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Plane-polarized helicon waves
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Abstract. By suitably adding right- and left-hand circularly polarized helicon waves
in a cylinder, it is possible, in principle, to form linearly polarized modes, contrary to
the notion that whistler waves must be circularly polarized. The plane-polarized
component is accompanied by a left-hand circularly polarized component which
vanishes on axis but becomes important at large radii. The field lines of these two
components and the energy deposition profile are computed for an illustrative case.

1. Introduction

Helicon wave sources are well known for producing high
plasma densities suitable for use in materials processing
[1]. Though helicon waves are basically whistler waves,
and whistler waves travelling along a uniform magnetic
field cannot be left-hand polarized, helicon waves can have
either circular polarization [2]. This is because bounded
whistlers behave differently from whistlers in an infinite
plasma [3]. Since in most experiments a linearly polarized
antenna is used—most often a Nagoya Type III antenna
[4]—one might expect that the mode that is excited would
be a superposition of the right- and left-handed circularly
polarized modes, forming a plane-polarized wave [5].
Recently, Kimet al [6] reported detecting such azimuthal
standing waves in an experiment. These have also been
seen by Ellingboe and Boswell [7], but in that experiment
the standing waves were more prominent before the onset
of helicon waves than after. The purpose of this paper is to
show that plane-polarized helicons are possible in theory.
For this purpose, we consider a uniform plasma without
dissipation, but the effects of damping and plasma profiles
will be discussed.

2. Equations

Consider an infinitely long plasma of uniform densityn0

filling a conducting or insulating cylinder of radiusa in
a uniform, coaxial magnetic fieldB0. The well known
solution [2, 7] for the magnetic fieldB of helicon waves of
angular frequencyω, azimuthal mode numberm, and axial
wave numberk in this plasma is

B = B1+B2 (1)

whereBj satisfies

∇ ×Bj = βjBj j = 1, 2 (2)

where

β1,2 = k

2δ

[
1∓

(
1− 4δk2

w

k2

)1/2]
(3)

and
δ ≡ ω/ωc

k2
w ≡

ωω2
p

ωcc2
= ωn0eµ0

B0
. (4)

Here ωc and ωp are the electron cyclotron and plasma
frequencies, and we have adopted the notation of a more
recent paper [9]. For a uniform plasma, the components of
B can be written compactly in terms of Bessel functions:

Brj = Aj [(βj + k)Jm−1(Tj r)

+(βj − k)Jm+1(Tj r)] ei(mθ+kz−ωt)

Bθj = iAj [(βj + k)Jm−1(Tj r)

−(βj − k)Jm+1(Tj r)] ei(mθ+kz−ωt)

Bzj = −2iAjTjJm(Tj r) ei(mθ+kz−ωt) j = 1, 2 (5)

where A is an arbitrary amplitude and the transverse
wavenumberT is given by

T 2
j = β2

j − k2. (6)

For the usual helicon wave,β has the valueβ1, the
smaller of the two roots in (3). The larger root,β2,
describes a cyclotron wave which is important only at low
magnetic fieldsB0. For largeB0, above about 500 G, the
cyclotron wave has such small radial wavelength that it
is likely to be damped out within a short distance of the
plasma surface. For simplicity, we consider, for the time
being, the caseB0 → ∞, δ → 0, so thatB2 can be
neglected. We therefore takeB = B1, β = β1 andT = T1,
suppressing the subscript 1.

To form a plane-polarized wave near the axis of the
discharge, we can linearly superpose waves of positive and
negativem. Let these waves be denoted byB+ andB−,
with amplitudesA+ andA−, respectively. For givenωc,
B0, n0, and k, we see from (3) and (4) thatB+ andB−

have the same values ofβ and T . The combined waves
will then have the form

Br = {A+[(β + k)J|m|−1(T r)+ (β − k)J|m|+1(T r)] ei|m|θ

+A−[(β + k)J−|m|−1(T r)
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+(β − k)J−|m|+1(T r)] e−i|m|θ } ei(kz−ωt) (7)

and similarly forBθ andBz. Since the general case follows
trivially, we can simplify the algebra now by specifying
m = ±1. Suppressing the factor exp i(kz − ωt), we now
have for the components of the total field

Br = A+[(β + k)J0+ (β − k)J2] eiθ

+A−[(β + k)J2+ (β − k)J0] e−iθ

Bθ = iA+[(β + k)J0− (β − k)J2] eiθ

+iA−[(β + k)J2− (β − k)J0] e−iθ

Bz = −2iT J1(A
+ eiθ − A− e−iθ ). (8)

Here we have used the relationJ−m = (−1)mJm, and the
arguments of the Bessel functionsJm are understood to be
T r. At r = 0, J2 vanishes andJ0 = 1. To form a plane-
polarized field there in, say, thex direction, we set

A+/A− = (β − k)/(β + k) ≡ R. (9)

