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Donald Arnush? and Francis F. Chen
Electrical Engineering Department, University of California, Los Angeles, Los Angeles,
California 90095-1594

(Received 17 June 1997; accepted 3 February 1998

Helicon waves in a plasma confined by a cylinder are treated. The undamped normal modes of the
helicon H) and Trivelpiece—GouldTG) waves have distinctly different wave patterns at high
magnetic fields but at low fields have similar patterns and therefore interact strongly. Damping of
these modes, their excitation by antennas, and the rf plasma absorption efficiency are considered.
Nonuniform plasmas are treated by solving a fourth-order ordinary differential equation
numerically. A significant difference between this and earlier codes which divide the plasma into
uniform shells is made clear. Excitation of the weakly dambediave, followed by conversion to

the strongly damped TG wave which leads to high helicon discharge efficiency, is examined for
realistic density profiles. A reason for the greater heating efficiency ofke+1 vs them

=—1 mode for axially peaked profiles is provided. ¥®98 American Institute of Physics.
[S1070-664X%98)02505-1

I. INTRODUCTION fourth-order differential equation for the wave fields which
must be solved numerically. Many previous authors treated
antenna coupling without considering the TG wa®és,
%ereby missing their critical contributions. Other authors ap-
proximated the density variation with a series of constant-
OLH<OS W< Wpe (1) dens?ty shell_s's.'6 I_n doing this, they used_ the exact constant-
density solution in each shell and required that the fields be
are identified as heliconH) and Trivelpiece-GouldTG)  c¢ontinuous at the interfaces, thus neglecting the charges and
waves, and their properties and interactions were discusseglyrrents there. In this work, we derive analytic expressions
In Part Il we discuss the excitation, by an external antennggy the density-gradient terms and find that these terms are
of coupledH and TG waves in a radially nonuniform, colli- agsential to the mode-coupling mechanigur results repro-
sional plasma. Though the antenna is finite in length, thgjyce those of previous authérashen TG waves may be
plasma is infinitely long, and the entire system is bounded by,eglectegt These effects could have been included in the
a concentric conducting cylinder. shell model if the proper boundary conditions had been used.
In the uniform-density caseii waves penetrate to the | sec. |V, we give numerical results illustrating the differ-
center of the plasma but are very weakly damped by collignce petween our result and that obtained by using, for ex-
sions, and hence are an unlikely channel for the strong r&mple, the approach used in theTENNA code>® We also

absorption observed in helicon plasnids.order to meet the explore the moderate magnetic field in detail. In Sec. V, a
boundary conditions TG waves must be present at the plasn%%mmary of our main conclusions is presented.

surface. The required TG field amplitudes are usually small |, this paper, the problem is divided into two parts. In

and hence are hard to measure, but their currents, which 8. || the antenna currents are related to the fields on the
proportional toV XB, can be quite large because their rans-piasma surface; in Sec. Ill, these surface fields are related to
verse wave number is typically much larger than for e s in the interior by using the cold-plasma dielectric rep-
waves. Large net currents then occur which are stronglyesentation of the plasma. Finite-temperature effects in the
damped by collisions. Usually, the energy deposition occurgjiaction parallel to the dc magnetic fiel, such as Lan-
primarily near the surface, since thg TG ampli.tudes decreasg,, damping, can be included by using a kinetic form of the
rapidly away from the antenna. This mechanism of _agsorpdielectric element,,;® but since the equilibrium configura-
tion via mode coupling was pointed out by Shameaal” 4, js nonuniform in the radial direction, such kinetic effects
but was treated only in uniform plasmas. Further discussion finite |armor radius cannot be readily included. For rela-
of the results of neglecting TG waves is provided at the endje|y fjat density profiles, this method of solution enables us
of Sec. Il. _ _ o _ to distinguish theH and TG waves and thus to compare our

For a nonuniform plasma with a more realistic density g its to those obtained by more approximate methods.
profile, coupling between théi and TG waves OCCUIS gqlying the plasma equations is by far the most time-
throughout the plasma volume, resulting in more ””'formconsuming part of the computation. Once that is done, we
heating. Inclusion of the density gradient terms results in nay rapidly explore a wide variety of antenna designs using
the relationship of the antenna currents to the plasma surface
dElectronic mail: darnush@ucla.edu fields to optimize the coupling.

In Part | of this work! which we rely on for the defini-
tion of common terms, the undamped normal modes in
uniform, cylindrical plasma for
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FIG. 1. The modeled configuration.

FIG. 2. Two of the antennas investigated.

