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The theory of helicon waves is extended to include finite electron mass. This introduces an
additional branch to the dispersion relation that is essentially an electron cyclotron or Trivelpiece–
Gould ~TG! wave with a short radial wavelength. The effect of the TG wave is expected to be
important only for low dc magnetic fields and long parallel wavelengths. The normal modes at low
fields are mixtures of the TG wave and the usual helicon wave and depend on the nature of the
boundaries. Computations show, however, that since the TG waves are damped near the surface of
the plasma, the helicon wave at high fields is almost exactly the same as is found when the electron
mass is neglected. ©1997 American Institute of Physics.@S1070-664X~97!01309-8#
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I. INTRODUCTION

Interest in plasma sources employing helicon wave
citation are of current interest because of their promise
providing the high density and uniformity needed for t
fabrication of next-generation semiconductor circuits1,2

Analysis of recent experiments have depended on a sim
treatment of helicon waves in which the electron massme is
taken to be zero,3–7 so thatd[v/vc50. At low magnetic
fields, however, the electron cyclotron frequencyvc can be
the same order of magnitude as the wave frequencyv. For
instance, for 27.12 MHz operation,d'0.25 atB0519 G, a
field low enough to permit economies in the design
plasma sources. Helicon theory with finited has been treated
before by Klozenberget al.8 in their classic paper, by Bleve
et al.,9 and by Boswell.10,11 Here we have assembled the
various results and extended them in order achieve a sin
coherent formulation of the theory, which can be read
used for comparison with ongoing experiments. In this pa
~part I!, complicating factors such as damping, antenna c
pling, and density profiles have been neglected in orde
bring out the physical ideas more clearly. The compl
problem with extended computations are treated in a c
panion paper~part II!. The analysis of part I is confined t
the undamped, uniform-density case, and references
damping are made only to show the limitations of these i
alized conditions. In part II, specific cases are computed
demonstrate the effects of plasma profiles, collisions,
antenna design.

II. GOVERNING EQUATIONS

In what follows, equilibrium quantities will be denote
by the subscript 0, while first-order perturbations~with no
subscript! will be assumed to vary as expi(mu1kz2vt). The
z axis is aligned with the dc magnetic field:B05B0ẑ. Max-
well’s equations are

“–B50, ~1!

“3E5 ivB, ~2!

“3B5m0~ j2 ive0E!52 ive0m0e–E. ~3!

The electron fluid equation of motion is
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2 ivmev52e~E1v3B0!2menv, ~4!

where all dissipation mechanisms have been lumped into
phenomenological collision raten. We have omitted from
Eq. ~4! the magnetic viscosity termn0

-1
“–p and the pres-

sure termn0
-1
“p5n0

-1
“@(n01n)(KTe01KTe)#. The elec-

tron viscosity is important only when the electron Larm
radius is comparable to the radial wavelength of the wav
which is normally.1 cm for helicon waves; thus, for 3 eV
electrons,“–p can be neglected above'6 G. For TG
~Trivelpiece–Gould! waves, however, wavelengths short
than 1 mm are, in principle, possible. Such short-wavelen
waves are not likely to exist in practice precisely because
finite-Larmor-radius~FLR! effects; the present theory is in
adequate for these waves. Ionizing electrons of 15 eV ene
have 1 cm Larmor radii below 13 G, and~FLR! effects are
likely to be important for them at such low fields. Fortu
nately, their population should be so small that wave pro
gation, the subject of this paper, would not be affected. T
zeroth-order pressure term“(n0KTe0) is important for dis-
charge equilibrium,4 but not for waves. The first-order pa
can be separated into four terms:“KTe , KTe “n0 /n0 ,
n “KTe0 /n0 , and KTe0 “n/n0 . Since E3B motions are
incompressible,n vanishes in a uniform plasma whenev
FLR effects are negligible. The remaining term“KTe can be
neglected relative to theeE term, because fluctuations i
KTe are much less thanKTe'3 eV, compared to wave elec
tric potentials of.100 V, typically. In principle, the“p
term can be included by using the warm-plasma theory
Allis, Buchsbaum, and Bers,12 but the results are too cum
bersome to be useful. Furthermore, finiteTe also engenders
drift-wave effects in a nonuniform plasma, and treating the
involves evaluating terms of comparable size inv0–“v and
“–p.13 Fortunately, drift frequencies are well below helico
frequencies and should not be important in helicon wa
propagation.

If we neglect ion motions, the plasma current is

j52en0v. ~5!

With the definitions

vc5eB0 /me , d r5v/vc , d5~v1 in!/vc , ~6!

Eq. ~4! can be written as
34111/11/$10.00 © 1997 American Institute of Physics
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B0

en0
~ id j1 ẑ3j !. ~7!

The complex quantityd can conveniently be replaced by i
real partd r until the end, since Eq.~4! shows thatn appears
only in combination withme ; one only needs to replac
me by me(11 in/v) in the final result.

At this point, we neglect the displacement current,
that Eq.~3! can be written asj5m0“3B. Though displace-
ment current can be included readily,14 it is almost always
negligible in experiment. Using Eqs.~3! and~7! to eliminate
j andE, we can write Eq.~2! as

ivB52
B0

en0m0
$ id“3“3B1“3@ ẑ3~¹3B!#%. ~8!

