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Abstract. Detection of non-Maxwellian electron energy distribution functions (EEDFs) by
Langmuir probes in the presence of radiofrequency (RF) fluctuations in the plasma potential
is possible if the probe is properly RF compensated. If the non-thermal electrons are created
by wave acceleration, however, they usually are bunched at one phase of the RF. In this case,
the usual method of forcing the probe to follow fluctuations in the floating potential (Vf ) will
be inappropriate, sinceVf itself will be time-dependent in such a way as to ensure that the
fast electron tail is not detected. The probe must be made to follow fluctuations in thespace
potential. Computations are given to show the effect of a RF on distributions with high-energy
tails with and without the proper compensation. Singular EEDFs arising in the case of constant
energy gain are also treated for the first time.

1. Introduction

In some radiofrequency (RF) plasma sources, such as the helicon source [1], it has been
suggested that the ionizing electrons could be accelerated by wave–particle interactions
[2]. In this case, the fast electrons, of the order of 50–100 eV, would be bunched in the
accelerating phase of the wave’s parallel electric fieldEz, wherez is the direction of the
dc magnetic fieldB0, as shown in figure 1. The occurrence of such bunched electrons has
been inferred from the observed time variation of optical light emission in synchronism
with the RF [3]. To detect these electrons with a simple diagnostic such as a Langmuir
probe requires careful RF compensation to remove the nonlinear averaging imposed by large
RF fluctuations in the plasma potential. Many methods for doing this can be found in the
literature on RF plasma sources. For instance, the method developed by Sudit and Chen [4]
employs RF chokes to filter the fundamental and first harmonic of the RF frequency and,
in addition, a large auxiliary floating electrode to sense the voltage fluctuations near the
probe tip and to couple them to the tip, causing it to follow the fluctuations. Unfortunately,
the floating potential itself is affected by the fast electrons, in such a way thatVf shifts
negatively whenever the fast electrons are collected. The result is that the RF compensation
is too strong and guarantees that the electron tails cannot be seen on the probe characteristics.
This is true of any RF probe method which relies on feeding back a floating potential signal.
An ideal probe would sense the localspacepotentialVs and use that for RF feedback, thus
avoiding the self-masking aspect of phased beams. At this time we do not know of an easy
way to do this.

In this paper, we compute the probe characteristics for typical discharges with various
levels of RF noise and with various fast electron tails, phased and unphased. The effects of
insufficient, perfect, and excessive RF compensation are calculated. These current–voltage
(I–V ) curves are similar to those shown previously by others [5] but are somewhat more
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Figure 1. The electric potential seen by electrons, showing their bunching at the phase of a
propagating wave at which there is an accelerating electric field.

realistic in that the rounded ‘knee’ observed in the presence of strong magnetic fields is
reproduced in the computations. In addition, a distribution of fast electrons other than a
shifted Maxwellian is also treated; this is the case of singular electron energy distribution
functions (EEDFs) which arise if the energy gain of the fast electrons, rather than their
velocity gain, is constant. The ideas conveyed here are general enough to be applicable to
any RF discharge in which the electron distribution function varies at the RF frequency.
Although we have implied the existence of a magnetic field in order to use a simple one-
dimensional electron distribution, this simplification is not essential.

2. Formulation

Let Vp be the probe bias voltage andVs the space, or plasma, potential. We neglect
oscillations in plasma density and temperature but allowVs to vary sinusoidally at the RF
frequency:

Vs = Vrf cosωt. (1)

The probe potential relative to the plasma is defined asV :

V ≡ Vp− Vs. (2)

The minimum velocity of an electron that can reach the probe is then given by

1
2mv

2
m = −eV . (3)

Hence,

vm = (−2eV/m)1/2 v2
m/v

2
e = −eV/KTe. (4)

Let the bulk plasma electrons be Maxwellian with temperatureTe, and let the ions be cold.
We consider the one-dimensional case, in which the normalized electron velocity distribution
is

fe(v) = (1/ve
√
π) exp(−v2/v2

e) (5)

where

ve ≡ (2KTe/m)
1/2 v̄e ≡ ve/2

√
π. (6)

Added to this is a population of fast (beam) electrons of densitynb, whose distribution will
be discussed later. The densities at the sheath edge are related by

ni = ne+ nb. (7)
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2.1. Thermal electron current