As an illustration of the method we shall explore in de-
tail the following representative case:

no=102 cm3, Np=10“ cm™3 T.=3 eV, v-4=0

@ and hence

Bo=100 G, a=4 cm, f=13.56 MHz
(where ng is the plasma density on the axis amdis the K,(m,k)=— m K o(m,K). (5)
plasma radiusfor a variety of density profiles, antennas, and bk
azimuthal mode numbers. The antenna wires are assumedThough the formalism is general, we confine our attention to
to lie on a cylinder of radiudp, and a conducting wall of m= 0, +1, and —1 waves excited by the Simp|e |00p an-
radiusc surrounds the system, as shown in Fig. 1; but, as Wgenna, the two antennas shown in Fig. 2, and a single-turn
shall show, the major physical effects present in most experidouble helix. Forl, amperes the transform for a loop is
ments can be adequately illustrated by takinga andc K ,=1, for m=0, and zero otherwise. For helices the trans-

—. For fieldsB, higher than about 800 G, the numerical forms are zero fom even, and form odd are—fractional
computations become cumbersome, and for those cases Wglix:

have devised a more convenient method, which will be pre-

sented in a subsequent publication. Note that the plasma pa- sin(k—L—mG)
rameters are assumed given; the problem of discharge equi- 2 kL 2
librium, in which the density profiles and thermal i lo om KL ' (6a)
distributions are found self-consistently, is not considered 7—”“9
here.
integralt-turn helix:

IIl. ANTENNA-COUPLING . (kL ) . (kL)

sinl =——mm| t sin| =

The plasma and conducting cylinder surrounding it arge _ o) 2t E Qi (KLI2O)(t+1-2]) _ 2

assumed to be uniform in the azimuth@) and axial ¢) ¢SO0 kL = mm |’
directions, where is the direction ofBy. We can therefore 2t mm
use Fourier transforms in these directions. We assume that (6b)

the system is sufficiently long, and tHe spectrum suffi-
ciently dense, to use a Fourier integral in thelirection.
Each component of an arbitrary vectéris then given by

wherelL is the antenna length an@lis half the twist angle
from one end to the other. THedependence dK,|?, pro-
portional to antenna power, is shown in Fig. 3 forras 1
1 (= ” , Nagoya Type IlII(N3, 6=0), a half-helical(HH, 6= =/2),
Vi(r,¢.2)=5— f dk Z_w Vi(r,m,k)e' ™ 2 (3)  and a one-turn helicdH1, t=1) antenna. Their lengths are
™ 0.12, 0.20, and 0.30 m, respectively, selected to maximize
where |K4|? at k=26 m™* for each. For these values the antenna
» 27 dgb _ spectra have a forward-to-back peak power ratio of about
Vj(r,m,k):f dzf > Vi(r,¢,z)e (MHk2 - (4)  1:1,10:1, and 34:1, respectively.
m 0 7 For perturbations varying as €xm¢+kz—wt)] in a ra-
The underline denotes field quantities in real space. The arflially nonuniform plasma, Maxwell's equations can be writ-
tenna current density has the fornd(r,¢,z)=45(r ten as
—b)K(¢,z) and the Fourier transform oK(¢,z) is VXE=iwB
K(m,k). We assume that the electrostatic fields are shielded (7)
from the plasma so that VxB=—i(w/c?)#(r)-E.
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6 D(a,c,k)=F;G,— F,G;,
A . k
——N3,L=0.42m I Fn:_|bn,r(a)+f Pm(a)by, (&)
__ 4 — HH,L=0.20m . '
E - = H1,L=030m : . m
~ . b o tol wegen ()],
g 2 ) . (11)
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FIG. 3. Power spectrurtarbitrary unit$ for the m=1 component of three and
antennas. Positivke corresponds to the direction & . )= Kr’n(Tr)I I;’](TC)_ Kr'n(TC)I r,n(Tr)
Pl D)= K (Ta)l (To)—K(TOI(Ta)’
With the two divergence constraints, these constitute four _Kn(Ta)ln(Te)=Ky(To)l(Ta) 12