The last term reduces toik“3B. We now define

vp
2[ne2/e0me , ks[vp /c ~ ‘ ‘skin number’’ !,

dks
25vn0m0e/B0[kw

2 , ~9!

whereupon Eq.~8! becomes

d“3“3B2k“3B1kw
2 B50. ~10!

This is the equation we shall analyze. The quantitykw

5ksAd is simply the wave number of low-frequency whistl
waves propagating alongB in free space.

III. RELATION TO COLD-PLASMA THEORY

We have derived Eq.~10! in the most direct fashion, bu
as long asKTe is neglected, it can also be derived from t
standard theory of waves in a cold plasma. This formali
will permit an extension of the theory to include motions
an arbitrary number of species of ions, with displacem
current also included. We follow the notation of Stix,15

which is also adopted by Chen.16 The total ~plasma plus
displacement! current in Eq.~3! is given in terms of the
cold-plasma dielectric tensor by

J52 ive0S S 2 iD 0

iD S 0

0 0 P
D S Ex

Ey

Ez

D . ~11!

This can be put in the form

J52 ive0@PE1 iD ẑ3E1~P2S!ẑ3ẑ3E#, ~12!

Eq. ~12! is most easily inverted by writing out the comp
nents ofJ and solving directly for the components ofE. The
result can be written in the form

2 ive0E5acJ1 iah~ ẑ3J!1ad@ ẑ3~ ẑ3J!#, ~13!

where

ac5
1

P
, ah52

D

RL
, ad5

1

P
2

S

RL
.

Here we have usedS22D2[RL, arising from the defini-
tions S,D[(R6L)/2. In this form, it is clear thatac repre-
sents the conduction or polarization current,aH the Hall cur-
rent or E3B drift, and ad the displacement current. Th
ad term will be shown to vanish in the absence ofj d .
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To reduce Eq.~13! to Eq. ~7!, we must evaluate the
coefficients. For simplicity, we assume a single ion spec
with characteristic frequenciesVp and Vc . The elements
R, L are defined by

R
L512

vp
2/v2

17vc /v
2

Vp
2/v2

16Vc /v
, ~14!

where the first term is the contribution of the displacem
current and cancels in the elementD. In the limit Vc

2!v2

~with arbitraryvc
2/v2.1!, the result is

D52
vp

2vc

v3

1

12vc
2/v2 . ~15!

Similarly, the ion term is found to be negligible in the eval
ation of RL:

RL511
vp

2/v2

12vc
2/v2 S vp

2

v222D ——→
j d→0

vp
4/v4

12vc
2/v2 . ~16!

The terms ‘‘1’’ and ‘‘2’’ vanish whenj d is neglected. For
Vc

2!v2, the elementS becomes

S512
vp

2/v2

12vc
2/v2 F12

Vc

vc
S 12

vc
2

v2D G
'12

vp
2/v2

12vc
2/v2 S 11

vcVc

v2 D→ 2vp
2/v2

12vc
2/v2 . ~17!

We see here that the frequency must be above the lo
hybrid frequency in order for the ions to be neglected. In
limit j d→0, Eqs.~16! and~17! give S/RL52v2/vp

2, while

P[12vp
2/v2→2vp

2/v2. ~18!

Hence, the coefficient of the last term in Eq.~13! identically
vanishes in thej d→0 limit. Equations~15! and~16! give, in
the j d→0 limit,

D

RL
52

vvc

vp
2 . ~19!

With Eqs.~18! and ~19!, Eq. ~13! becomes

E52
vc

e0vp
2 ~ id j1 ẑ3j !, ~20!

which is the same as Eq.~7!.

IV. SEPARATION INTO HELICON AND CYCLOTRON
WAVES

Equation~7! can be factored into8

~b12“3!~b22“3!B50, ~21!

where the separation constantsb1 andb2 are the roots of

db22kb1kw
2 50. ~22!

Sincekw
2 is independent of mass, the only finite rootb in the

me→0 limit of this equation is

b5
kw

2

k
5

v

k

vp
2

vcc
2 5

v

k

n0em0

B0
[a, ~23!
F. F. Chen and D. Arnush
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the usual helicon dispersion relation.3 For dkw
2 !k2, the two

roots of Eq.~23! are well separated, with the approxima
values

b1,25
k

2d F17S 12
4dkw

2

k2 D 1/2G
'

k

2d F17S 12
2dkw

2

k2 D G' H kw
2 /k

k/d
. ~24!

Note that to this order the helicon wave is undamped, wh
the TG waves have all the damping. Previously repor
damping rates were calculated3,8 by perturbing this solution
with the lowest-order finite-mass effects in the electro
parallel motion.

The general solution of Eq.~21! is B5B11B2 , where

“3B15b1B1 , “3B25b2B2 . ~25!

Taking the curl of these equations and using Eq.~1!, we
obtain a vector Helmholtz equation for each:

¹2B11b1
2B150, ¹2B21b2

2B250. ~26!