For V < 0, the thermal electron flux collected by the probe is

je = ne

∫ ∞
vm

vfe(v) dv = (neve/2
√
π) exp(−v2

m/v
2
e) = nev̄e exp(eV/KTe). (8)

Defining the dimensionless variables

J = j/nev̄e η = eV/KTe (9)

we can write (8) as

Je = eη. (10)

For V > 0, Je is replaced by its saturation valueJsat. In a strong magnetic field, the
probe’s presence necessarily changes the plasma potential on the flux tube that it blocks, and
saturation starts well beforeVp−Vs = 0, if Vs is referred to the plasma on undisturbed flux
tubes. For the purposes of this paper, it is sufficient to model the saturation current with a
two-parameter curve (a parabola) that resembles theI–V characteristics seen experimentally.
Let a be the value ofJe at which saturation begins, and letb describe the rate at which
the saturation current grows. Matching the slope of the parabola to that of equation (10) at
Je = a, we obtain

Jsat= a − b2/2a + b[η − ln a + (b/2a)2]1/2. (11)

The potentialηc at the onset of saturation is given byηc = ln a. Thus, the thermal electron
current is given by

Je =
{

eη η < ηc

Jsat η > ηc.
(12)

2.2. Ion current

The normalized saturation ion current is approximately [5]

Ji ≈ 0.5
ne+ nb

nev̄e

(
KTe

M

)1/2

= (1+ f )
(
πm

2M

)1/2

(13)

whereM is the ion mass. In practice, the ion current varies slowly with voltage and can be
approximated by a parabola. Since the exact ion current is not critical here, we arbitrarily
set it to have the value in (13) at a probe potential of−36KTe. Thus we take the normalized
ion current to be

Ji = (1+ f )
(
πm

2M

)1/2√−η
6

. (14)

2.3. Electron beam current

The normalized probe currentJb due to accelerated ‘beam’ electrons will be derived in the
next section, giving a total probe current

J = Je+ Jb− Ji . (15)
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3. Beam distributions

The distribution function of the non-thermal electrons depends on the acceleration
mechanism. We assume that the accelerated electrons are concentrated at the phase of
the RF at which the electric field has the proper sign and is at its maximum so that its
magnitude is insensitive to phase. A runaway population of these electrons can be defined
as those which are quickly accelerated well above their thermal speeds before making a
collision. These electrons will experience the electric field until they fall out of phase or
make a collision with an ion or a neutral atom. We assume that the collisional mechanism
prevails. If their collision cross section varies as 1/v, then the collision frequency will be
constant, and the electrons will, on average, be accelerated for a time equal to 1/noσv,
where no is the density of scattering centres. In this case, the velocity gained by each
electron will be the same regardless of its initial velocity, and the EEDF is that of a shifted
Maxwellian, the case usually treated. On the other hand, if the cross section is constant, the
electrons will, on average, be accelerated for a given distance; namely, the mean free path
λm = 1/noσ . This distance is approximately constant for a distribution of about 3 eV width
accelerated to 50–100 eV. In this case, theenergygained by each electron will be the same,
leading to a different EEDF. We have calculated the probe currents for these two extremes;
the actual distribution will probably lie in between. One-dimensional distributions are used,
since the magnetic field has been assumed strong enough that even the beam electrons move
primarily in thez direction.

3.1. Shifted Maxwellian

At the sheath edge, the distribution function of a Maxwellian of temperatureTb shifted by
a velocityu is

fb(v) = (1/vb
√
π) exp[−(v − u)2/v2

b] (16)

where

vb ≡ (2KTb/m)
1/2 v̄b ≡ vb/2

√
π. (17)

The beam current is then

jb = nb

vb
√
π

∫ ∞
vm

exp[−(v − u)2/v2
b]v dv. (18)

This yields

jb = nbv̄b[exp(−y2
m/v

2
b)+ (u/vb)

√
π erfc(ym/vb)] (19)

whereym = vm− u (equation (4)), erfc(x) = 1− erf(x) = 1+ erf(−x), and

erf(x) = 2√
π

∫ x

0
e−t

2
dt. (20)

In terms of the dimensionless quantities

f ≡ nb/ne h ≡ vb/ve q ≡ u/vb (21)

the normalized beam current can be written

Jb = jb/nev̄e = f h[exp(−Y 2
m)+ q

√
π erfc(Ym)] (22)

where

Ym =
{
ym/vb = (−η)1/2/h− q η < 0

−q η > 0.
(23)



dc probe detection of phased EEDFs in RF discharges 1537

This assumes that the fast electrons saturate above the space potential. The initial and final
distributions are sketched in figure 2; the ‘final’ distribution is that found at the sheath edge,
before it is changed by the sheath electric field.

