of the electric field.

4.3. WKB solution to equation (17)

In the usual manner (see, for example, Swanson 1989) a WKB solution to equation (17)
can be obtained by assuming the form

H(x) = A(x) explig (x)) = A(x) EXIO(i / k(y) dY) (56)

0

wherexg is an arbitrary location where the phase is chosen to be zerb igrt$ wavenumber
divided byg. A(x) andk(x) are assumed to be slowly varying functions, so that we can
neglect (using a prime to denote derivative with respect)td”, k”, k'A’, and (k')?, with
respect toA, k, A’ andk’. Inserting equation (56) in equation (17) and requiring that both
the real and imaginary parts of the equation be satisfied, we get

K*+U%*-1=0 (57)

2k (2% + U?) A’ + (6k* + U)K A =0 (58)
where U%(x) = £(¢ + 1)/x? corresponds td'? in the cylindrical case. We choose the
propagating roots of equation (57):

k(x) = + [g (\/U“(x) iy U"’(x))]l/2 . (59)

Differentiating equation (57) and inserting the result in equation (58), we get
K 1 du?

ko 22+ u2)? de
A1 6k% 4+ U2 dU? _ 13JU*+4—-202dU?

- =~ 60
A 4(2k2+U2)2 dx 4 U*+4 dx (60)
which can be integrated exactly to yield
3/4
[02@) + VoA + 4]
A(x) = . (61)

[2(U4(x) + H]V4



146 D Arnush and A Peskoff

A

)

/8418
/8
S
W ‘
1HHEE {17y
IHHTH S, B //”l’,".,,~¢ ¥/ 11
s R IR R )/I"
it ALY & Y RN
l%%%ﬁ#@v:ll:ﬂiiliﬁ\%&éﬁ\%ﬁi\%& G
iy
[

%
1%

(@ gl

AT W\
llllllm':lm,,'.\\\\\,, NNy NN
N NN

i N\ AN |
T WAL

]
iy
LT
4 1]
""

aany

(a)
\ i
@) \*{i\\ -
\\“\\\\\\\ 4
Z \\\\\\ A
,\\\\ -
i ! /2
W
l\ SR 7\
’\
z v
2,
=3 77 1774
- 7 TR
- 7 i s NN
Y P H R R T NG AR
Z i g N\
= ,’,’,,l::::ﬁ,,,.{#,’,','[}:,"lq{\‘\\‘\![nﬂii\\\\\\w# N
l””"""l’l,"\\\\v",,, "\\\\\\‘\"’"I‘\\f:\f\\\\\'u NS
N NN
s N g NN SN\
NN AN SN
N A A
S, NN
\\\\\\\t‘\\‘\\"""" ¥y,
7
&
(b N e

Figure 5. The real ¢) and imaginary ) parts ofh; 5(x), as a function of andx computed
using the power series for @ x < 20 and the asymptotic series for 20x < 28.



Helicon waves in a flaring magnetic field

9 Z’ZEI,;;’I,‘:’;"; R
i s
R R 2 T
T, "'5‘5!'.-’""""1'1'«“\\‘:’1101"','-\ WAL
1] LAY AN N\
AN N
o

(@ 'Tlou

A

(a)

[ ‘S

]
it A
Y TR
TR NG NN
NN
WA
:","" NN
\X

(b) N ®

Figure 6. The real ) and imaginary &) parts ofg; 5(x) computed as in figure 5.

N\
ll'l"fi:\\\\\‘:”’ 7
W AN

WA

1/
R
NG
W7 N

1T :

147



148 D Arnush and A Peskoff

Thus, the form of equation (56) with the phase obtained from equation (59) is analogous to
the WKB solution for the case of a 1D inhomogeneous dielectric where the equation for the
field is second order. However, the amplitude in equation (61) differs significantly from the
second-order resultd = 1/(k)Y/?, because of the 2D boundary constraints and the helicon
coupling which requires that the fields satisfy a fourth-order equation.

It is convenient, particularly in view of the exact solutions obtained above, to fix the
phase of the WKB approximation so that

¢ (x) =/ k(y)dy =x 4+ I(x)

X0

wherel (x) vanishes at infinity. Takingo arbitrarily large, subtracting the arbitrarily large
constant, and changing variables, we obtain

$(x) = —5 .