From these wave equations, we see that theb’s are effec-
tively total wave numbers. The rootb1 corresponds to the
usual helicon wave of Eq.~23!, which we shall call the H
wave. From Eq.~24!, we see that the new rootb2 gives a
wave with the approximate dispersion relation

b5kivc /v5b cosuvc /v, ~27!

where u is the angle of propagation relative toB0 . This
wave, with frequencyv5vc cosu, is evidently an electron
cyclotron wave, first treated with cylindrical boundaries
Trivelpiece and Gould;17 we shall call this the TG wave. Th
remainder of this paper concerns the coupling of these
waves; and for simplicity, the damping will be neglected,
that d5d r .

The relation of Eq.~22! betweenk and b can also be
written as

k5
d

b
~b21ks

2!. ~28!

The solution of the wave equations~26! in cylindrical geom-
etry can be expressed3 in terms of Bessel functionsJn(Tr),
where the transverse wave numberT is defined by

Tj
25b j

22k2, j 51,2. ~29!

Differentiation of Eq. ~28! yields a minimum value ofk
given by

kmin52 dks . ~30!

If T is real, there is also a maximum value ofk occurring
whenT50, k5b:

kmax5S d

12d D 1/2

ks . ~31!

These two limits are equal whend5v/vc5 1
2. At magnetic

fields so low thatd. 1
2, only one propagating wave can exis

the helicon branch disappears. An example of ak-b diagram
is shown in Fig. 1. Similar diagrams showing the minimu
in k were first shown by Boswell.10,11 For eachk, the value
Phys. Plasmas, Vol. 4, No. 9, September 1997
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of b to the left of the minimum isb1 ~H wave!, and the value
to the right isb2 the ~TG wave!. Note that for the H wave
the lowest radial mode~smallestb! corresponds to the short
est parallel wavelength~largestk!, while the opposite is true
for the TG wave. ForB0 less than 19 G, only the TG wave
can propagate at 27 MHz.

V. CONDUCTING BOUNDARY

This boundary condition is rather unrealistic, since
actual experiments a quartz or glass tube is used so as n
shield out the antenna fields, and in any case the region
high density does not extend all the way to the wall. T
reason for treating this case is to make contact with ea
theories of helicon waves.3 The solution of Eq.~26! that is
finite on the axis for either wave in a uniform plasma fillin
a conducting cylinder of radiusa has been given
previously,3,8

Br j 5Aj@~b j1k!Jm21~Tjr !1~b j2k!Jm11~Tjr !#, ~32!

Bu j5 iA j@~b j1k!Jm21~Tjr !2~b j2k!Jm11~Tjr !#,
~33!

Bz j522iA jTjJm~Tjr !, j 51,2, ~34!

whereTj is given by Eq.~29!, andm is the azimuthal mode
number. From Eqs.~25! and ~3! with the displacement cur-
rent neglected, we see thatj is parallel toB:

j j5~b j /m0!Bj . ~35!

Equation~20! then gives

Ez j52
ivme

n0e2 j z j52
ivme

n0e2

b j

m0
Bz j . ~36!

The other components ofE can be found from Eq.~2!:

Er5
v

k
Bu2

i

k
Ez8 , Eu5

m

kr
Ez2

v

k
Br . ~37!

In the zero-mass limit,Ez vanishes identically for the H
wave ~the only one in that case!, and only one other bound-
ary condition needs to be satisfied; namely,Eu50 at r 5a.
From Eq. ~37!, this means thatBr50. For an insulating
boundary, the boundary condition would bej r50, which, by

FIG. 1. Thek-b curves forn05231013 cm23 and various values of the
magnetic field, listed in the legend in the same order as they appear. Un
otherwise specified, computations are for 27.12 Mhz, a 2.5 cm tube rad
and them511 azimuthal mode.
3413F. F. Chen and D. Arnush
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Eq. ~35!, also means thatBr50. Thus, in this particularly
simple case ofme50, there is only one universal bounda
condition, which applies to either type of boundary:

Br15A1@~b11k!Jm21~T1a!1~b12k!Jm11~T1a!#50.
~38!

This is the condition used by all previous authors, and
shall refer to it as thesingle-BC, or 1-BC, case.

When me cannot be neglected,Ez exists by virtue of
electron inertia, even in the collisionless case. Equation~36!
then requires thatb jBz j vanish at the boundary, or, from Eq
~34!, that b j Jm(Tja)50. Clearly, this condition is not con
sistent with Eq.~38!, so that a pure H or TG wave cann
satisfy both boundary conditions by itself. Since we star
with a second-order vector equation in Eq.~10!, both waves
must exist, coupled at the boundary, in order that their a
plitude ratio can supply the required degree of freedom.~In
the inhomogeneous case treated in part II, this coupling
mode conversion occurs everywhere where there is a de
gradient.! Setting j z11 j z250, we obtain from Eqs.~36! and
~34! the required amplitude ratio,

A2

A1
52

b1T1Jm~T1a!

b2T2Jm~T2a!
. ~39!