Figure 2. The beam distribution functions before and after wave acceleration, for the case of
constant velocity gain. Electrons faster thanvm are able to overcome the probe bias.

Figure 3. Velocity regions of a Maxwellian beam distribution before each electron is given an
energyW = mv2

c/2.

3.2. Constant energy case

In this case, let the beam distribution start as a Maxwellian at temperatureTb, and let each
accelerated electron gain or lose an energyW . The centre of the velocity distribution will
then be shifted by an amountvc, where

vc = (2W/m)1/2. (24)

The initial distribution is divided into three regions, as shown in figure 3. Those electrons
originally moving in the direction of the acceleration will gain an energyW ; those originally
moving fast in the opposite direction will lose an energyW ; and those moving slowly in
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Figure 4. The beam distribution after acceleration in the constant-energy case. The numbered
regions correspond to those in figure 3. Electrons withv > vm reach the probe.

Figure 5. Velocity distribution of beam electrons in the case of constant energy gainW , for
various values ofW/KTb.

Figure 6. Velocity distribution of beam electrons for small energy gains, showing the
development of the singularity inf (v).
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Figure 7. Apparent velocity distributions of electrons in a shifted Maxwellian for (a) various
beam temperatures and (b) various velocity shifts. These curves are obtained by differentiating
the probeI–V curves and are therefore plots off (v) againstv2.

the backward direction will be turned around. The final velocityv of an electron with initial
velocity v0 is thus given by

(Region 1) v0 > 0 : v2 = v2
0 + v2

c (v > 0) (25a)

(Region 2) −vc < v0 < 0 : v2 = v2
c − v2

0 (v > 0) (25b)

(Region 3) v0 < −vc : v2 = v2
0 − v2

c (v < 0). (25c)

These regions, shown in figure 3, map into the corresponding regions of the accelerated
distribution in figure 4.

Region 1. We have

v2
0 = v2− v2

c dv0 = (v/v0) dv. (26)

Taking

f0(v0) dv0 = f (v) dv
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Figure 8. Apparent velocity distribution of electrons accelerated by a constant energyW . This
curve is obtained by differentiating the probeI–V curve and, therefore, the apparent width
depends on the resolution of the computation.

Figure 9. Apparent velocity distributions of a 1 eV electron distribution, after acceleration by
the same mean energy, in the constant-velocity and constant-energy cases. The remarks under
figures 7 and 8 apply.

with f0(v0) given by equation (16), we obtain

f (v) = 1

vb
√
π

v

(v2− v2
c)

1/2
exp[−(v2− v2

c)/v
2
b]. (27)

Note thatf (v) has an integrable singularity atv = vc. That accelerated distributions can
be singular is well known [6]. The physical reason for this is thatf0(v0) has zero slope
at v0, so that these particles, which end up atv = vc, are bunched into an infinitesimally
small velocity interval. Similarly, the Jacobean dictates thatf (v) has to vanish atv = 0.
Integratingf (v) from vc to∞, we find that the fraction of particles in this region is1

2, as
expected.

Region 2. Now we have

v2
0 = v2

c − v2 dv0 = −(v/v0) dv. (28)
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Figure 10. (a) NormalI–V characteristic for aTe = 3 eV, Ti = 0 Maxwellian plasma in a
magnetic field. (b) TheI–V curve of (a) after distortion by RF oscillations of magnitudeVrf .
(c) Derived velocity distributionf (v) against normalized probe voltage.
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Figure 11. (a) I–V characteristics for a 3 eV plasma with aTb = 1 eV beam of various
densities. (b) Apparent distributionsf (v) derived from (a). (c) Apparentf (v)’s for a plasma
with 50 eV beams of various temperatures. TheI–V curves from which these were derived
are not shown. (d) Apparentf (v)’s for a plasma with beams of the same density but different
energies.

