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Generalized theory of helicon waves. II. Excitation and absorption
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Helicon waves in a plasma confined by a cylinder are treated. The undamped normal modes of the
helicon (H) and Trivelpiece–Gould~TG! waves have distinctly different wave patterns at high
magnetic fields but at low fields have similar patterns and therefore interact strongly. Damping of
these modes, their excitation by antennas, and the rf plasma absorption efficiency are considered.
Nonuniform plasmas are treated by solving a fourth-order ordinary differential equation
numerically. A significant difference between this and earlier codes which divide the plasma into
uniform shells is made clear. Excitation of the weakly dampedH wave, followed by conversion to
the strongly damped TG wave which leads to high helicon discharge efficiency, is examined for
realistic density profiles. A reason for the greater heating efficiency of them511 vs the m
521 mode for axially peaked profiles is provided. ©1998 American Institute of Physics.
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I. INTRODUCTION

In Part I of this work,1 which we rely on for the defini-
tion of common terms, the undamped normal modes i
uniform, cylindrical plasma for

vLH!v<vce!vpe ~1!

are identified as helicon (H) and Trivelpiece–Gould~TG!
waves, and their properties and interactions were discus
In Part II we discuss the excitation, by an external anten
of coupledH and TG waves in a radially nonuniform, coll
sional plasma. Though the antenna is finite in length,
plasma is infinitely long, and the entire system is bounded
a concentric conducting cylinder.

In the uniform-density case,H waves penetrate to th
center of the plasma but are very weakly damped by co
sions, and hence are an unlikely channel for the stron
absorption observed in helicon plasmas.2 In order to meet the
boundary conditions TG waves must be present at the pla
surface. The required TG field amplitudes are usually sm
and hence are hard to measure, but their currents, which
proportional to“3B, can be quite large because their tran
verse wave number is typically much larger than for theH
waves. Large net currents then occur which are stron
damped by collisions. Usually, the energy deposition occ
primarily near the surface, since the TG amplitudes decre
rapidly away from the antenna. This mechanism of abso
tion via mode coupling was pointed out by Shamraiet al.3

but was treated only in uniform plasmas. Further discuss
of the results of neglecting TG waves is provided at the e
of Sec. III.

For a nonuniform plasma with a more realistic dens
profile, coupling between theH and TG waves occurs
throughout the plasma volume, resulting in more unifo
heating. Inclusion of the density gradient terms results i

a!Electronic mail: darnush@ucla.edu
1231070-664X/98/5(5)/1239/16/$15.00
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fourth-order differential equation for the wave fields whic
must be solved numerically. Many previous authors trea
antenna coupling without considering the TG waves2,4

thereby missing their critical contributions. Other authors a
proximated the density variation with a series of consta
density shells.5,6 In doing this, they used the exact constan
density solution in each shell and required that the fields
continuous at the interfaces, thus neglecting the charges
currents there. In this work, we derive analytic expressio
for the density-gradient terms and find that these terms
essential to the mode-coupling mechanism~our results repro-
duce those of previous authors7 when TG waves may be
neglected!. These effects could have been included in t
shell model if the proper boundary conditions had been us
In Sec. IV, we give numerical results illustrating the diffe
ence between our result and that obtained by using, for
ample, the approach used in theANTENNA code.5,6 We also
explore the moderate magnetic field in detail. In Sec. V
summary of our main conclusions is presented.

In this paper, the problem is divided into two parts.
Sec. II, the antenna currents are related to the fields on
plasma surface; in Sec. III, these surface fields are relate
those in the interior by using the cold-plasma dielectric re
resentation of the plasma. Finite-temperature effects in
direction parallel to the dc magnetic fieldB0 , such as Lan-
dau damping, can be included by using a kinetic form of
dielectric elementezz;8 but since the equilibrium configura
tion is nonuniform in the radial direction, such kinetic effec
as finite Larmor radius cannot be readily included. For re
tively flat density profiles, this method of solution enables
to distinguish theH and TG waves and thus to compare o
results to those obtained by more approximate metho
Solving the plasma equations is by far the most tim
consuming part of the computation. Once that is done,
may rapidly explore a wide variety of antenna designs us
the relationship of the antenna currents to the plasma sur
fields to optimize the coupling.
9 © 1998 American Institute of Physics
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As an illustration of the method we shall explore in d
tail the following representative case:

n051012 cm23, NAr51014 cm23, Te53 eV,
~2!

B05100 G, a54 cm, f 513.56 MHz

~where n0 is the plasma density on the axis anda is the
plasma radius! for a variety of density profiles, antennas, a
azimuthal mode numbersm. The antenna wires are assum
to lie on a cylinder of radiusb, and a conducting wall of
radiusc surrounds the system, as shown in Fig. 1; but, as
shall show, the major physical effects present in most exp
ments can be adequately illustrated by takingb5a and c
→`. For fieldsB0 higher than about 800 G, the numeric
computations become cumbersome, and for those case
have devised a more convenient method, which will be p
sented in a subsequent publication. Note that the plasma
rameters are assumed given; the problem of discharge e
librium, in which the density profiles and therm
distributions are found self-consistently, is not conside
here.

II. ANTENNA-COUPLING

The plasma and conducting cylinder surrounding it
assumed to be uniform in the azimuthal~f! and axial (z)
directions, wherez is the direction ofB0 . We can therefore
use Fourier transforms in these directions. We assume
the system is sufficiently long, and thek spectrum suffi-
ciently dense, to use a Fourier integral in thez direction.
Each component of an arbitrary vectorV is then given by

VI j~r ,f,z!5
1

2p E
2`

`

dk (
m52`

`

Vj~r ,m,k!ei ~mf1kz!, ~3!

where

Vj~r ,m,k!5E
2`

`

dzE
0

2p df

2p
VI j~r ,f,z!e2 i ~mf1kz!. ~4!