With Ez50, Eq. ~37! then requiresBr to vanish to satisfy
Eu50. SettingB1r1B2r50, we obtain from Eq.~32! the
amplitude ratio

A2

A1
52

@~b11k!Jm21~T1a!1~b12k!Jm11~T1a!#

@~b21k!Jm21~T2a!1~b22k!Jm11~T2a!#
,

~40!

where b j (k) is given by Eq.~24! and Tj@k,b(k)# by Eq.
~29!. For given plasma parametersn0 andB0 , Eqs.~39! and
~40! can be satisfied simultaneously only for certain valu
of k. The possible values ofk are now quantized, as i
shown by the example of Fig. 2. The complete bound
condition is

FIG. 2. An example of quantizedk values when the plasma is confined b
conducting walls.
3414 Phys. Plasmas, Vol. 4, No. 9, September 1997
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@~b11k!Jm21~T1a!1~b12k!Jm11~T1a!#

5@~b21k!Jm21~T2a!1~b22k!

3Jm11~T2a!#
b1T1Jm~T1a!

b2T2Jm~T2a!
, ~41!

where the right-hand side~rhs! vanishes in the 1-BC case
For values ofk nearkmax, b1T1 is much smaller thanb2T2 ,
and the rhs is so small that the dispersion relation for
helicon branch is insignificantly affected by the inclusion
finite me and, hence, of finiteEz . An example of this is
shown in Fig. 5 below. In Eq.~36!, note thatEz2 /Bz2 is
proportional tob2 , which is much larger thanb1 whenB0 is
large. This shows that the Trivelpiece–Gould mode is el
trostatic in character, as is well known. It is at low magne
fields, whenb2 andb1 are comparable, that the electroma
netic part of the TG wave cannot be neglected.

In Fig. 2 the highest eigenvalue ofk corresponds to the
lowest radial helicon mode and the highest radial TG mo
In this case there are six radial modes,n51 – 6, though the
n55 and 6 modes at the bottom of the parabola canno
seen on this scale. Because of damping, only then51 mode
is normally observed in the experiment,18 though a small
amplitude of then52 mode has been invoked to expla
spatial beats in the wave pattern.19 For low values ofB0 , the
effective potential well is shallow, and only one or two rad
modes can be found. Though the number of eigenvaluek
and their magnitudes are mathematically determinate,
closely spaced eigenvalues for the high radial modes h
little physical significance. To show this, we have plotted
Fig. 3 the two sides of Eq.~41! for a large-B0 case. It is seen
in Fig. 3~a! that the lowest radial modes of the helicon wa
at largek are unaffected by the rhs of Eq.~41!, representing
the finite-me correction to the boundary conditions. In Fig
3~b! and 3~c!, however, it is clear that, for the high radia
modes at smallk, the lhs50 and lhs5rhs conditions are
greatly affected by a small change inn0 . These roots of Eq.
~41! are so sensitive tok that they could not be found with
prepackaged root-finding routines such as in Microsoft Ex
and had to be computed by hand. The reason for this
physical result is that we have neglected all damping, so
the TG wave extends all the way to the axis, where its ph
is determined. Ask is varied, the values ofb1 andb2 , and
hence ofT1 andT2 , change in opposite directions; and on
when the values ofBr and j z for the two waves cancel atr
5a is there a solution. In practice, at high densities, the
mode is damped well before it reaches the axis, so tha
phase atr 50 is arbitrary; then one would expect that an
value ofk can satisfy the boundary condition. In this sen
the conducting boundary condition gives misleading resu
the insulating boundary conduction gives a continuousk
spectrum in the undamped limit, more closely resembling
full solution that includes damping and density falloff at th
edge.

In Fig. 2 it is clear that the TG wave has very short rad
wavelength when it is coupled to the lowest radial mode
the helicon wave. In that case, the TG wave can be expe
to be damped within a millimeter or two of the surface and
affect only the energy deposition, but not the measured w
F. F. Chen and D. Arnush
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profiles in the interior. This is shown in Fig. 4~a!, where it is
seen that the simpleme50 theory used previously correctl
predicts the behavior of the H wave if the TG componen
neglected. On the other hand, for high radial modes near
bottom of the parabola of Fig. 2, the H and TG waves ha
comparable radial wavelengths, and the TG component
not easily be dismissed. Figure 4~b! shows that previous
theory closely approximates the H component but that
TG component is dominant in this case. Furthermore,
shown in Fig. 4~b! neglecting theEz50 boundary condition
would affect the calculated wave profiles for these high
dial modes, if they are at all observable.