«/£(£+1 /W) dy { [\/m_x}”}
oo x[14+ 2U() — EUZ(x) — £UB00) + -] (62)

Thus, the WKB approximation provides an excellent bridge to the cylindrical kmit oo,
U(x) — T (see the appendix).
The WKB approximation to equation (17) is valid for

1 9k U?
W, (0, x) = — —— =~ «1. 63
k2 9x t=constant  Xk+/ U4+4 ( )

The ratio of the WKB to the exact amplitude is shown as a functionafd? in figure 7@),
and the difference between the WKB and exact phases in figlje W for example, a
wave propagates from, to x,, the ratio of the magnitude of the WKB to exact solutions is
given by the ratio of the projection in figuredj(at x, to that atx;. Similarly, the difference
between the WKB and exact phases is given by the projection in figéjea¥ ¢, minus
that atx;. The contour plot projections shown at the bottom of the figures illustrate the fact
that the WKB approximation is excellent for many cases of physical interest.

The fields in this approximation are given by equations (18) with

H . &*+U? (U2

H Ut+4 \ 2x

H’ 4k U?

- = k14— 64
H [ + U4+4] (64)
H" 3k2U? 2k2 —

N A

H 2 x U4+4



(suerper) 9IUIIRHHP aseyd

Helicon waves in a flaring magnetic field 149

magnitude ratio

02

015

o
iy
!

005

i

phase difference (radians)

(b)

Figure 7. (a) The ratio of the magnitude of the WKB to exact solutions. Contours of constant
ratio are shown at the bottomb)(The difference between the WKB and exact solution phases.
Constant phase difference contours are shown at the bottom.
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5. Propagation in a slowly flaring guide field

In this section, as an illustration of the properties of the conical helicon functions, we
investigate the case of propagation of the fundamefyalode in a parabolically flaring
field. We assume that the flare is sufficiently gradual for the influence of reflected and
exponential waves and highémmode generation to be negligible, and consider only cases
for which x is large enough for the WKB approximation to be valid.

Consider the geometry of figure 1. L&t¢, x) be the outgoing wave solution in a
cone, normalized to unit amplitude at= oo, and the solution throughout the entire actual
bounded region bé/ (z), wherez is the distance measured along the axis of the region from
the junction of the cylinder and the parabola. In tth finite element of the computation,
the ¢ value will be fixed by the angle made by the ling,( 5, ) and thez-axis, andx will
vary. As beforex is the non-dimensional radial distance measured from the apex of the
cone,A,. Note that thex variable is individualized for each finite element. Let thealue
be identified by the; value at the left-hand surface. Thus, in region 1, where: z < z3,
we have forH (zp) = 1, i.e. unit amplitude at the initial point

h[€(z0), x(2)]

Hz)=——"—"—. 65
h[€(z0), x (z0)] (63)
Define the quantities
H, = H (z,) and hm,n =h [E (Zm), x (Zn)] . (66)
Hence,H1 = ho 1/ hoo- In region 2, where < z < zo,
h€(z1),x(2)]
Hz)=H——F——— 67
Yhe o), x @0l (67)
and
hi2  hoihip
Hy=H,—° = —~_=% 68
2 1h1,1 hoo hi1 (68)
By induction, we have
hn n = h e 0j)s 9
Hapia) = Hyo = 1, et = T 102G 0) (69)

hn,n _j=0 h[g(Zj),X(Zj)] .

Equation (69) is the basis of the numerical calculation to follow. It is of interest to write
this result analytically, by passing to the limit of infinitesimal truncated cones. From
equation (69), we have

Hn+l - Hn hn,n+l - hn,n

- _ - (70)
which we rewrite as
1AH _12:h4x . (71)
H Az h Ax Az |;_constant

If the tangent angle of the bounding curvadisthen in the infinitesimal limit 8/dz = cos?,
and we have

IN[H(z)] = / (72)

’ dz’[cosﬂ(z’)a In{h(e, x)}}
0 dx

=0(z"),x=x(z)
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Propagation was calculated for helicon waves incident from the lefea0 into a region
where the bounding magnetic field lines form a parabola of revolution with a cylindrical
radius

p(zp) = a (1+zj/b%) (73)
wherez, is the projection of a boundary point on the axis. We use the condition
1 dk
= 74
8 kzq dz, < (74)

to determine if the flare of the guide field is sufficiently gentle to neglect reflections and
higher order¢-mode coupling, and use the WKB approximation, equation (56), for the
propagating cone functioh(¢, x). The plasma parameters were characterized using

o= 10—10% cm3 Gt (75)

andw/27r = 27 MHz. Values ofs of 0.5, 1 and 2 cm® G~! were used. They correspond,
for example, taBy = 1 kG andng equals 5¢ 102, 10" and 2< 10* cm~3. The six combina-
tions consisting of equals 1, 2 and 4 cm arddequals 10 and 20 cm were investigated. The
configuration for calculating andx as a function ot is shown in figure 1 for: = 4 cm and
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b =10 cm. The values of were limited to 0< z < zmax Wherezmax is selected to insure
that f < fee Values off andx fora = 4 cm andb = 10 cm are presented in figures§for

o equals 0.5, 1 and 2 cr G~1. It shows a monotonic decrease of and a broad minimum

of x at about 8 cm. For these cases, using equation (59), the wavelengths in the cylinder
are 35.8, 18.7 and 10.4 cm, and the wavelengths in a fully expanded guide (i.e. the whistler
wavelengths, 2/g) are 15.2, 10.8 and 7.6 cm, respectively. The measure of reflection and
¢-mode generation,, which was found to be slightly larger tha#,, is shown in figure