The underline denotes field quantities in real space. The
tenna current density has the formJO(r ,f,z)5d(r
2b)KO (f,z) and the Fourier transform ofKO (f,z) is
K (m,k). We assume that the electrostatic fields are shiel
from the plasma so that

FIG. 1. The modeled configuration.
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“–JO50

and hence

Kz~m,k!52
m

bk
Kf~m,k!. ~5!

Though the formalism is general, we confine our attention
m50, 11, and21 waves excited by the simple loop an
tenna, the two antennas shown in Fig. 2, and a single-
double helix. ForI 0 amperes the transform for a loop
Kf5I 0 for m50, and zero otherwise. For helices the tran
forms are zero form even, and form odd are—fractional
helix:

Kf52
2

p
I 0

kL

2m

sinS kL

2
2mu D

kL

2
2mu

, ~6a!

integral t-turn helix:

Kf52I 0F sinS kL

2t
2pmD

kL

2t
2pm

(
j 51

t

ei ~kL/2t !~ t1122 j !2

sinS kL

2 D
pm G ,

~6b!

whereL is the antenna length andu is half the twist angle
from one end to the other. Thek dependence ofuKfu2, pro-
portional to antenna power, is shown in Fig. 3 for anm51
Nagoya Type III~N3, u50!, a half-helical~HH, u5p/2!,
and a one-turn helical~H1, t51! antenna. Their lengths ar
0.12, 0.20, and 0.30 m, respectively, selected to maxim
uKfu2 at k526 m21 for each. For these values the anten
spectra have a forward-to-back peak power ratio of ab
1:1, 10:1, and 34:1, respectively.

For perturbations varying as exp@i(mf1kz2vt)# in a ra-
dially nonuniform plasma, Maxwell’s equations can be wr
ten as

“3E5 ivB
~7!

“3B52 i ~v/c2!E~r !–E.

FIG. 2. Two of the antennas investigated.
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With the two divergence constraints, these constitute f
scalar equations which can be reduced to a fourth-order
dinary differential equation~ODE! for any field component
~see Sec. III!. For a nonsingular density profile there are fo
independent solutions, of which two are singular at the o
gin. There are therefore two independent sets of phys
basis functions, which we denote by lower case letters
the subscripts 1 and 2. For a constant density profile they
the H and TG modes described using Bessel functions
Part I.1 For arbitrary density profiles, these basis functio
have to be found numerically. As the density profile is grad
ally distorted to approach a more realistic shape, the s
tions gradually become transformed. For each componenVi

of any wave quantity~e.g.,E, B, or J! we have

Vi5A1v1,i2A2v2,i , ~8!

with amplitudesA1 and2A2 to be determined. For instanc

Er5A1e1,r2A2e2,r , Bf5A1b1,f2A2b2,f , etc. ~9!

In vacuum, the basis functions areKm(Tr) andI m(Tr), with
T25k22k0

2, where k0[v/c. Since there are two vacuum
regions~plasma–antenna and antenna–wall!, with two basis
functions and two waves@transverse-electric~TE! and
transverse-magnetic~TM!# in each, there are eight coeffi
cients to be determined there. Together withA1 andA2 in the
plasma, we have a total of ten unknown constants to desc
the fields. The tangential electric field is continuous at
three boundaries, yielding six conditions. The tangen
magnetic field is continuous at the plasma surface but un
goes a jump across the antenna shell. There are therefor
boundary conditions to determine the ten unknown c
stants. These algebraic equations are readily solved, an
result is conveniently expressed in the following form:

Vi~r !5
H2v1,i~r !2H1v2,i~r !

D~a,c,k!
Kf , ~10!

where

FIG. 3. Power spectrum~arbitrary units! for the m51 component of three
antennas. Positivek corresponds to the direction ofB0 .
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D~a,c,k!5F1G22F2G1 ,

Fn52 ibn,r~a!1
k

T
pm~a!bn,z~a!

2 i
m

aT2 m0@ve0en,z~a!#,
~11!

Gn5 j n,r~a!1 i
m

a

k0
2

T2

1

m0
bn,z~a!1

k

T
qm@ve0en,z~a!#,

Hn5
kb

Ta
pm~b!m0Gn2 i

m

a

k0
2

T2 rmFn ,

and

pm~r !5
Km8 ~Tr !I m8 ~Tc!2Km8 ~Tc!I m8 ~Tr !

Km~Ta!I m8 ~Tc!2Km8 ~Tc!I m~Ta!
,

qm5
Km8 ~Ta!I m~Tc!2Km~Tc!I m8 ~Ta!

Km~Ta!I m~Tc!2Km~Tc!I m~Ta!
, ~12!

rm5
Km~Tb!I m~Tc!2Km~Tc!I m~Tb!

Km~Ta!I m~Tc!2Km~Tc!I m~Ta!
.

Here the subscriptn is 1 for theH-like wave and 2 for the
TG-like wave,m is the azimuthal mode number,bn,i , en,i ,
and j n,i are the basis functions for the magnetic and elec
fields and the current, and the prime~8! stands for differen-
tiation with respect to the argument of the Bessel functio

We see from Eq.~10! that the solution is composed o
three parts. First, the fields are proportional to the Fou
transformKf of the antenna current. Second, they are
versely proportional to the dispersion functionD, which is
independent of the antenna properties. In the absenc
damping, the equationD50 gives precisely the dispersio
relation for coupledH and TG modes discussed in Part
Third, the numerator of Eq.~10! gives the radial variation of
the fields and consists of the basis functions multiplied
the amplitudesHi , which depend only on the values of th
fields on the plasma surface and on the geometric funct
p, q, andr. Once the basis functions have been compu
for a given density profile, the evaluation of Eq.~10! can be
completed rapidly for any antenna configuration.