This gives

f (v) = 1

vb
√
π

v

(v2
c − v2)1/2

exp[−(v2
c − v2)/v2

b]. (29)

The fraction of particles in this region is12 erf(vc/vb).

Region 3. In this case, we have

v2
0 = v2

c + v2 dv0 = (v/v0) dv (30)

so that

f (v) = − 1

vb
√
π

v

(v2+ v2
c)

1/2
exp[−(v2+ v2

c)/v
2
b]. (31)
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Figure 11. (Continued)

The fraction of particles in this region is12 erfc(vc/vb), where erfc is the complementary
error function. Figure 5 showsf (v) for various values ofW , and figure 6 traces how the
zero and pole inf (v) develop as a Maxwellian distribution is given a small energy gain.

The current of fast electrons to the probe is given by

jb = nb

∫ ∞
vm

vf (v) dv. (32)

If vm is larger thanvc, the integral lies within region 1, andf (v) is given by equation (26).
The normalized collected beam current is then

Jb = f h√
π

∫ ∞
Ym

(y2+ q2)1/2 exp(−y2) dy (vm > vc) (33)

where

y = (v2− v2
c)

1/2/vb Ym = (v2
m− v2

c)
1/2/vb = (−η/h2− q2)1/2. (34)
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Figure 12. (a) Probe characteristics for a plasma with a dc beam after distortion by various
amounts of RF pickup. (b) The apparent distribution function in the region of the beam obtained
by differentiation of the curves in (a).

If vm is smaller thanvc, part of the distribution lies in region 2, and equation (28) has to
be used for that part. The result is

Jb= f h√
π

[ ∫ Ym

0
(q2− y2)1/2 exp(−y2) dy +

∫ ∞
0
(q2+ y2)1/2 exp(−y2) dy

]
(vm < vc)

(35)

where, in the first integral,

y = (v2
c − v2)1/2/vb Ym = (v2

c − v2
m)

1/2/vb = (η/h2+ q2)1/2. (36)

In this case, saturation occurs forη > 0, andYm has a maximum value ofq.



dc probe detection of phased EEDFs in RF discharges 1545

Figure 13. (a) Time variation of phased electron beams used in the calculations. (b) Probe
characteristics for a 3 eV plasma with a phased beam of various peak densities in the absence
of RF pickup and of RF compensation circuitry.

3.3. Recovery off (v)

For three-dimensional distributions,f (v) is proportional to the second derivative of the
probe current; but in strong magnetic fields, the electron motion is one-dimensional, and
f (v) is given by the first derivative

je = ne

∫ ∞
vm

vf (v) dv dje/dvm = −nevmf (vm) dje/dV = ne(e/m)f (vm) (37)

where equation (4) was used forvm. In terms of the dimensionless quantitiesJ and η
(equation (9)), we have

f (vm) = 1

ve
√
π

dJ

dη
. (38)

For a shifted Maxwellian, equation (22) gives

dJb/dη = f h−1 exp[−(√−η/h− q)2]. (39)
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Figure 14. (a) Uncompensated probe characteristics for a 3 eVplasma with a phased beam and
various levels of RF pickup. (b) Apparent distribution functions derived from (a). The rapid
oscillations are due to the coarseness of the numerical grid and should be ignored.

Although the maximum of this curve occurs at the expected potential, the e-folding points
of the curve are separated by1η = 4qh2, a factorq � 1 larger than the width of 2h2 of the
original energy distribution. The beam distribution, as it would appear when plotted against
probe potential, is shown in figure 7 for various beam temperatures and velocity shifts. The
distribution seems to widen as it is accelerated, but this is because∂J/∂η ≈ f (v) is plotted
againstv2, not v.