dinary differential equatiofODE) for any field component
(see Sec. I). For a nonsingular density profile there are four pm= Kin(TD) (T €) ~ Kin(TC) I m(TD) _
independent solutions, of which two are singular at the ori- ~  Kmn(T@)ln(Tc)—Kn(Tc)l(Ta)
gin. There are therefore two independent sets of physicglgre the subscript is 1 for theH-like wave and 2 for the
basis functions, which we denote by lower case letters angq_jike wave,m is the azimuthal mode numbé, ; , e,
the subscripts 1 and 2. For a constant density profile they argnq; . are the basis functions for the magnetic and electric
the H land TG modes described using Bessel functions ifie|ds and the current, and the pririé stands for differen-
Part I For arbitrary density profiles, these basis functionsyation with respect to the argument of the Bessel function.
have 'Fo be found numerically. As the de_ns_ity profile is gradu-  \ye see from Eq(10) that the solution is composed of
ally distorted to approach a more realistic shape, the solunree parts. First, the fields are proportional to the Fourier
tions gradually bec.ome transformed. For each compovient transformK, of the antenna current. Second, they are in-
of any wave quantitye.g.,E, B, or J) we have versely proportional to the dispersion functin which is
independent of the antenna properties. In the absence of
Vi=Aw1;— Ay, (8 damping, the equatio® =0 gives precisely the dispersion
relation for coupledH and TG modes discussed in Part I.
with amplitudesA; and— A, to be determined. For instance, Third, the numerator of Eq10) gives the radial variation of
the fields and consists of the basis functions multiplied by
E,=Ajer,— A, By=Ab;,—Ab,,, etc. (9) the amplitudedd;, which depend only on the valu.es of the
fields on the plasma surface and on the geometric functions
In vacuum, the basis functions afg,(Tr) andl (Tr), with P. d. a_mdp. Onc_e the I_3a5|s funct|ons_ have been computed
T2=k2— K2, wherek,=w/c. Since there are two vacuum for a given der_15|ty profile, the evaluat|o_n of E_(G,O) can be
regions(plasma—antenna and antenna—yyatlith two basis completr—_zd ff”‘P'd'y for any antenna conflguratlon. .
functions and two wavegtransverse-electric(TE) and Appllcat|on Of. the bqundary cond_monls can easily be
transverse-magneti€TM)] in each, there are eight coeffi- carn.ed out numer|c_qlly without approximation. HOV\_/ever, o
cients to be determined there. Together whthandA, in the elucidate the tr_a}nsmon between conducting and insulating
plasma, we have a total of ten unknown constants to descril}%ounda_ry condlt!ons, we now explore the consequences of
the fields. The tangential electric field is continuous at theneglectlng the displacement current. In most cases of inter-
three boundaries, yielding six conditions. The tangentiaF_St’ we havd<k and'_l', and consequently may neglect the
magnetic field is continuous at the plasma surface but undep_lsplacement current in square bra.Cke.tS in Bgs) for F,
goes a jump across the antenna shell. There are therefore t HdG"' as well as t_he terms contalnnké in G, andH. We
boundary conditions to determine the ten unknown con! en haveH.nocGnoqn,r and Eqs{(10) and (11) can be sim-
stants. These algebraic equations are readily solved, and tﬁgf'ecj considerably as follows:

m
m
scalar equations which can be reduced to a fourth-order or- ™ K. (Ta)lo(Tc)—Kn(Tc)In(Ta)’
(
m

result is conveniently expressed in the following form: jor(@vi(r)—ji(@)va(r)
vi(n= D(a,c,k)
Hovqi(r)—Hyvo(r
Vi(r)= 2v1;(r) 102,|() " (10) bk
D(a,c,k) X mpm(a,b,c,k),uoKd, , (13

where where
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Pm(a,b,c,k)=pn(b), Gp=j,.(a), 14 theH wave. Sincg, depends o, roughly asuqj= 8b, the
(14) second term in Eq17) is much smaller than the first term,
and we obtain fod sufficiently small

DE_ibl,er,r- (19)

From Eq.(13), we see now that the insulating-boundary con-consequently the dispersion relation factors andHhand
dition J,(a)=0 is automatically satisfied. Furthermore, the TG waves are decoupled for small gags For a constant

condition for antiresonancg.e., the production of a purd density profile the condition od can be estimated as
or pure TG wavescan be generalized to

k
Fn= _ibn,r+ m pm(a,a,C,k)bn,z-

d k? ka
n(2)=0. (15 asi2 (—z—ﬂm i) 20

This is equivalent to the Shamrat al® result for constant which reproduces the Shametial?2 criterion for decoupling

density b, ,(a)=0, since for that casg.oj,=B,b,, where the modes. The right-hand side of Eg0) increases mono-

B, is the total wave numbeisee Part)l tonically with k. Substitutingk,,i, for k, we find that for the
The approximations which reduce Ed23) to its greatly = parameters of Eq(2), for example, Eq.20) requires that

simplified form fail in the limit that the gapd=c—a, be- d/a<0.1 for the modes to decouple.

tween the plasma and the wall approaches zero. The function

dm, then approaches infinity and cancels from the numerator

and denominator of Eq10) asG,,,H,—~. In that limit the  lll. PLASMA FIELD CALCULATION

numerator of Eq(10) is the same as the numerator of Eq.

(13) with j,,(a) replaced bye, ,(a), ensuring thak,(a) We now compute the basis vector(e andj are readily

erived fromb using Maxwell’'s equationsfor plasmas with

=0. Net radial currents are then closed by the conducting . . . S :
shell. For a very thin gap the radial currents also need no rbitrary radial density variations. In Part | we inverted the
i ielectric tensor to obtai& as a function ofl. Eliminating E

vanish at the plasma surface as for an ideal insulating bound- X _ .
ary, since they can be carried to the conducting shell b)?nd‘] from Maxwell’s equations, we obtain
displacement currents in the gap. In that case, we take the k§B=Vx{aCVxB+iah2x(VxB)

limit c—a and expandj,, in powers ofd to find that we may .
neglect the displacement curernt contributionGg for kd +agzx[z2x(V xB)]}. (21)
much larger than the ratio of the axial displacement currentn the Appendix, Eq(21) is reduced to a fourth-order ODE

to the radial current at the surface, i.e., for for the general case. Here we derive the result for the much
2 simpler case relevant to most laboratory helicon waves by
Kds> —2n2 2C — _g, (16) neglecting ion motions and displacement currents. Following
Inr w, Ky Part I, we have
. _ 2_1,2/1,2 _ —
where the arrow denotes the approximate value of the ex- @h=wwc/w,=ko/ky, ac=—and, ayg=0, (22)