Application of the boundary conditions can easily
carried out numerically without approximation. However,
elucidate the transition between conducting and insula
boundary conditions, we now explore the consequence
neglecting the displacement current. In most cases of in
est, we havek0!k andT, and consequently may neglect th
displacement current in square brackets in Eqs.~11! for Fn

andGn, as well as the terms containingk0
2 in Gn andHn. We

then haveHn}Gn} j n,r and Eqs.~10! and ~11! can be sim-
plified considerably as follows:

Vi~r !5
j 2,r~a!v1,i~r !2 j 1,r~a!v2,i~r !

D~a,c,k!

3S bk

auku
pm~a,b,c,k!m0KfD , ~13!

where
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pm~a,b,c,k![pm~b!, Gn5 j n,r~a!,
~14!

Fn52 ibn,r1
k

uku
pm~a,a,c,k!bn,z .

From Eq.~13!, we see now that the insulating-boundary co
dition Jr(a)50 is automatically satisfied. Furthermore, t
condition for antiresonance~i.e., the production of a pureH
or pure TG waves! can be generalized to

j n,r~a!50. ~15!

This is equivalent to the Shamraiet al.3 result for constant
densitybn,r(a)50, since for that casem0jn5bnbn, where
bn is the total wave number~see Part I!.

The approximations which reduce Eq.~13! to its greatly
simplified form fail in the limit that the gap,d5c2a, be-
tween the plasma and the wall approaches zero. The func
qm then approaches infinity and cancels from the numer
and denominator of Eq.~10! asGn,Hn→`. In that limit the
numerator of Eq.~10! is the same as the numerator of E
~13! with j n,r(a) replaced byen,z(a), ensuring thatEz(a)
50. Net radial currents are then closed by the conduc
shell. For a very thin gap the radial currents also need
vanish at the plasma surface as for an ideal insulating bou
ary, since they can be carried to the conducting shell
displacement currents in the gap. In that case, we take
limit c→a and expandqm in powers ofd to find that we may
neglect the displacement curernt contribution toGn for kd
much larger than the ratio of the axial displacement curr
to the radial current at the surface, i.e., for

kd@
ve0en,z

j n,r
→

vvc

vp
2 5

k0
2

kw
2 , ~16!

where the arrow denotes the approximate value of the
pression for a constant density profile. As defined in Par
kw is the whistler wave number in an unbounded mediu
Equation~16! is satisfied except for very small gaps. Equ
tions ~13! and ~14! were used in the computations that fo
low, since Eq.~16! is well satisfied for the parameters use

In Part I we found that, when a uniform, collisionle
plasma is in contact with a conducting boundary, theH and
TG waves can satisfy the boundary conditions indep
dently, since theEz condition is automatically satisfied
Shamraiet al.3 have pointed out that theH and TG modes
are decoupled ifd5c2a,dcrit. We can now generalize
their result by first rewriting the dispersion function in th
form

D52 i ~b1,r j 2,r2b2,r j 1,r !1pm~a,a,c,k!~b1,zj 2,r2b2,zj 1,r !.
~17!

From Eq.~12!, we find that ford!1/k<a, pm(a,a,c,k) has
the following limit:

upm~a,a,c,k!u→u2~11m2/k2a2!kdu!1, ~18!

allowing us to neglect the last two terms in Eq.~17!. If,
furthermore,k@kmin52kwAd r , whered r5v/vc , the trans-
verse wave number of the TG wave greatly exceeds tha
-

on
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theH wave. Sincejn depends onbn roughly asm0j'bb, the
second term in Eq.~17! is much smaller than the first term
and we obtain ford sufficiently small

D>2 ib1,r j 2,r . ~19!

Consequently the dispersion relation factors and theH and
TG waves are decoupled for small gapsd. For a constant
density profile the condition ond can be estimated as

d

a
!

k2

kw
2 S ka

m21k2a2D , ~20!

which reproduces the Shamraiet al.3 criterion for decoupling
the modes. The right-hand side of Eq.~20! increases mono-
tonically with k. Substitutingkmin for k, we find that for the
parameters of Eq.~2!, for example, Eq.~20! requires that
d/a!0.1 for the modes to decouple.

III. PLASMA FIELD CALCULATION

We now compute the basis vectorb ~e and j are readily
derived fromb using Maxwell’s equations! for plasmas with
arbitrary radial density variations. In Part I we inverted t
dielectric tensor to obtainE as a function ofJ. EliminatingE
andJ from Maxwell’s equations, we obtain

k0
2B5“3$ac“3B1 iahẑ3~“3B!

1adẑ3@ ẑ3~“3B!#%. ~21!

In the Appendix, Eq.~21! is reduced to a fourth-order ODE
for the general case. Here we derive the result for the m
simpler case relevant to most laboratory helicon waves
neglecting ion motions and displacement currents. Follow
Part I, we have

ah5vvc /vp
25k0

2/kw
2 , ac52ahd, ad50, ~22!

where thea’s now vary with radius. Using

“3@ ẑ3~“3B!#52 ik~“3B!, ~23!

we obtain

d“3“3B2k“3B1kw
2 B

5u~r !@2d0r̂3~“3B!1 i ~“3B!r ẑ#, ~24!

where

d5
v

vc
S 11 i

nen1nei

v D , dn5
v

vc
S 11 i

nen

v D ,
~25!

u~r !5
ah8

ah
52

n08~r !

n0~r !
.