Though both the H and TG waves are needed in a m
ematical sense to satisfy the boundary conditions onBr and
Ez , the latter condition is not a stringent one. Figure 5 sho

FIG. 3. An example of the determination of the eigenvalues ofk for con-
ducting boundaries. In~a!, the right- and left-hand sides of Eq.~41! are
plotted betweenkmin andkmax, showing that the zero crossings of the lhs a
not greatly affected by the rhs for the short-axial-wavelength modes~the
lowest helicon radial modes!. In ~b!, the abscissa has been expanded to sh
the high radial modes. The sensitivity of the rhs to a small change in den
is shown in~c!.
Phys. Plasmas, Vol. 4, No. 9, September 1997
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the effect of neglecting the right-hand side of Eq.~41!, thus
effectively ignoring the boundary condition onEz . It is seen
that the shape of each wave individually is not sensitive
theEz boundary condition, though the ratio of amplitudes

FIG. 5. The radial profile ofBz for a high-field case when theEz50 bound-
ary condition is~a! neglected and~b! included. The totalBz is shown,
together with the H (Bz1) and TG (Bz2) contributions.

ity

FIG. 4. The radial profile ofBz for a high-field case for~a! the lowest and
~b! the highest (n56) radial H mode. The heavy line is for the H wav
alone, without the TG component, and the points are calculated from sim
mc50 theory.
3415F. F. Chen and D. Arnush
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In this sense, the dispersion relation is factorable, and th
and TG waves are approximately uncoupled, a conclus
reached earlier by Shamrai and Taranov20 for conducting
boundaries. On the other hand, at low magnetic fields s
that only one eigenvalue ofk is possible, withb1'b2 , one
would expect the H and TG waves to be strongly coupl
That case is explored in detail in part II. An example
shown in Fig. 6, where the coupled waves have a differ
profile than either wave alone, though simple theory c
rectly predicts the behavior of the H component.

Note that the relative amplitudes of the H and TG wav
as they would be measured with probes, do not convey
importance of the TG wave to maintaining the dischar
The absorption of rf energy depends onj–E, and from Eqs.
~35!–~37! we see that this quantity contains a factor ofb or
b2. Because of its larger value ofb, the TG wave can have
a large role in heating, even if its amplitude is relative
small.

VI. INSULATING BOUNDARY

We consider here an infinitely long, uniform plasma c
umn confined by an insulating tube of inner radiusa. For
simplicity, the dielectric constant of the insulator is taken
be unity; the small phase shift introduced by a real glass
quartz tube does not affect our results. Surrounding the t
at some radiusb is a conducting cylinder, whereEu and
Ez must vanish. The waves in the vacuum region are hig
evanescent, since thek of the helicon waves is larger tha
k0[v/c by typically two orders of magnitude. Therefor
the waves in the plasma are insensitive tob as long asd
5b2a is larger than some fraction of the plasma radius. W
can therefore takeb→`. This approximation will be re-
moved in part II.

For the vacuum region~subscript 3!, settingj50 in Eq.
~3! changes Eq.~26! to

¹2B31k0
2B350, ~42!

and Eq.~29! to

T25k0
22k2[2T3

2'2k2. ~43!

FIG. 6. The radial profile ofBz for a low-field case (v/vc50.32) when
only one radial mode is possible. The heavy line is for the H wave alo
without the TG component, and the points are calculated from simplemc

50 theory.
3416 Phys. Plasmas, Vol. 4, No. 9, September 1997
H
n

h

.

t
-

,
e
.

-

r
be

ly

e

Since k2@k0
2, T2 is negative in the exterior region. Th

change in sign causes the Bessel functions to have imagi
arguments. Rejecting the solution that diverges asr→`, we
find that the functionsJn(Tr) in Eqs.~32!–~34! are replaced
by Kn(T3r ), whereT3 is positive. The normal componen
Br is continuous atr 5a. The tangential componentsBu and
Bz must also be continuous, since a real plasma cannot c
an infinitesimally thin surface current. Continuity of the ta
gential components ofE require thatEz be continuous;Eu is
then automatically continuous from Eq.~2!. No condition is
imposed onEr or Bz8 since a surface charge can, in gener
exist. The matching of the interior and exterior solutions
most easily done with the circularly polarized compone
BR andBL, where

&BR5Br2 iBu , &BL5Br1 iBu . ~44!

The interior solution of Eqs.~32!–~34! can be written as

Bj
R5&~b1k!AjJm21~Tjr !, ~45!

Bj
L5&~b2k!AjJm11~Tjr !, ~46!

Bjz522iT jAjJm~Tjr !. ~47!

The exterior solution is

B3
R5&C1Km21~T3r !, ~48!

B3
L5&C2Km11~T3r !, ~49!

B3z52 i ~T3 /k!~C11C2!Km~T3r !, ~50!

where T3
25k22k0

2. The coefficients of theBz components
were found from Eq.~1!. We now normalize to the ampli
tude of the H wave, settingA151. Matching the inside and
outside components ofB at r 5a gives the amplitudesA2 ,
C1 , andC2 relative toA1 . The result is

C15 f 11 f 2A2 , C25g11g2A2 , ~51!

A252~ f 11g12h1!/~ f 21g22h2!, ~52!

H f j

gj
J 5~b j6k!

Jm71~Tja!

Km71~T3a!
, hj5

2k

T3
S Tj

Jm~Tja!

Km~T3a! D .

~53!

For any given value ofk, Eq. ~52! gives the ratio of ampli-
tudes of the TG and H waves in the plasma, and Eq.~51!
gives the amplitude and phase of the wave outside.

We now apply the condition onEz . From Eqs.~20!,
~35!, and ~47!, we find thatEz in the interior region~with
displacement neglected! can be written as

Ez
in52

2c2

v

k0
2

ks
2 @A1b1T1Jm~T1r !1A2b2T2Jm~T2r !#.