pre_ssion for a constant density p_rofile. As defined in Pf_;lrt lwhere thea’s now vary with radius. Using
ky is the whistler wave number in an unbounded medium. ~
Equation(16) is satisfied except for very small gaps. Equa- ¥ X[ZX(V XB)]=—ik(V xB), (23)
tions (13) and (14) were used in the computations that fol- e optain
low, since Eq.16) is well satisfied for the parameters used. ,
In Part | we found that, when a uniform, collisionless 0V XV XB—kV xB+k;,B
plasma is in contact.with a conducting boundqry, Itrh_and =U(r)[— 8of X(VXB)+i(V xB),2], (24)
TG waves can satisfy the boundary conditions indepen-
dently, since theE, condition is automatically satisfied. where

Shamraiet al2 have pointed out that thil and TG modes o Ve Ve, Ven
are decoupled ifd=c—a<d.; We can now generalize 6= — (1 i , On=— | 1+i —)
their result by first rewriting the dispersion function in the @e @e @ (25)
form af, ny(r)
u(ry=—=—-—-—.
ap No(r)

D=—i(bysjor—barj1s) +Pm(a,a,c,k)(byzor—bozj1y).
(1 Note thats, of Part | has been replaced ldy For constant
density,u(r) vanishes, and Eq24) reduces to Eq(10) of
Part I. If the plasma is divided into constant-density shells,
the terms proportional ta(r) become delta functions at the
lpm(@,a,¢,K)|— | — (1+m¥k2a?)kd| <1, (18  interfaces, representing charges and currents accumulating
there from charged-particle motions along the magnetic field.
allowing us to neglect the last two terms in Ed.7). If, The resulting jumps in boundary values are neglected in
furthermore k> kin=2k,\/6,, where5,=w/w¢, the trans- codes such as theNTENNA code>® These effects can be
verse wave number of the TG wave greatly exceeds that afvaluated simply by comparing the solution of Eg4) to

From Eq.(12), we find that ford<1/k=<a, py(a,a,c,k) has
the following limit:
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that obtained by neglecting its right-hand side. To solve Eq. Ty ® (@ , v(r)
(24), we first write ther component and eliminat®, using Pz, mAz=—~— fo rdr|J(r,m,2)| K21 Az.
V.B=0. The result is ¢ w
- The antenna plasma resistance and the part due toraach
m 1 1+m m .
B,r,:[;s_ . B+ | k2+ o EW_’_ %}Br mode are:
Ra(M) =R, (M)+R_(m),
2 (30
2m 1 ,, M7= a
sl B (29 RngQLJMPgnm.
Where§¢,=iB¢. Next, we write the¢p component of Eq.  gimilarly, the reactance is
(21) and eliminate firstB, and thenB; using Eqg.(26) to .
obtain ) a rdr °° 0}
: RN N xdk[ZZ'JF
P LT Y LS P | PO AP ’
@t s Vel e A B e B 15
k2 Su 1
] I R il
K F: R I _ — powl o rdr foc K P
2 ot el Jo KD Jow T o
(1eme- MM e, 1 Ei 20 MNE g
5 &))°° 5 18 ¢ ~
+2ReJ,J%) . (32

Note that by solving Eq(26) for B,, and substituting it in Eq.
(27) we get a fourth-order ODE foB, . The equations are It is also useful, particularly for calculating the optimal an-
invariant for k— —k but not form— —m. It is therefore tenna length, to define a spectral antenna plasma resistance
sufficient to integrate the equations only for positivdor P, (k,m,L) and factor it into the “specific”(i.e., indepen-
eachm. The nonsingular solutions to Eq26) and(27) are  dent of antenngpower densityS, and antenna power density
denotedb, andb,, distinguished by their behavior near the p, as follows:

axis. The integration of the equations begins at the first radial -

step from the origin where two different sets of values and RA(m,L)zf dkPy(k,m,L)

derivatives are used which correspond to kthend TG so- -

lutions for a uniform plasma on the axis. Two independent

solutions are thereby assured which would reduce to the —f

dkS(k,m)pa(k,m,L),
usualH and TG solutions if a flat density profile were cho- <

M ferred to the plasma i Sk, m) =g — szardrl' (@)jx(r)
e power transferred to the plasma is , Mo oo | aD(ac k) o Jar(@))1
2
PZEJE”hwwﬁ=liwm+mm, (29 @iy 2
2 P 2 —iL@i0P =5 (32
W

where the integral is over the plasma volurRy, is the an- 1
tenna plasma resistance, aXq its reactance. It differs from palk,m,L)=— |K¢(k,m,L)|2.
the antenna resistan€groportional to half the volume inte- 1o
gral of E* -Jantenna DY the flux of wave power escaping from Rearranging Eq(13) for V;=J;, for example, it is now