For the constant-energy case, the peak of the beam occurs at the probe potential
corresponding to the energy gain (figure 8), but the width of the beam narrows (in velocity
space) asW is increased (figure 5). Sincef (v) is no longer Gaussian, the width of the
observedf (v) depends on how well the singularity is resolved. With good resolution,
a probe might yield thef (v) curve shown in figure (8), which was computed from
equations (33), (35), and (38) with a grid size1η = 0.1. The width appears to be less
thanTb = 1 eV, illustrating the well known effect of acceleration cooling. A coarser grid
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Figure 15. (a) I–V characteristic of aVf -compensated probe in a 3 eVplasma with a pulsed,
50 eV electron beam. (b) Apparentf (v) from the derivative of (a).

or probe resolution would give, however, a wider apparentf (v). Figure 9 compares the
apparentf (v)’s for two types of beam, one with constant-velocity acceleration and the other
with constant-energy acceleration, both starting with the same temperatureTb and suffering
the same mean energy gainEb. It is clear that the apparent widths can be very different.

4. Computed probe curves

In this section we use the formulae of sections 2 and 3 for computations illustrating the
effects of RF fluctuations, fast electron populations, phased beams, andVf compensation
on probeI–V curves. To permit the ion saturation current to be seen, we have increased
it by choosing a light ion, namely He, in all the calculations. We have also simplified the
calculation by choosing a shifted Maxwellian for the beam electrons.
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Figure 16. (a) I–V curves for probes driven to followVs andVf in a plasma with a phased
beam. (b) Apparentf (v)’s derived from (a).

4.1. Effect of RF pickup on dc beams

Figure 10(a) shows the model probe curve given by equations (15), (12), (14), and (22).
Figure 10(b) shows how theI–V curve, averaged over an RF cycle, is distorted by varying
magnitudes ofVrf . This behaviour is in general agreement with results published earlier by
Hershkowitz [5] and others. In practice, the RF potential fluctuation in the plasma can be as
large as several hundred volts; in this case,Vrf represents the amount of RF pickup remaining
after attempts to eliminate it. Figure 10(c) shows the apparent velocity distributionf (v)

obtained by differentiating the curves in figure 10(b). Even 5 V of uncompensatedVrf is
sufficient to distort the Maxwellian distribution beyond recognition. In figure 11, the effect
of adding a dc beam of varying densitynb, temperatureTb, and centre energyEb is shown.
In figure 12(a), the effect of RF on a probe curve with a dc beam is shown. The apparent
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Figure 17. (a) I–V characteristics forVf -compensated probes in a plasma with a phased beam,
with Vrf = 0 and 20 V. (b) Apparentf (v)’s derived from (a).

f (v)’s for the thermal part of the distribution is indistinguishable from figure 10(c), but the
high-energy portion (figure 12(b)) shows the presence of the beam with the correct central
energy even withVrf as large as 20 V.

4.2. Phased beams

We now consider electron beams which occur only during the accelerating phase of the
RF cycle. Figure 13(a) shows the assumed time variation of the beam, and figure 13(b)
the probe characteristics for various values of the maximum beam density. Figure 14(a)
shows the effect of RF pickup on one of these cases, and figure 14(b) the corresponding
distribution functions derived therefrom. Note that the beam can be detected as long asVrf

is less thanEb.
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Figure 18. I–V characteristics for a probe in a plasma with a phased beam andVrf = 20 V,
for cases of no RF compensation,Vf compensation, and idealVs compensation.

4.3. Effect ofVf compensation

Figure 15(a) shows the time-averaged characteristic for a probe in a plasma with a phased
beam in the absence of RF pickup, but with compensation circuits designed to follow
fluctuations in floating potential. This curve was computed by shifting theI–V curve at
each RF phase so that the floating potential occurred at the same probe potential as it did
when the beam current was zero. The derivative of this curve gives the apparent distribution
function shown in figure 15(b). We see that the oscillation in floating potential causesf (v)

to be smeared out, as if there had been RF pickup. Figure 16 compares these curves with the
ideal curves which would be obtained in the absence of both RF and RF compensation, or in
the presence of RF pickup but with ideal compensation following the fluctuations in space
potentialVs. In figure 17(a) we compare the curve of figure 15(a) with the curve obtained
with 20 V of uncompensated RF. Figure 17(b) shows the derived distribution functions.
Since the characteristic has already been distorted byVf compensation, the further addition
of RF pickup has only the effect of shifting the curve. Finally, in figure 18, we compare the
probe characteristics with RF pickup and a phased beam for the cases of no compensation,
Vf compensation, and idealVs compensation. We see that the presence of the beam cannot
be detected withVf compensation.
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