8(b) for that same case. It shows a peak at about 5 cm for each of the three densities, with
the largest peak at the lowest density (for which the wavelength must undergo the largest
contraction from the cylinder to infinity). With, andW,, < 1 over most of the range for

all three densities we expect the WKB approximation to well represent the fields. The actual
errors incurred can be estimated from figure 7. The shape ditheurve is similar for all

six combinations of: andb. For the radius doubling distanck= 20 cm, andz = 2 cm,

and particularly folw = 4 cm, the WKB criterion is similarly met for all three values of the
density. Fora = 1 cm andb = 10 cmW, « 1 for a substantial portion of the range only

for the highest densitys( = 2 cn3 G1). At lower densities it is necessary to include both
reflections and-mode generation, use the four exact solutions of the wave equation and
solve the resulting large number of simultaneous equations. Similarly; ferl cm and

b =20 cm, and folm = 2 cm andb = 10 cm, the WKB criterion is substantially met fer
equals 1 and 2 cn? G2, but not at the lowest density. Thus, the WKB condition is satis-
fied for the ‘gentler geometries’ in combination with the smaller changes in the wavelength.
The value ofB,, calculated on the axis, is shown foe= 4 cm andb = 10 cm in figure 8¢).
Reduction of the amplitude as the wave propagates into a guide of increasing radius, nec-
essary for energy conservation, is apparent at all three densities. Decrease of the apparent
wavelength is clearly visible at the lowest density and barely discernible at the highest.
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Appendix. Helicon waves in a cylinder

To analyse equation (10) further, it is instructive to consider propagation in a cylinder using
the multipolar potential formulation. In that case, use equation (7) with the substitution
7r — 2. The separation proceeds as in equations (8) and (9), resulting in equations (10
with the derivatives with respect to rather tharnr, and the factor everywhere replaced

by 1:

kg = a% (iBL V%) + B2V + dd—iz%—f — Bs [vz - %?’2’} (10a)
kox = —im% +B2Vx . (10b)
To expand in eigenfunctions, use in place of equation (11)
W= Fru()Ju(Tp) explime)
T.m
and | (11)

X = Gru(@) Jn(Tp) explime)

T,m
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where theT’s are the radial separation constants, ahdis the Bessel function. The
azimuthal eigenvalue: is an integer, as in the conical case. For the zero radial current at
the boundary of the cylindep = a, we have in place of equations (12), (13), and (14),
suppressing the subscrift (except inJ,,):

2 d2 2
D= 5T (12)
> |K&Fr — BoD} Fr — B3F; — B T2Fr — (1B1D3Gr) | Ju =0 (134)

T
> {k8Gr — BoDiGr +ipaFr} Jy =0 (13b)
T

/ m / : ’ m 2
wody =Yy 1| A+ B2 I, — S Budn | Fr 41 udy, = (L o) J | DEGr | =0
T p=a
(14)

where J; is the derivative ofJ, with respect top, and the primes o and G denote
derivatives with respect te. If the g’s are independent of, F and G are proportional
to expikz) and satisfy equations ()3and (14) for eachT in the summation for alk.
Otherwise, as in the case of the cone, equation) (@@n only be satisfied for each if
m = 0. In the latter case, equation ()Shecomes

Jo(Ta) =0 (15b)
which yields a dispersion relation which is biquadratic in b&thandk?:

K2 (k24 72) B2 = [k + B2 (K2 + T9)] [+ 2 (K + T2) — paT?] = O
which is a generalization of the familiar result of Chen (19934 T2 = «?/k? =
(ké/ﬁl)z/kz, for B = B3 = 0. Combining equations (18and (14) provides unique
solutions for7? and k2, which may in general be complex. In the case= 0, where
equation (1%) obtains, T is real, and for the parameter regime of equation i%)has
a positive and a negative root corresponding to propagating and exponentiating solutions.
In propagation through a flaring magnetic field, calculated for example by the methods of

section 4, the previously unidentified exponentiating solutions can play a small but crucial
role in the self-consistent treatment of helicon waves.
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