Note thatd* of Part I has been replaced byd. For constant
density,u(r ) vanishes, and Eq.~24! reduces to Eq.~10! of
Part I. If the plasma is divided into constant-density she
the terms proportional tou(r ) become delta functions at th
interfaces, representing charges and currents accumula
there from charged-particle motions along the magnetic fie
The resulting jumps in boundary values are neglected
codes such as theANTENNA code.5,6 These effects can be
evaluated simply by comparing the solution of Eq.~24! to
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that obtained by neglecting its right-hand side. To solve
~24!, we first write ther component and eliminateBz using
¹•B50. The result is

Br95F m

rd
2

1

r GBr81Fk21
11m2

r 2 1
kw

2

d
1

m

r 2dGBr

1F2m

r 2 1
1

d S k21
m2

r 2 D G B̃f , ~26!

where B̃f5 iBf . Next, we write thef component of Eq.
~21! and eliminate firstBz and thenBr9 using Eq.~26! to
obtain

B̃f9 52Fkw
2

d2 1
md0

rd
u1

1

r 2 S m2

d
1

m

d222mD GBr2
m

rd2 Br8

1Fk2S 12
1

d2D1
kw

2

d
2

d0u

rd
1

1

r 2

3S 11m22
m

d
2

m2

d2 D G B̃f2F1

r
1

d0

d
u1

m

rdG B̃f8 . ~27!

Note that by solving Eq.~26! for Bf and substituting it in Eq.
~27! we get a fourth-order ODE forBr . The equations are
invariant for k→2k but not for m→2m. It is therefore
sufficient to integrate the equations only for positivek for
eachm. The nonsingular solutions to Eqs.~26! and~27! are
denotedb1 andb2 , distinguished by their behavior near th
axis. The integration of the equations begins at the first ra
step from the origin where two different sets of values a
derivatives are used which correspond to theH and TG so-
lutions for a uniform plasma on the axis. Two independ
solutions are thereby assured which would reduce to
usualH and TG solutions if a flat density profile were ch
sen.

The power transferred to the plasma is

P5
1

2 E E* –Jplasmad
3r 5

uI 0u2

2
~RA1 iXA!, ~28!

where the integral is over the plasma volume,RA is the an-
tenna plasma resistance, andXA its reactance. It differs from
the antenna resistance,8 proportional to half the volume inte
gral of E*–Jantenna, by the flux of wave power escaping from
the cylinder at infinity and is directly relevant to calculatio
of the plasma equilibrium. For plasmas which satisfy t
conditions of Eq.~1! we express the electric field in terms
the current as in Eq.~13! of Part I and integrate Eq.~28! to
obtain the power distribution as a function ofr or z, for 1 A
of antenna current. DefiningP6(r ,m)Dr to be the power
absorbed in an axially infinite, cylindrical shell of radiusr
and thicknessDr , from waves of modem traveling in the
6z direction, andPz(z,m)Dz to be the power absorbed in
plasma cross section of thicknessDz at the locationz, we
have:

P6~r ,m!Dr 56
m0

2

v

vc

n~r !

kw
2 ~r !

E
0

6`

dkuJ~r ,m,k!u2Dr ,

Pr~r ,m!5P1~r ,m!1P2~r ,m!, ~29!
.

al
d

t
e

e

Pz~z,m!Dz5
pm0

2

v

vc
E

0

a

rdr uJO~r ,m,z!u2
n~r !

kw
2 ~r !

Dz.

The antenna plasma resistance and the part due to eam
mode are:

RA~m!5R1~m!1R2~m!,
~30!

R6~m!52E
0

a

rdrP6~r ,m!.

Similarly, the reactance is

XA5
2m0v

uI 0u2 (
m52`

` E
0

a rdr

kw
2 ~r !

E
2`

`

dk F v

vc
uJu2

2 i ẑ–~J3J* !G
5

2m0v/vc

uI 0u2 (
m52`

` E
0

a rdr

kw
2 ~r !

E
2`

`

dk F v

vc
uJu2

12 Re~Jr J̃f* !G . ~31!

It is also useful, particularly for calculating the optimal a
tenna length, to define a spectral antenna plasma resist
Pk(k,m,L) and factor it into the ‘‘specific’’~i.e., indepen-
dent of antenna! power densitySk and antenna power densit
pA as follows:

RA~m,L !5E
2`

`

dkPk~k,m,L !

5E
2`

`

dkSk~k,m!pA~k,m,L !,

Sk~k,m!5m0

v

vc
Ubpm~a,b,c,k!

aD~a,c,k!
U2E

0

a

rdr u j 2,r~a!j1~r !

2 j 1,r~a!j2~r !u2
n~r !

kw~r !
, ~32!

pA~k,m,L !5
1

I 0
2 uKf~k,m,L !u2.

Rearranging Eq.~13! for Vi5Ji , for example, it is now
possible to make some general comments about the effec
neglecting TG waves by settingEz50 and including only
the Hall terms2,4 D ~i.e., me50! or the Hall and transverse
field diagonal terms9 S in the dielectric tensor~i.e., me finite
but P→`!. This will facilitate the comparison of our result
with those of previous authors.2,9,8 The general expression i

J~r !5
bk

auku
pm~a,b,c,k!m0Kf

F12Gm~a! j 1,r~a!

3S j1~r !2 j 1,r~a!
j2~r !

j 2,r~a! D , ~33!

where

Gm~a!5
F2

j 2,r~a!
. ~34!
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Repeating the derivation of Eq.~13! assumingEz50, we
obtain the same result but without the terms proportiona
Gm(a) and j 1,r(a) in Eq. ~33!. Thus, the transverse electr
assumption along with the antiresonance condition, which
this case is the same as the insulating boundary condi
results in the same field shapes as those predicted her
with amplitudes modified by the additional term in the sp
tially constant denominator. At high magnetic field,d ap-
proaches zero, Eq.~24! becomes singular, and Eqs.~26! and
~27! become redundant. In this limit the surviving set
solutions describe the helicon waves. The TG solutions
recovered by expandingB in a power series inme ,

B5expS i
c

me
D (

n50

`

Anme
n , ~35!

in Eqs. ~23! and ~24!, and equating the coefficients of eac
power ofme to zero. For

expH 2ImF E
0

a kdr8

d~r 8!G J 'expH ka

d r

n

vJ @1 ~36!

the first-order result is

Gm~a!→2m0

ia

ka2 im
pm~a,a,k!,

j2~r !

j 2,r~a!
→

ka

ka2 im H 12
im

kr
,

i

d
,2

1

dJAa

r

n0~r !

n0~a!