the Cylinder at |nf|n|ty and is directly relevant to calculations possib|e to make some genera| comments about the effects of
of the plasma equilibrium. For plasmas which satisfy theneglecting TG waves by settin,=0 and including only
conditions of Eq(1) we express the electric field in terms of the Hall term&* D (i.e., me=0) or the Hall and transverse
the current as in Eq13) of Part | and integrate Eq28) to  field diagonal term$S in the dielectric tensofi.e., m, finite
obtain the power distribution as a functionrobr z, for 1 A pyt P— ). This will facilitate the comparison of our results

of antenna current. Definin@..(r,m)Ar to be the power ith those of previous authofs® The general expression is
absorbed in an axially infinite, cylindrical shell of radius

and thickness\r, from waves of modem traveling in the (r)= bk pm(a'b'c’k?MOK(b
+ z direction, andP,(z,m)Az to be the power absorbed in a alk| F1—T'y(@)j1(a)
plasma cross section of thickneAz at the locationz, we (1)
have: X1j(r)—j a.2 , 33
Ja(r) = a( )Jz,r(a) (33
Mo @ v(r) (==
P.(rmAr=+———— dk|J(r,m,k)|?Ar, where
+(r,m) 2 w0 k2(1) Jo | 3( )| .
2
I'm(a)= (34)

P(r,m=P.(r,m+P_(r,m), (29 jos(a)”
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Repeating the derivation of Eq13) assumingE,=0, we 1.2E+12
obtain the same result but without the terms proportional tc
I'm(a) andji,(a) in Eq. (33). Thus, the transverse electric 1.0B412 ey —
assumption along with the antiresonance condition, which ir __ ~ 8.0E+11 RN I \
this case is the same as the insulating boundary conditior’ £ [\ o \
results in the same field shapes as those predicted here tveo|5+11 \.‘
with amplitudes modified by the additional term in the spa- +; \\ \
tially constant denominator. At high magnetic field,ap- £ 4.0E+11 >
proaches zero, Eq24) becomes singular, and Eq&6) and — n(10,1.0) S \
T S 2.0E+11 + - - n(2,1,1) S =
(27) become redundant. In this limit the surviving set of 2 10.) S .
solutions describe the helicon waves. The TG solutions ar g og+gg | n( ' ol F~o
recovered by expandinB in a power series im,, 0 0.01 0.02 0.03 0.04
(@ r(m)
{2
B=exp i — ZAme, (35 50
Me/n=0 Kmax

in Egs. (23) and (24), and equating the coefficients of each I

power ofm, to zero. For 30 \
I Ja kdr’ ka v =1 36 . \
exp —Im | S| TP S w (39 XZO'R """""""" \
{1 A I

(m-1)

the first-order result is T \
ia 0
Im(@)= = po (o5 Pml@,ak), 0 0.01 0.02 0.03 0.04
(b) r(m)
jo(r) ka im i 1 a no(r) FIG. 4. (a) Three of the density profiles investigate®) Radial range in
i.(a) - ka—im 1- W’ 3, - 5 F m which helicon waves propagate in a local approximation at éafdr n,
J2r 0 =10" and a parabolic density profile.

a r')2? m density shifts the balance of heating to the helicon waves
q)m(k,f):J’ —— w — - u(r’)}dr’, near the axis as we will see in the sequence of radial heating
r L") k 2kr profiles in Fig. 14.

, For a constant density the transverse electric helicon
where we represent an arbitrary vec¥rby {V;,V,,Val.  field solutions are also Bessel functions. We have calculated
For the plasma descnbeql by _E@_the expo_nent in E¢36) the antenna plasma resistance in that approximation for sev-
is of order 1, the approximation is not valid, and tHeand .| antenna configurations, varyifg about 1 kG anch,

TG waves are coupled, requiring the calculations of Sec. IV, about 163 cm™3. In each case the transverse electric wave
for description. At hlgsher magnetic fields and densite®.,  \ymper spectral resonances were significantly sharper and
Bo=1kG andno=10" cm™®) Eq.(36) is well satisfied. Us- higher than that for the exact solution but the skirts of the
ing Eq.(37) in Egs.(33) and (34), we can make three main oqonances were lower. As a result we discerned no clear

observations:(1) the termI'y(a) has an imaginary part napern of relative size of the antenna plasma resistances for
which is large compared to that &f,, thereby spoiling the o o approaches.

narrow resonances of té wave; (2) the amplitude of the

TG wave decays inward from the plasma edge with a ski

depth of the order ok, /(kv); and(3) the TG currents on Iv. CALCULATIONS

the surface(j , andj,) are larger than the radial currerjt ) We explore antenna coupling for the plasma parameters
by factor of orders. Since theH current components are all of Eq. (2) using a parametrization of the density profile used
of the same order and the radial component cancels that gharlier?
the TG wave at the surface, the surface components of the r\ st
current are dominated by the TG waves near the surface. In  n(s,t,r)=ng| 1— (—) .
calculating the antenna plasma resistance the currents are w
squared and integrated. The integral of the exponential funcfo avoid numerical difficulties when(a) =0, w is chosen
tion is proportional tos, and hence the transverse TG cur- so thatn(s,t,a)=0.01n,. Exact Bessel function solutions
rents dominate the total absorption by a net factor 6fdd  are used for a constant-density profile. Some other profiles
the surface. This result was obtained by Sharetal? in used are shown in Fig.(d. The (s,t)=(2,10) profile is
their analysis of the exact solutions for constant density. Fosimilar to a Gaussian. In Part | we learned that for a given
axially peaked plasma density profiles the reduced surfaceonstant density there is a range of axial wave numbers for