Normalizing toA+(β + k) = 1, we see that (8) becomes

Br = [J0+ RJ2] eiθ + [J0+ R−1J2] e−iθ

Bθ = i[J0− RJ2] eiθ + i[−J0+ R−1J2] e−iθ

Bz = −2iT (β + k)−1J1(e
iθ − R−1 e−iθ ). (10)

The plane-polarized and circularly polarized components
can be separated by adding and substracting a term (J0 +
RJ2) exp(−iθ) in Br , and similarly inBθ andBz. We then
obtain

Br = (J0+ RJ2)2 cosθ + J2(R
−1− R) e−iθ

Bθ = −(J0− RJ2)2 sinθ + iJ2(R
−1− R) e−iθ

Bz = 2T J1(β + k)−1[2 sinθ + i(R−1− 1) e−iθ ]. (11)

Using the definitions in (6) and (9) and reinserting the
final exponential factor, we can write the plane and circular
components of (11) as follows:

plane

Br = [J0(T r)+ RJ2(T r)] cosθ ei(kz−ωt)

Bθ = −[J0(T r)− RJ2(T r)] sinθ ei(kz−ωt)

Bz = 2
√
RJ1(T r) sinθ ei(kz−ωt) (12)

circular

Br = 2(βk/T 2)J2(T r) ei(−θ+kz−ωt)

Bθ = 2i(βk/T 2)J2(T r) ei(−θ+kz−ωt)

Bz = 2i(k/T )J1(T r) ei(−θ+kz−ωt). (13)

Here we have renormalized so that the plane-polarized
component has unit amplitude on axis.

Figure 1. Pattern of magnetic field lines for the
plane-polarized component of a helicon wave comprising
superposed m = +1 and m = −1 azimuthal modes.
Assumed parameters: 800 G, 1013 cm−3, 13.56 MHz, 5 cm
radius. This pattern is fixed with respect to the antenna.

Figure 2. Same as figure 1, but for the circularly polarized
component. This pattern rotates in the clockwise direction if
B0 is out of the plane of the page. The Bz component of
the field is not shown, and the line spacing is not indicative
of the field strength.

3. Computations

Before the field shapes can be computed, the possible
values of k—and, hence, ofβ (3) and T (6)—have to
be determined. For a conducting cylinder, the boundary
conditions areEθ = 0 and Ez = 0. The latter is
automatically satisfied if the conductivity is infinite, and
then it follows from∇ ×E = iωB thatBr = 0 at r = a.
From (10) we see that the conditionJ0 + RJ2 = 0 leads
to eigenvalues ofk corresponding to different radial modes
with m = +1. The conditionJ0 + R−1J2 = 0 leads to
different values ofk for them = −1 mode. ThusBr cannot
vanish at allθ for the samek unless|R| = 1, k = 0. It is
not possible to adjust the amplitude ratioR to satisfy the
boundary condition for the combined wave becauseR has
already been fixed by the condition of plane polarization
on axis. For an insulating cylinder, the boundary condition
in the helicon limit (δ → 0) is jr(a) = 0; and since
∇ × B = µ0j, we again requireBr(a) = 0, which is
impossible. The problem is not resolved if we allow finite
δ and the existence of the cyclotron waveB2. In that case,
Ez no longer vanishes, even in the absence of dissipation,
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Figure 3. Relative time-averaged amplitudes of the plane and circularly polarized components.

and the additional conditionEz(a) = 0 again leads to
different eigenvalues ofk for the m = +1 andm = −1
modes. These values would give rise to a beat pattern as
the combined wave propagates alongB0. Fortunately, a
recent study [9] has shown that, at high magnetic fields,
the eigenvalues ofk for an insulating boundary are so
closely spaced that the spectrum of possiblek is almost
continuous. This is because the amplitude of the external
wave in vacuum can adjust itself to satisfy the boundary
condition. Therefore, we may pick an eigenvalue ofk for
the m = +1 mode, say, and assume that anm = −1
mode with nearly the same value ofk will exist. The
difference will be so small that the beat pattern will not
be detectable within the length of the apparatus. These
considerations apply only to the ideal case. When damping
and plasma nonuniformity are considered, thek spectra will
be broadened anyway.

For illustrative purposes we have chosen the following
parameters:B0 = 800 G, n0 = 1013 cm−3, a = 5 cm,
f = 13.56 MHz. The boundary conditionB+r (a) = 0
then leads tok = 0.336 cm−1 (18.7 cm wavelength) for
them = +1 component. The conditionB−r (a) = 0 would
give k = 0.226 (27.8 cm wavelength) for them = −1
component. The beat wavelength for these two modes
would be 57 cm. However, we would expect that the
antenna’sk-spectrum would dictatek-values which are
much closer together than these, and that the dominant
k-value would be that of the dominantm = +1 mode.
The following graphs were therefore computed fork =
0.336 cm−1.