3exp@2 iFm~k,r !#, ~37!

Fm~k,r !5E
r

aF k

d~r 8!
2

kw~r 8!2

k
2

m

2kr8
u~r 8!Gdr8,

where we represent an arbitrary vectorV by $Vr ,Vf ,Vz%.
For the plasma described by Eq.~2! the exponent in Eq.~36!
is of order 1, the approximation is not valid, and theH and
TG waves are coupled, requiring the calculations of Sec.
for description. At higher magnetic fields and densities~e.g.,
B051 kG andn0.1013 cm23! Eq. ~36! is well satisfied. Us-
ing Eq. ~37! in Eqs.~33! and ~34!, we can make three mai
observations:~1! the term Gm(a) has an imaginary par
which is large compared to that ofF1 , thereby spoiling the
narrow resonances of theH wave; ~2! the amplitude of the
TG wave decays inward from the plasma edge with a s
depth of the order ofvd r /(kn); and~3! the TG currents on
the surface~j f and j z! are larger than the radial current (j r)
by factor of orderd. Since theH current components are a
of the same order and the radial component cancels tha
the TG wave at the surface, the surface components of
current are dominated by the TG waves near the surface
calculating the antenna plasma resistance the currents
squared and integrated. The integral of the exponential fu
tion is proportional tod, and hence the transverse TG cu
rents dominate the total absorption by a net factor of 1/d on
the surface. This result was obtained by Shamraiet al.3 in
their analysis of the exact solutions for constant density.
axially peaked plasma density profiles the reduced sur
o

in
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V
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density shifts the balance of heating to the helicon wa
near the axis as we will see in the sequence of radial hea
profiles in Fig. 14.

For a constant density the transverse electric heli
field solutions are also Bessel functions. We have calcula
the antenna plasma resistance in that approximation for
eral antenna configurations, varyingB0 about 1 kG andn0

about 1013 cm23. In each case the transverse electric wa
number spectral resonances were significantly sharper
higher than that for the exact solution but the skirts of t
resonances were lower. As a result we discerned no c
pattern of relative size of the antenna plasma resistance
the two approaches.

IV. CALCULATIONS

We explore antenna coupling for the plasma parame
of Eq. ~2! using a parametrization of the density profile us
earlier,8

n~s,t,r !5n0F12S r

wD sG t

. ~38!

To avoid numerical difficulties whenn(a)50, w is chosen
so thatn(s,t,a)50.01n0 . Exact Bessel function solution
are used for a constant-density profile. Some other profi
used are shown in Fig. 4~a!. The (s,t)5(2,10) profile is
similar to a Gaussian. In Part I we learned that for a giv
constant density there is a range of axial wave numbers

FIG. 4. ~a! Three of the density profiles investigated.~b! Radial range in
which helicon waves propagate in a local approximation at eachk for n0

51012 and a parabolic density profile.
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which helicon waves can propagate. Figure 4~b! shows how
the range of locally propagatingk values would shrink as the
density decreases with radius for a parabolic profile. Fo
fixed k, helicon waves can propagate for

r min~k!,r ,r max~k!, ~39!

where the limiting radii are solutions ofkmin52kw(r)Ad(r )
and kmax5kw(r)/A12d(r ). The TG waves propagate forr
.r min(k). The waves are strongly coupled nearr min(k).

The fields depend on the antenna location through
multiplicative functionpm . To simplify the results without
losing the major physical effects, we now setb5a, so that
the antenna is at the plasma boundary. The func
pm(a,a,c,k) is shown in Fig. 5 for a typical range of param
eters. For the cases considered, the major spectral cont
tions occur for 2.ka.0.8. As long asc/a.1.5, we see
from Fig. 5 that we may takec/a→` with little qualitative
difference in the results. The examples which follow we
therefore computed withb5a andc→`.

The results in the following figures are labeled with t
notation XX(s,t,m), wheres and t specify the density pro-
file, m the azimuthal mode number, and XX is L for a sing
loop or N3, HH, or H1 for the three antennas of Fig. 3.

A. Effect of the density gradient term u „r …

The importance of the density-gradient terms in Eq.~24!
is illustrated in Figs. 6 and 7, which compare the solutio
with and withoutu(r ) for a near uniform profile HH~10,1,1!

FIG. 5. The value ofpm(a,a,c,k) as a function ofka for various values of
c/a.
a

e

n

u-

s

and for a parabolic profile HH~2,1,1!. There are also clea
differences in the spectral amplitudes of theA1(H) and
A2(TG) basis functions~not shown!. The u(r )50 ampli-
tudes are larger and show a greater preference for the sh
wavelength~largerk! mode. Differences in the radial powe
deposition profiles are particularly pronounced, with t
u(r )50 solution predicting greatly increased heating of t
surface. For (s,t)5(10,1) the exact andu(r )50 antenna
plasma resistances are 1.3 and 4.6V, respectively. For~2,1!
they are 2.2 and 8.5V, respectively, compared with exper
mental values of the order of 2V.