(39
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FIG. 5. The value op,(a,a,c,k) as a function oka for various values of ) .
c/a. FIG. 6. Exact DE result compared with the layered result neglecting the

density gradientyu(r), for them=1 mode excited in a plasma with a nearly
square density profile by a half wavelength helical anterfgg:helicon
amplitude|A,|; (b) power deposition profil®(r,1).
which helicon waves can propagate. Figutb)4ghows how
the range of locally propagatirigvalues would shrink as the
density decreases with radius for a parabolic profile. For
fixed k, helicon waves can propagate for

and for a parabolic profile HE,1,1). There are also clear
Yifferences in the spectral amplitudes of thg(H) and
A,(TG) basis functiongnot shown. The u(r)=0 ampli-

Fmin(K) <P <f max(K), (39 tudes are larger and show a greater preference for the shorter

wavelength(largerk) mode. Differences in the radial power
where the limiting radii are solutions &,,;,=2k,(r)v8(r) gthilargerk) P

deposition profiles are particularly pronounced, with the
and Kmax=Ku(1)/v1=4&(r). The TG waves propagate for u(r)=0 solution predicting greatly increased heating of the
> 1 min(K). _The waves are strongly coupled ne_a{n(k). surface. For ¢,t)=(10,1) the exact andi(r)=0 antenna
Thg f'?lds depgnd on the antenna location thrpugh th‘f)lasma resistances are 1.3 and @.6respectively. Fo(2,1)
mulltlpllcatlve funcnon_pm. To simplify the results without they are 2.2 and 8.8, respectively, compared with experi-
losing the major physical effects, we now $eta, so that _ mental values of the order of Q.
the antenna is at the plasma boundary. The function
pm(a,a,c,k) is shown in Fig. 5 for a typical range of param- - . . i
eters. For the cases considered, the major spectral contribg-' Variation with density profile
tions occur for 2>ka>0.8. As long asc/a>1.5, we see Figures 8a)—8(d) show the variation of spectral ampli-
from Fig. 5 that we may take/a— with little qualitative  tudes through a succession of progressively more peaked
difference in the results. The examples which follow weredensity profiles corresponding to those shown in Fig).4
therefore computed witb=a andc— . Note that theH and TG basis functions are normalized to
The results in the following figures are labeled with thecommon values on the axis. The TG functions will often
notation XX(s,t,m), wheres andt specify the density pro- increase exponentially to the plasma surface. SinceHhe
file, m the azimuthal mode number, and XX is L for a single and TG radial currents balance at the surface, the TG ampli-
loop or N3, HH, or H1 for the three antennas of Fig. 3. tude A, must be correspondingly small. Tha,| traces in
Figs. §a)—8(d) should therefore be interpreted with respect
to shape and relative magnitude from figure to figure but not
The importance of the density-gradient terms in 2¢)  compared to théA,| traces without further calculation. In
is illustrated in Figs. 6 and 7, which compare the solutionghe constant density profile case we see two pe&ksk
with and withoutu(r) for a near uniform profile HKLO,1,) >0), atk~23/m andk~ 32/m, that are broadened to overlap

A. Effect of the density gradient term  u(r)
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FIG. 7. The same as Fig. 6 but for a parabolic density profile. 10

by collisions and coupling between the waves which modify 75
the resonant denominator. As the density becomes mor /

peaked the amplitude of the shorter wavelength resonanc s
increases significantly with respect to the longer one. We—= 5
might anticipate this from Fig. @) since, ask increases, < d
integration of the equation for the helicon basis function em- \
ploys a larger evanescent distance betwegp and the sur-
face. Consequently, (a)/j,,(a) is reduced and hence, by J\ l/

Eqg. (13), |A1(K)| is increased. The magnitude of the helicon 0 . D\
basis function is reduced near the surface leading to goo 50 25 0 25 50
penetration. This effect is a variation of the antiresonancec) k (m™)

phenomenon. For all profiles thé wave amplitude exceeds

the TG wave amplitude by about an order of magnitude. The 15

TG currents are still important, however, since they are ap: |HH(2'10'1)I
proximately proportional td, times the magnetic field, and f
over much of the spectruin is much larger for the TG than 10

the H wave.

In Fig. 9 the magnitudes of the azimuthal magnetic fields
of H and TG waves, as well as their phased sums, are show
as a function of radius for the various density profiles shown
in Fig. 5a). They were computed fok=32/m, where we
expect theH and TG waves to be well separated. The TG
wave magnitudes are uniformly smaller than tHewave,
and the TG wave decays inward from the surface for the 0 25 50
more uniform density profiles but penetrates to the axis for(d) k (m™)
the more centrally peaked profiles. To lowest approximation
the fields are well represented by tHewave alone, which
supports our identification of the two independent solutions: g, g Amplitude of the helicon and TG waves for density profiles which
(distinguished by their behavior on the gxasH and TG  are(a) square;(b) nearly uniform;(c) parabolic; andd) peaked.