~54!

In the exterior region, since there is no conduction curre
Ez exists by virtue of the displacement current only. Fro
Eqs.~3!, ~48!, and~49!, we find

Ez
out5

c2

v
T3~C12C2!Km~T3r !. ~55!

Comparing this toEz
in , we see that the small factork0

2/ks
2

makesC12C2 essentially zero, meaning that the displac

e,
F. F. Chen and D. Arnush
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ment current is negligible, even in the exterior region. So
ing for C12C2 from continuity of Ez at r 5a and making
use of Eq.~53!, we find

C12C252
k0

2

kks
2 ~b1h11A2b2h2!, ~56!

where A1 has been normalized to unity. Equation~51! re-
quires, however, that

C12C25 f 12g11A2~ f 22g2!. ~57!

These conditions are not compatible with each other exc
for certain values ofk. From Eqs.~52!, ~56!, and ~57!, the
eigenvalue equation fork can be written as

2A25
f 11g12h1

f 21g22h2
5

f 12g11lb1h1

f 22g21lb2h2
, ~58!

wherel[k0
2/kks

2. For largeB0 , one sees from Fig. 1 that th
lowest radial modes of the helicon wave are coupled to
modes of largeb. In that case, the argumentT2a of the
Bessel functions inf 2 , g2 , andh2 is very large, and these
functions oscillate rapidly withk. The first equality in Eq.
~58! then shows wild fluctuations ofA2(k), as shown in Fig.
7~a!. When A250, the H wave exists alone; and whe
A2→`, the TG wave exists alone. Shamrai and Tarano21

has called these pointsantiresonances. However, the allowed
values ofk must also satisfy the second equality in Eq.~58!.
This condition is shown in Fig. 7~b!, which also fluctuates
rapidly with k. However, both numerators of the two fra

FIG. 7. For an insulating boundary,~a! the relative amplitudeA2 /A1 of the
TG and H waves versusk, and~b! the condition determining the eigenva
ues ofk, which occur at each zero crossing.
Phys. Plasmas, Vol. 4, No. 9, September 1997
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tions in Eq.~58! cannot vanish simultaneously, nor can bo
denominators; hence, antiresonances cannot occur in the
sence of damping. The general formulation in part II w
make this point self-evident.

Thus, for largeB0 , an almost continuous spectrum o
k’s betweenkmin andkmax is possible in the case of an insu
lating boundary. As explained earlier, the discreteness of
spectrum is caused by the theoretical behavior of the
wave at r 50. Since in practice TG waves of short radi
wavelength are rapidly damped, the spectrum of H wave
the interior will be essentially continuous betweenkmin and
kmax. This point can be shown rigorously by replacing t
Bessel functions of argumentT2a in Eq. ~58! with their
asymptotic expansions and givingT2 a small imaginary part;
we omit the details here. If we ignore the TG component,
shall see that the H component itself is well behaved at h
fields, and its radial profile is insensitive to the nature of t
boundary. This situation is changed ifB0 is low thatb1 and
b2 are of comparable magnitude. Then the H and TG wa
are strongly coupled at all radii, and there will be only one
two discrete values ofk.

Figure 8 shows an example of the wave fields, for a h
radial mode at largeB0 , in which both the H and TG wave
are important. Figure 8~a! shows the totalBz field, and Figs.
8~b!–8~d! give the components ofB for each wave sepa
rately. The external field happens to be small in this case,
it is not always so.

Figures 9 and 10 compare the wave fields for conduct
and insulating boundary conditions for nearly equal values
k, values that are eigenvalues in each case. Figure~a!
shows theBz field for an intermediate value ofk. The TG
wave is dominant here because of the large factorT2 in Eq.
~47!. The boundary condition affects the relative magnitud
of the H and TG waves but not their radial profiles, since t
is determined by the value ofk. This is demonstrated in Fig
9~b!, which shows the profile of the H branch alone. Figu
10 shows an example for a magnetic field so low that o
one value ofk is allowed under either boundary conditio
and the H and TG branches contribute comparably to
total field. Since the eigenvalues ofk in the two cases are no
the same, a slight difference can be seen in the profile
both the totalBz and that of the H branch alone.

VII. THE k -v AND n-B DIAGRAMS

Up to now we have considered the possible values ok
for given plasma parametersn0 andB0 and given frequency
v. If v is varied for a given plasma,k can be found by
solving Eq. ~41! for a conducting boundary to obtain th
usual form of a dispersion relation:v(k) or k(v). For an
insulating boundary, the entire range ofk betweenkmin and
kmax, Eqs.~30! and ~31!, is densely sampled ifB0 is large.
Plots of the range ofk versus frequencyf and the eigenval-
ues of k for the first two radial modes in the conducting
boundary case are shown in Fig. 11~a! for a high magnetic
field. The sensitivity to density is illustrated by comparin
Figs. 11~a! and 11~b!. Figure 11~c! shows a low-field case in
which there is only one radial mode with either bounda
3417F. F. Chen and D. Arnush



FIG. 8. The components of the wave field inside and outside a plasma confined by an insulating boundary for a typical case:~a! the totalBz field; ~b!–~d! the
Bz , Br , andBu fields of the H~heavy line! and TG~light line! contributions shown separately.
n
z

f
as

. In
hat
Eq.