B. Variation with density profile

Figures 8~a!–8~d! show the variation of spectral ampl
tudes through a succession of progressively more pea
density profiles corresponding to those shown in Fig. 4~a!.
Note that theH and TG basis functions are normalized
common values on the axis. The TG functions will ofte
increase exponentially to the plasma surface. Since thH
and TG radial currents balance at the surface, the TG am
tude A2 must be correspondingly small. TheuA2u traces in
Figs. 8~a!–8~d! should therefore be interpreted with respe
to shape and relative magnitude from figure to figure but
compared to theuA1u traces without further calculation. In
the constant density profile case we see two peaks~for k
.0!, atk;23/m andk;32/m, that are broadened to overla

FIG. 6. Exact DE result compared with the layered result neglecting
density gradient,u(r ), for them51 mode excited in a plasma with a near
square density profile by a half wavelength helical antenna:~a! helicon
amplitudeuA1u; ~b! power deposition profileP(r ,1).
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by collisions and coupling between the waves which mod
the resonant denominator. As the density becomes m
peaked the amplitude of the shorter wavelength resona
increases significantly with respect to the longer one.
might anticipate this from Fig. 4~b! since, ask increases,
integration of the equation for the helicon basis function e
ploys a larger evanescent distance betweenr max and the sur-
face. Consequently,j 1,r(a)/ j 2,r(a) is reduced and hence, b
Eq. ~13!, uA1(k)u is increased. The magnitude of the helic
basis function is reduced near the surface leading to g
penetration. This effect is a variation of the antiresona
phenomenon. For all profiles theH wave amplitude exceed
the TG wave amplitude by about an order of magnitude. T
TG currents are still important, however, since they are
proximately proportional tok' times the magnetic field, an
over much of the spectrumk' is much larger for the TG than
the H wave.

In Fig. 9 the magnitudes of the azimuthal magnetic fie
of H and TG waves, as well as their phased sums, are sh
as a function of radius for the various density profiles sho
in Fig. 5~a!. They were computed fork532/m, where we
expect theH and TG waves to be well separated. The T
wave magnitudes are uniformly smaller than theH wave,
and the TG wave decays inward from the surface for
more uniform density profiles but penetrates to the axis
the more centrally peaked profiles. To lowest approximat
the fields are well represented by theH wave alone, which
supports our identification of the two independent solutio
~distinguished by their behavior on the axis! as H and TG

FIG. 7. The same as Fig. 6 but for a parabolic density profile.
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sFIG. 8. Amplitude of the helicon and TG waves for density profiles whi
are ~a! square;~b! nearly uniform;~c! parabolic; and~d! peaked.
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FIG. 9. Comparison of the totaluBfu5uA1B1f
2A2B2f

u ~—! to theH con-
tribution uA1B1f

u ~–––!, and the TG contributionuA2B2f
u ~---! for

k532/m, m51, and the profiles of Fig. 8.
 FIG. 10. The same as Fig. 9 but fork523/m.
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FIG. 11. The same as Fig. 9 but foruJfu, uA1J1f
u, anduA2J2f

u.
 FIG. 12. The same as Fig. 11 but fork523/m.
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waves. Oscillations of the TG waves are not directly app
ent because the magnitude is plotted, but they can be se
the perturbation of the total field. In Fig. 10 the azimuth
field magnitudes are shown fork523/m where we expect,
from Fig. 4~b! and the constant densityk2b diagram dis-
cussion of Part I that theH and TG waves are strongl
coupled near the axis. Indeed, for the more uniform profi
the two solutions retain theH and TG structure; but for the
more centrally peaked profiles, strong coupling is appar
In Figs. 11 and 12 we see that the magnitudes of theH and
TG azimuthal currents, computed at the two spectral pe
are comparable for all profiles. Near the surface they ten
oppose each other and leave a significantly reduced net fi
SinceE}e21

•J, the net electric field will also be sensitive t
the presence of the TG wave.

C. Differences between m 511 and m 521 modes

Poor excitation of negativem modes has been observe
experimentally.10,11 Kamenski and Borg,9 using a transverse
electric analysis of a high magnetic field and high dens
plasma including only helicon waves, have suggested
this is due to the narrowness of realistic plasma profiles
difficulty of wave penetration. They perform a Wentze
Kramers–Brillouin analysis and attribute the effect, at le
in part, to the narrowness of the transparency region. T
argument does not necessarily apply in our lower magn
field case since the TG waves have a wider transpare
region. Variation of antenna plasma resistance with profil
shown in Fig. 13 for a 20 cm HH antenna andm511 and
m521 waves. There is not much variation for them5
11 waves. Them521 plasma resistance is comparable
or larger than them511 case for near uniform profiles bu
the plasma resistance drops significantly as the profile
comes more centrally peaked. Figure 14~a! shows the ab-
sorption profiles as a function of radius for two nearly u
form density profiles form51 and m521 waves. In the
constant density case the energy deposition rises rapidly
increasing radius to a maximum at the surface. For the m
realistic profiles, the density gradient termu(r ) and the ex-
panded evanescent region causes a reduction of surface

FIG. 13. The dependence of antenna plasma resistance on density p
(s,t) and wave polarization form561 shown for progressively more
peaked density profiles.
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rent and a downturn in the absorption just below the surfa
The indicated antenna plasma resistances are roughly c
parable. Figure 14~b! shows the absorption profiles for tw
more centrally peaked density profiles. As the density
comes more peaked, the absorption becomes larger on
for them51 wave, giving an almost uniform deposition pro
file, while it decreases on axis for them521 waves. To
gain insight into the reasons for this, we show in Fig. 14~c!
spectral antenna plasma resistances form5(6)1 for a near
uniform density profile and them51 resistance for a sharpl
peaked density profile. Them521 sharply peaked densit
resistance is too small to be seen on the same graph. Fo
near uniform profile, them511 mode has a large peak a