[Aql: 1A
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FIG. 13. The dependence of antenna plasma resistance on density profile

s,t) and wave polarization fom==*1 shown for progressively more
|(oea)ked density prr)ofiles. Pros g _ .
HH(2,1,1 ~.

o . < 1000 \,>/-\w-/\\
waves. Oscillations of the TG waves are not directly appar- t Ra2i1) =247 '
ent because the magnitude is plotted, but they can be seen i 5 Ry2,1,-1) =021Q // \
the perturbation of the total field. In Fig. 10 the azimuthal 2 , o i:g:g?):);g s
field magnitudes are shown fér=23/m where we expect, [AHER,)] ]
from Fig. 4b) and the constant density— 8 diagram dis- _-—‘_T;:"" R
cussion of Part | that théd and TG waves are strongly pb TS
coupled near the axis. Indeed, for the more uniform profiles 10
the two solutions retain thel and TG structure; but for the 0 0.01 0.02 0.03 0.04
more centrally peaked profiles, strong coupling is apparent. (b) r(m)

In Figs. 11 and 12 we see that the magnitudes of+thand 0.2

TG azimuthal currents, computed at the two spectral peaks,

are comparable for all profiles. Near the surface they tend to ,‘

oppose each other and leave a significantly reduced net fieldg 0.1 - = HH(10,1,+1) l"

SinceEx e 1. J, the net electric field will also be sensitiveto & ——HH(10,1,-1) ll
= — ‘HH(2,1,+1) |

the presence of the TG wave. £ o041 h
=3 1

C. Differences between m=+1 and m=-1 modes e 0.05 " ,“

Poor excitation of negativen modes has been observed ‘)’,/ k Il\\ s Y
experimentally:®!! Kamenski and Borg,using a transverse o X aeal? A
electric analysis of a high magnetic field and high density -50 25 0 o5 50
plasma including only helicon waves, have suggested that, k (m)

this is due to the narrowness of realistic plasma profiles and

difficulty of wave penetration. They perform a Wentzel— FIG. 14. The dependence of power absorpfgn,1) on density profile for
Kramers—Brillouin analysis and attribute the effect, at least® two near uniform profiles(b) two axially peaked profiles, an) spec-

in part, to the narrowness of the transparency region. Thi ?_:(;Tinln)a plasma resistance for HH(18.1), HH(10,1~1), and
argument does not necessarily apply in our lower magnetic =~

field case since the TG waves have a wider transparency

region. Variation of antenna plasma resistance with profile isent and a downturn in the absorption just below the surface.
shown in Fig. 13 for a 20 cm HH antenna amd= +1 and  The indicated antenna plasma resistances are roughly com-
m=—1 waves. There is not much variation for tine= parable. Figure 1) shows the absorption profiles for two
+1 waves. Then= —1 plasma resistance is comparable tomore centrally peaked density profiles. As the density be-
or larger than then= +1 case for near uniform profiles but comes more peaked, the absorption becomes larger on axis
the plasma resistance drops significantly as the profile beor them=1 wave, giving an almost uniform deposition pro-
comes more centrally peaked. Figure(d4shows the ab- file, while it decreases on axis for te=—1 waves. To
sorption profiles as a function of radius for two nearly uni- gain insight into the reasons for this, we show in Fig(cl4
form density profiles fom=1 andm=—1 waves. In the spectral antenna plasma resistancesrier(=)1 for a near
constant density case the energy deposition rises rapidly withniform density profile and then= 1 resistance for a sharply
increasing radius to a maximum at the surface. For the morpeaked density profile. Thea=—1 sharply peaked density
realistic profiles, the density gradient texr(r) and the ex- resistance is too small to be seen on the same graph. For the
panded evanescent region causes a reduction of surface cumear uniform profile, then=+1 mode has a large peak at
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TABLE |. Variation of antenna resistance with configuration.

Configuration R, (Q) R_(Q) R (Q)
HH(2,1,) 1.97 0.20 2.17
HH(2,1-1) 0.01 0.20 0.21
N3(2,1,2) 0.48 0.48 0.96
L(2,1,0 0.73 0.73 1.47

k=36 m ! corresponding to the lowest radial mode, and a
small peak ak=21 m ! corresponding to the second radial
mode. Them=—1 mode has large peaks lat—22 m?!
andk=—18 m ! and no significant peak at largkr This is

not unexpected since the=—1 mode has a narrower pro-
file than them= +1 mode® and therefore a largds, . Ac-
cording to the basic whistler dispersion relatidtart I, Eq.
(23)], the corresponding value df (i.e., k;) is therefore
smaller. As discussed in Sec. IV B for= + 1 waves, when

the density profile becomes more peaked the lirgeak is
increased and there is better penetration of the largeli-

con fields. Since the TG field decays inward from the surface
a larger net current obtains on axis and more uniform heating
results. For the smak m=—1 peak and a more peaked
density profile the fields are reduced without benefit of this
antiresonance phenomena. In addition, as the density be-
comes more peaked fon=—1 the peaks shift to smallde

(as occurs in the constant density for reduced density or ra-
dius) which is less than the locél,,, for much of the radius.