-
al
ch
condition. Thek values are very similar. Note that, with a
assumed tube radius of 2.5 cm, operation at 27.12 MH
more likely to be in the linear region of thek-v diagram
than operation at 13.56 MHz.

FIG. 9. A comparison of theBz profiles computed for conducting and insu
lating boundary conditions. In~a! the coupled waves are shown, the vertic
scale indicating the amplitude of the total field relative to the helicon bran
In ~b! the H component alone is shown.
3418 Phys. Plasmas, Vol. 4, No. 9, September 1997
is
Experimentally, for fixedv andB0 , a preferred range o

k may be determined by the excitation mechanism, such
the length of the antenna or a phase velocity resonance
that case, the plasma density will adjust itself to a value t
fits the dispersion relation. For a conducting boundary,

.
FIG. 10. The same as Fig. 9 for a case of a low magnetic field.
F. F. Chen and D. Arnush
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~41! gives the eigenvalue ofn0 , while, for an insulating
boundary, Eqs.~30! and ~31! give the possible range ofn0 .
This is best obtained by fixingn0 ~or ks! and solving for the
range of B0 ~or d! from kmin52dks,k,ks@d/(12d)#1/2

5 kmax. An example is shown in Fig. 12~a! for an interme-
diate value ofk. We see thatnmax varies asB0

2, as predicted
by Eq. ~30!, while nmin varies asB0 , as predicted by Eq
~31!. The conducting boundary solution shows thatn0 /B0 is
constant, as given byme50 theory,3 but only for fields ex-
ceeding 100 G. Figure 13~b! showsnmax andnmin vs B0 for
various values ofk.

VIII. TRANSITION TO ZERO-FIELD DISCHARGES

In semiconductor processing, Inductively Coupl
Plasma discharges~ICPs! without a dc magnetic field are
commonly used. These include plasma sources with he
antennas, surrounding a cylindrical tube, usually with a F
aday shield, and Transformer Coupled Plasmas~TCPs!,

FIG. 11. Examples ofk-v diagrams. The lines with points show the tw
highest eigenvalues ofk in a 2.5 cm conducting tube; the heavy lines sho
the range ofk that is possible in an insulating tube.~a! and~b! A high-field
case for two different densities.~c! A low-field case withv/vc50.32, in
which k is quantized even for an insulating boundary.
Phys. Plasmas, Vol. 4, No. 9, September 1997
al
r-

which employ a spiral coil separated from the plasma by a
flat quartz plate. If the dc magnetic field of a high-field heli-
con discharge is reduced to zero, the transition to an IC
occurs in a complicated way. As we have seen, ifB0 is
reduced so thatd5v/vc increases from a small value to the
order of but still less than12, a strongly coupled H–TG mode
can propagate in the plasma at a discrete value ofk. As d is
increased beyond12, an intermediate situation occurs, where,
for k,ks , a propagating TG wave is coupled to an evanes

FIG. 12. Examples ofn-B diagrams.~a! The line with points shows eigen-
values ofn for the lowest radial mode in a 2.5 cm conducting tube; the
heavy lines show the range ofn that is possible in an insulating tube.~b!
The k variation of the maximum~solid! and minimum~dashed! values of
n0 in an insulating tube.

FIG. 13. Example of a TG wave (Bz2) coupled to an evanescent H wave

(Bz1) at low fields such thatv/vc.
1
2. There was only one eigenvalue of

k in this case, and the ratiok/ks was 1.93.
3419F. F. Chen and D. Arnush
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cent H wave. For very larged, both waves are evanesce
with a skin depth 1/ks , as in the ICP and TCP.

To explore the intermediate regime, we first square
~24! for the collisionless case and insert into Eq.~29! to
obtain

T252ks
22k2S 12

1

2d2D7
2kks

d S k2

4d2ks
221D 1/2

, ~59!

where the top sign is for the H branch and the bottom s
for the TG branch. Ford→`, both waves are evanesce
with a skin number that is justks when k5kz50. If uku
,2 dks , T2 is complex, and both waves are ‘‘overstable
that is, they propagate with decreasing amplitude. Howe
if uku.2dks andd. 1

2, thenuku.ks andT2 is real. Defining
k[k2/kmin

2 5(k/2dks)
2, we can write Eq.~60! as

T2

ks
2 5k2172kS 12

1

k D 1/2

. ~60!

For k.1, this function is negative for the H wave and po
tive for the TG wave. We thus redefineT1 for the H wave as

T1
2[k22b1

2.0, ~61!

and solve Eq.~26! for this case. The solution that is finite a
r 50 is

B1
R5&A1~k1b1!I m21~T1r !,

B1
L5&A1~k2b1!I m11~T1r !,

B1z52iA1T1I m~T1r !, ~62!

where I m is the Bessel function of an imaginary argume
The relative coefficients ofBR, BL, and Bz were obtained
from the components of the parent equation, Eq.~25!. For
the TG wave, Eqs.~45!–~47! are valid, and the exterior so
lution is given by Eqs.~48!–~50!. Continuity ofBR, BL, and
Bz at r 5a then yields the same condition as Eq.~52!,

A252A1

f 11g12h1

f 21g22h2
, ~63!

but with the new definitions

H f 1

g1
J 5~k6b1!