file

FIG. 14. The dependence of power absorptionP(r ,1) on density profile for
~a! two near uniform profiles,~b! two axially peaked profiles, and~c! spec-
tral antenna plasma resistance for HH(10,1,11), HH(10,1,21), and
HH(2,1,11).
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FIG. 15. The amplitudes of helicon and TG waves for a parabolic den
profile for different antennas and wave polarizations.
k536 m21 corresponding to the lowest radial mode, and
small peak atk521 m21 corresponding to the second radi
mode. Them521 mode has large peaks atk5222 m21

andk5218 m21 and no significant peak at largerk. This is
not unexpected since them521 mode has a narrower pro
file than them511 mode,8 and therefore a largerk' . Ac-
cording to the basic whistler dispersion relation@Part I, Eq.
~23!#, the corresponding value ofk ~i.e., ki! is therefore
smaller. As discussed in Sec. IV B form511 waves, when
the density profile becomes more peaked the largek peak is
increased and there is better penetration of the largek heli-
con fields. Since the TG field decays inward from the surfa
a larger net current obtains on axis and more uniform hea
results. For the smallk m521 peak and a more peake
density profile the fields are reduced without benefit of t
antiresonance phenomena. In addition, as the density
comes more peaked form521 the peaks shift to smallerk
~as occurs in the constant density for reduced density or
dius! which is less than the localkmin for much of the radius.

D. Variation with antennas and wave polarization

Figures 15~a!–15~d! show the magnitude of theH and
TG amplitudes for a parabolic density profile and a 20
HH antenna withm561, for a 12 cm N3 and an L antenna
These lengths were chosen to give spectral peaks at the
value of k ~Fig. 3!. The HH(2,1,21) system has a much
broader, lower helicon amplitude than the HH(2,1,11) case.
The N3 antenna spectrum is similar to that of the HH a
tenna but with reduced amplitude. The symmetric L anten
m50 spectrum displays a very narrow long-waveleng
resonance with an amplitude comparable to the peak of
HH(2,1,11) resonance. The antenna plasma resistanceRA

and the contribution to it from1z and 2z propagating

tyFIG. 16. Dependence of power absorptionP(r ,m) on antenna configuration
and wave polarization for a parabolic density profile.

TABLE I. Variation of antenna resistance with configuration.

Configuration R1 ~V! R2 ~V! RA ~V!

HH~2,1,1! 1.97 0.20 2.17
HH~2,1,21! 0.01 0.20 0.21
N3~2,1,1! 0.48 0.48 0.96
L~2,1,0! 0.73 0.73 1.47
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waves are given in Table I. Note that the N3 and L anten
generate equal amplitude waves propagating in the forw
and back directions. The corresponding absorption profi
are shown in Fig. 16. The HH(2,1,11) antenna has the
strongest coupling but the L antenna plasma resistanc
only 30% smaller. However, the HH antenna delivers alm
three times the power of the L antenna to waves propaga
in the 1z direction. In contrast to the other three arrang
ments, the L antenna delivers a much larger fraction of
power to the center of the discharge. If power going into
2z direction is not desired while taking advantage of the
antenna axial heating a solid or magnetic blocker may
used.12

E. Variation with z

Although investigation of the fields ink space is usefu
in developing physical models, it is necessary to invert th
Fourier transforms to relate them to configuration sp
where measurements are made. The real part and phaseBI z

as a function ofz at r 51 cm are shown for the condition
HH(2,1,11) in Fig. 17~a! ~note that the antenna is 20 c
long and centered at the origin!. The real part ofBI z has the
appearance of a sinusoidal wave propagating away from
antenna with a greater amplitude in the1z direction. Despite
the broad spectrum with two sets of overlapping peaks
each direction shown in Fig. 15~a!, the phase variations out
side the antenna are close to linear, with measured1z and

FIG. 17. Real part~—! and phase~---! of Bz at r 51 cm as a function ofz
for the ~a! m511 and~b! m521 modes in a parabolic density profile.
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2z wavelengths of about 24 and 21 cm, ork;126/m and
230/m, respectively. The real part ofBI z for HH(2,1,21),
shown in Fig. 17~b!, appears to be a damped wave propag
ing in the1z direction, and a very long wavelength wave
the 2z direction. This is confirmed in the phase plot, whic
has a poorly defined but suggestive variation in the1z di-
rection and a linear phase variation in the2z direction cor-
responding tol;40 cm, ork;16/m. The linearity of the
phase plot for2z is surprising in view of the width of the
spectrum shown in Fig. 15~b!. Only the very long wave-
length relative peaks in theH and TG spectra contribute
coherently to theBz field in real space. The power absorbe
per axial length as a function ofz for HH~2,1,1! is shown in
Fig. 18. The axial absorption is largest under the antenna,
only about 20% of the total power is absorbed there.

F. Radial wave profiles

The radial variation of the total magnetic field and itsH
and TG components atz520 cm is shown in Fig. 19. Excep
near the surface, the total field follows theH field quite
closely. The corresponding graphs of the currents are sh
for the same location in Fig. 20. The totalJI r andJI f are also
dominated by theH wave contribution except near the su
face. These results suggest a reason for the good agree
between experiments and theories which take onlyH waves
into account. The axial component of the current shows
largest deviations, suggesting an experimental test of
contribution of TG waves.