Figure 1 is theB-field pattern in a transverse plane
for the plane-polarized component, given by (12). This
pattern is stationary in the laboratory frame. Figure 2
shows the instantaneousB-field pattern for the circularly
polarized component, given by (13). This pattern is left-
hand polarized and rotates anticlockwise as viewed along
B0. This can be seen from the exponential factor in (13).
On the other hand, at any given position (r, θ ), the field lines
rotate clockwise as a function of time. This can be seen
by forming the linear combinationsBR = (Br − iBθ)/

√
2

andBL = (Br + iBθ)/
√

2, which represent the right- and
left-hand polarized components of the vectorB. From (13)
we see thatBL = 0.

(12) and (13) show that the plane-polarized component
has maximum amplitude on axis whereas the circularly

polarized component vanishes there. Asr increases,
the circular component becomes more important and it
dominates at the edge. This is shown in figure 3, where
the time-averaged field〈|B|〉 is plotted against radius. The
plane-polarized component has an average amplitude that
depends on angle, while that of the rotating component, of
course, does not.

From Faraday’s law one easily finds that the electric
and magnetic field lines are perpendicular to each other in
a transverse plane. The electric field pattern corresponding
to figure 1 is shown in figure 4. The ionization produced
by this m = ±1 mode may be azimuthally asymmetric
because the average energy deposition by the plane-
polarized component will depend onθ , while, of course,
that of the circular component will not. To compute this, we
note that the energy lossW is proportional toηj2

z , whereη
is an effective resistivity [8], andjz is essentially (β/µ0)Bz
as shown earlier. Hence,W is proportional toB2

z . We are
interested in the asymmetric part of this, which is given by
(12) for the plane-polarized component. We see thatW is
maximum atθ = π/2 andT r = 1.841, whereJ1(T r) has
its first maximum. The contours ofW/Wmax = 0.9 and 0.5
are shown in figure 4, superposed on theE-field pattern. If
the E-field is excited by a Nagoya type III antenna, we
would expect the straight legs of that antenna to be at
θ = ±π/2. The asymmetric part of the energy deposition
would, therefore, be aligned with the parallel legs of the
antenna. This contradicts the orientation reported by Kim
et al [6], which is at 90◦ to this. If that observation is
confirmed, it would be difficult to explain by any theory.

Kim et al [6] have pointed out that quadrupolar
antennas could excitem = ±2 patterns, and indeed have
reported seeing them. The theoretical patterns for plane-
polarizedm = ±2 modes can be found from the general
equations (5) and (7). The result is

plane

Br = [J1(T r)+ RJ3(T r)] cos 2θei(kz−ωt)

Bθ = −[J1(T r)− RJ3(T r)] sin 2θ ei(kz−ωt)

Bz = 2
√
RJ2(T r) sin 2θei(kz−ωt) (14)

circular

Br = 2(βk/T 2)J3(T r) ei(−2θ+kz−ωt)
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Figure 4. Electric field pattern corresponding to the mode
shown in figure 1. The broad lines are contours of constant
energy deposition (at 90% and 50% of maximum) for the
plane-polarized component.

Figure 5. Magnetic field pattern for a plane-polarized
m = 2 wave.

Figure 6. Electric field pattern for a plane-polarized m = 2
wave.

Bθ = 2i(βk/T 2)J3(T r) ei(−2θ+kz−ωt)

Bz = −2i(k/T )J2(T r) ei(−2θ+kz−ωt). (15)

The magnetic and electric field patterns of (14) are shown
in figures 5 and 6.

4. Conclusion

We have shown that a plane-polarized helicon wave is in
principle possible in a magnetized cylinder uniformly filled

with plasma. This wave must be accompanied by a left-
hand circularly polarized wave, which is of comparable
magnitude at large radii but is small relative to the plane-
polarized component near the axis. To satisfy conducting
boundary conditions, the right- and left-hand rotating
components of the plane-polarized wave will have different
axial wavelengths, giving rise to a beating phenomenon. An
insulating boundary, however, will permit both components
to have nearly identical wavelengths. These conclusions
hold even if the helicon waves are significantly coupled to
electron cyclotron waves, as would occur at weak magnetic
fields. A small amount of damping would broaden the
k-spectra enough to allow both components to have the
same wavelength. Plane-polarized waves can also exist in
a nonuniform plasma, although the field patterns would not
then be expressible in terms of Bessel functions but must
be computed using another formulation [10].

If plane-polarized helicons are generated by a straight
antenna ofm = 1 symmetry, such as a Nagoya type III
antenna, one would expect the asymmetric part of the
energy deposition to be aligned with the parallel legs of
the antenna. In practice, it may be difficult to excite
the m = +1 andm = −1 components with comparable
amplitudes because antenna coupling computations [11]
show that them = +1 mode is much more strongly
excited than them = −1 mode if the density profile is
peaked on axis. Furthermore, it has been found that the
m = −1 mode is damped faster than them = +1 mode
as it propagates alongB0 [12]. In view of these practical
considerations, it is surprising that plane-polarized modes,
though theoretically possible, have been seen [6].
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