I m71~T1a!

Km71~T3a!
,

h152
2k

T3
S T1

I m~T1a!

Km~T3a! D , ~64!

while f 2 , g2 , andh2 are still correctly given by Eq.~53!. As
for the continuity ofEz , the exterior solution is given by Eq
~55!, while the new interior expression is

Ez
in5

2c2

v

k0
2

ks
2 @A1b1T1I m~T1a!2A2b2T2Jm~T2a!#.

~65!

The boundary conditions have the same form as Eqs.~56!
and ~57!, except that now it makes sense to normalize
A251, and the definitions of Eq.~64! are to be used:
3420 Phys. Plasmas, Vol. 4, No. 9, September 1997
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n

r,

.

o

C12C252
k0

2

kks
2 ~A1b1h11b2h2!, ~66!

C12C25A1~ f 12g1!1 f 22g2 . ~67!

These equations can be satisfied simultaneously only for
tain values ofk. Figure 13 shows an example of a TG wa
coupled to an evanescent H wave forv/vc. 1

2.

IX. SUMMARY AND DISCUSSION

We have investigated the behavior of undamped nor
modes of helicon waves in a uniform plasma filling an in
nitely long conducting or insulating cylinder. When finit
electron mass is taken into account, a second branch o
dispersion relation appears. This is an electron cyclot
wave ~Trivelpiece–Gould mode! with short radial wave-
length, propagating primarily inward from the radial boun
ary. Strictly speaking, the boundary conditions in the a
sence of collisions cannot be satisfied with either wa
alone; hence, both waves are excited simultaneously and
linearly coupled at the boundary. At high magnetic fiel
such thatd5v/vc!1, the possible values of the parall
wave numberk are quantized by a conducting boundar
with a typical normal mode consisting of a helicon wave
low radial wave number coupled to a TG wave of high rad
wave number. However, since the TG wave is expected to
highly damped, its rapid radial variations may not be dete
able; and measurements of the wave fields away from
surface are expected to reveal the helicon branch alo
Computations show that the radial profile of the helic
branch is not affected by the presence of the TG branch
agreement with observations.18 Thus, earlier theories3 fortu-
itously gave very nearly the correct result, but without a
equate justification.

In this section, the physical interpretation of our prese
results, as well as the geometries chosen for study, is b
on damping and excitation calculations appearing not in
paper but in the work of Shamrai and Taranov21,22and in our
own work~part II!. For instance, for the case of largeB0 , the
quantization of the values ofk is not physically meaningful,
since the damping of the TG component is too strong for
behavior atr 50 to play an important role. On the othe
hand, the case of smallB0 may be quite different. At low
magnetic fields such thatd. 1

2, only evanescent helicon
modes can exist. Ford< 1

2, the helicon and TG branche
have similar radial wave numbers and should be stron
coupled. Though the helicon wave field still has the rad
behavior predicted by simple theory,3 the coupled helicon
and TG mode has a different radial profile, which should
measurable in future experiments. Furthermore, the coup
profoundly affects the energy absorption.22

When the boundary is an insulating cylinder, the ex
tence of an external field permits the boundary conditions
be satisfied with many values ofk, as long as they lie within
a range that depends onn0 andd. The eigenvalues ofk for
the conducting boundary case lie within this range. Howev
for an insulating cylinder the dominant values ofk are not
determined so much by the boundary conditions as by
efficiencies of excitation and damping at various values
F. F. Chen and D. Arnush
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k. This result is in contradiction with previous expectation3

that the value ofn0 /B0 is determined by the dispersion re
lation for givenk. It appears that helicon waves can prop
gate during the buildup of the plasma, even at densities lo
than the optimum value.

Though the numerical examples given here are for
m511 azimuthal mode, the formulas are for arbitrary in
ger values ofm. Study of the constant-density normal mod
alone has not given any insight into the reason for the d
culty in exciting them521 mode,18 but it will be shown in
part II that antenna coupling is significantly different for th
m511 and21 modes when the density is peaked on ax

As has been pointed out by Shamrai and Taranov,20 con-
sideration of the TG wave completely changes our previ
concept of how helicon waves are damped. We have sh
here that helicon waves are rigorously undamped in theme

50 limit. Previous calculations3 of the damping rate were
based on a perturbation scheme that evaluated the low
order finite-me effects in the parallel motion of the electron
That method was shown to predict correctly the damping
of helicon waves in the downstream region away from
antenna.19 On the other hand, it was found experimenta
that the absorption of rf energy occurred almost entirely
the upstream region near the antenna.23 The new picture that
emerges is that absorption of helicon waves occurs via m
coupling to the TG wave at the boundary, followed by stro
damping of the TG wave. This mechanism should lead
enhanced deposition of energy near the walls, rather tha
the radius whereBz

2 is peaked, leading to a more uniform
plasma density profile. Careful experiments in the near-fi
region are needed to confirm this picture.
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