G. Optimal antenna length

The plasma resistance as a function of HH anten
length form511 waves and three different plasma dens
profiles is shown in Fig. 21~a!. The optimum antenna lengt
Lopt, the value ofk,kopt, for which pA(k,m,L) is a maxi-
mum, and the optimal plasma resistanceRopt is given in
Table II for each profile (s,t) with density half widtha1/2:
The values ofkopt are quite large compared to the avera
local kmax. Indeed, for the more uniform profile~10,1! it is
almost as large as the localkmax>42/m for propagation on
axis. The optimal coupling is weaker for the more centra
peaked profile~2,10! because of lower density on the surfa
where the currents are invariably large.Sk for a parabolic

FIG. 18. Power absorbed as a function of axial distance for HH~2,1,1!.
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density profile is shown in Fig. 21~b!, along with thepA for
an HH antenna of optimal lengthLopt50.164 cm, and for
one of lengthLm150.287 m corresponding to the first min
mum of RA(1,L). Note the maximum ofSk at kp>33/m
which coincides with the zero ofpA for Lm153p/kp , as
well as the broad maximum ofpA for L5Lopt which overlaps
significantly with the large values ofSk at long wavelengths
The power absorption profilePA(r ,m) for these two antenna
lengths is shown in Fig. 21~c! where the significant relative
reduction of heating is apparent. The antenna plasma re
tance is shown as a function of L for the N3, HH, and H
antennas as shown in Fig. 21~d!. The respective peak resis

FIG. 19. Comparison of the magnetic field components and the contr
tions from theH and TG waves atz520 cm for HH~2,1,1! for ~a! Br , ~b!
Bf , and~c! Bz .
is-

tances are 1.08, 2.57, and 6.11V, showing the advantage o
concentrating the antenna spectral power at the peak of
Sk .

V. SUMMARY AND CONCLUSIONS

A general expression relating the antenna current to
plasma surface fields is derived and greatly simplified
neglecting displacement currents. A fourth-order ODE is
rived for coupledH and TG waves in a radially nonuniform
plasma. Linearly independent solutions with short and lo
radial wavelengths on the axis are obtained. Results are
sented for a variety of density profiles forn051012 cm23

andB05100 G. For a constant density the computations
produce the usualH and TG Bessel function solutions. The
maintain their long and short wavelength character for m

u- FIG. 20. The same as Fig. 19 but for the current density.
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FIG. 21. ~a! Plasma resistance as a function of antenna length for an
antenna and plasmas with various density profiles (s,t), ~b! specific power
densitySk and antenna power spectrum for the optimalLopt50.164 m, and
first minimal Lm150.287 m, antenna lengths of~a!, and ~c! power deposi-
tion profile for antenna lengths of~b!. Variation of antenna plasma resis
tance with antenna length for three antennas~d!.
erate changes in the density profile and hence may be in
preted as the extensions ofH and TG waves in those cases.
is shown that layered solution methods which neglect so
density gradient terms lead to an exaggeration of the ante
plasma resistance due to excess energy absorbed in a
layer near the surface. A study of antenna types and w
polarization show major differences in them511 spectrum,
enhanced energy absorption near but not at the surface,
helical antenna performance that improves with the num
of turns. A study of density profiles varying from constant
near-Gaussian shows a steady progression of increasing
narrowing of the short axial wavelength peak and reduct
of the long wavelength peak. The absorption radial pro
for the square density shape differs significantly from t
more realistic ones. As the density profile becomes m
peaked on axis, antenna plasma resistance form511 waves
varies little, but decreases significantly form521 waves
because there is no short wavelength resonance in the l
case. In configuration space, for a parabolic density pro
the wave magnetic field and current density shapes are c
to that of theH field, except near the surface. However, t
TG currents are comparable to theH currents, and hence
their inclusion is critical to accurately calculating the abso
tion. A general discussion of the effects of TG waves at h
magnetic field for a radially nonuniform plasma showed th
they dominate the power absorption, in agreement with
exact result for constant density.

APPENDIX: ODE INCLUDING IONS AND
DISPLACEMENT CURRENTS

To derive the general fourth-order ODE we start w
Eq. ~14!, commute the curl with thea’s, divide byaH , and
define the following coefficients which have the indicat
limits for negligible displacement current and ionic effect

D5
aD2ac

aH
5

S

D
→d, D052

aC8

aH8
→d0 ,

~A1!

hD5
aD

aH
→0, u5

aH8

aH
, Kw

2 5
k0

2

aH
→kw

2 .

We then obtain in place of Eq.~17!

D“

2B1k“3B2Kw
2 B

5u@2D0r3~“3B!1 i ~“3B!rz#

2hD“3@~“3B!zz#1~hD8 1uhD!~“3B!fz. ~A2!

Using ¹–B50 in the r component of Eq.~A2! yields

TABLE II. Antenna optimization.

(s,t) a1/2 ~m! Lopt ~m! kopt (m21) Ropt ~V!

~10,1! 0.0374 0.140 38 2.51
~2,1! 0.0284 0.164 32 2.57
~2,10! 0.0170 0.190 28 1.73
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Br95
m2D

Dr
Br81S k21

Kw
2

D
1

11m2

r 2 1
m

Dr 2DBr

1F2m

r 2 1
1

D S k21
m2

r 2 D G B̃f

2
hD

D S m2

r 2 Br1
m

r
B̃f8 1

m

r 2 B̃fD . ~A3!

Substituting firstBz and thenBr9 in the f component of Eq.
~A2! results in

~D2hD!B̃f9 52FKw
2

D
1

m

r
D0u1

1

r 2 S m21
m

D
22mD GBr

2
m

rD
Br81Fk2

D221

D
1Kw

2 2
1

r
D0u

1
D

r 2 S 11m22
m

D
2

m2

D2D G B̃f8

2FDr 1D0u1
m

r G B̃f8 1hDFm~m2D!

r 2 Br

1
m

r
~D11!Br81

m2D

r 2 B̃f1
D

r
B̃f8 G .

~A4!
Although it is generally most convenient numerically
solve Eqs.~A3! and ~A4! as coupled equations, they can b
reduced to a single fourth-order equation for one of the fi
components. Taking the first and second derivative of e
equation yields six linear equations from which, for examp
the five quantitiesBr and its derivatives may be eliminate
by substitution to yield a single fourth-order equation f
B̃f .
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