D. Variation with antennas and wave polarization

Figures 1%a)—15d) show the magnitude of the and
TG amplitudes for a parabolic density profile and a 20 cm
HH antenna withm= *1, for a 12 cm N3 and an L antenna.
These lengths were chosen to give spectral peaks at the same
value ofk (Fig. 3. The HH(2,1-1) system has a much
broader, lower helicon amplitude than the HH(2;,1,) case.
The N3 antenna spectrum is similar to that of the HH an-
tenna but with reduced amplitude. The symmetric L antenna
m=0 spectrum displays a very narrow long-wavelength
resonance with an amplitude comparable to the peak of the
HH(2,1,+1) resonance. The antenna plasma resistét)ce
and the contribution to it from+z and —z propagating

3000
2250 /\
z / \
g ==
= 1500 —
e N =
= R /\ 7N
X, )\
750 TTNa@A) = NI \
————— T~ ; s \/\ > / -4\
- L
P Eeresrrve RO APPPppYS .
0 0.01 0.02 0.03 0.04

FIG. 15. The amplitudes of helicon and TG waves for a parabolic densityFIG. 16. Dependence of power absorpt®¢r,m) on antenna configuration

profile for different antennas and wave polarizations.

and wave polarization for a parabolic density profile.
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3E-06 4 FIG. 18. Power absorbed as a function of axial distance for(2iH,1).
2E-06 —d A LT . 12 —z wavelengths of about 24 and 21 cm, lor +26/m and
bl \ Ve . —30/m, respectively. The real part &, for HH(2,1,—1),
e . . . /\ Lo 3 shown in Fig. 17b), appears to be a damped wave propagat-
< 0E+00 N : . g 0 ® o . . .
ol T : . il ing in the +z direction, and a very long wavelength wave in
: ‘.‘\ :/ g the — z direction. This is confirmed in the phase plot, which
2E-06 L\t A 27 has a poorly defined but suggestive variation in the di-
\/ rection and a linear phase variation in the direction cor-
' responding tox ~40 cm, ork~16/m. The linearity of the
-3E-06 -4 phase plot for—z is surprising in view of the width of the
0.5 -0.25 0 0.25 0.5 spectrum shown in Fig. 1B). Only the very long wave-
) z(m) length relative peaks in thél and TG spectra contribute

FIG. 17. Real part—) and phasé-—) of B, atr=1cm as a function oz cOherently to theB; field in real space. The power absorbed
for the (8 m=+1 and(b) m=—1 modes in a parabolic density profile. ~ Per axial length as a function affor HH(2,1,1) is shown in
Fig. 18. The axial absorption is largest under the antenna, but
only about 20% of the total power is absorbed there.
waves are given in Table I. Note that the N3 and L antennas
generate equal amplitude waves propagating in the forwar#. Radial wave profiles
and back directipns. The corresponding absorption profiles The radial variation of the total magnetic field andhts
are shown in F_|g. 16. The HH(2;11) antenna h‘j"S the and TG components at=20 cm is shown in Fig. 19. Except
strongest coupling but the L antenna plasma resistance Eear the surface, the total field follows thé field quite
0, H ’
only 3(.)/0 smaller. However, the HH antenna delivers almqs losely. The corresponding graphs of the currents are shown
three times the power of the L antenna to waves propagatln]%r the same location in Fig. 20. The totalandJ,, are also
in the +z direction. In contrast to the other three arrange-; ... 4 by théd wave contribution e_xcept _ndéar the sur-
ments, the L antenna dellv_ers a much larger frqcho_n of Sace. These results suggest a reason for the good agreement
power to f[he center of t_he dlsc_harge._ If power going into thebe'tween experiments and theories which take ¢hiywaves
—Z d"ec“‘“_‘ IS not _deswed Wh'le taking a(_jvantage of the I‘into account. The axial component of the current shows the
antenna axial heating a solid or magnetic blocker may b?argest deviations, suggesting an experimental test of the

12
used: contribution of TG waves.
E. Variation with Zz G. Optimal antenna length
Although investigation of the fields ik space is useful The plasma resistance as a function of HH antenna

in developing physical models, it is necessary to invert theilength form=+1 waves and three different plasma density
Fourier transforms to relate them to configuration spacerofiles is shown in Fig. 28). The optimum antenna length
where measurements are made. The real part and ph8se of L, the value ofk,kqy, for which pa(k,m,L) is a maxi-

as a function ofz atr=1 cm are shown for the conditions mum, and the optimal plasma resistarRg, is given in
HH(2,1,+1) in Fig. 141a) (note that the antenna is 20 cm Table Il for each profile §,t) with density half widtha,,:
long and centered at the originThe real part oB, has the The values ofk,, are quite large compared to the average
appearance of a sinusoidal wave propagating away from thiecal k,,.«. Indeed, for the more uniform profild0,l) it is
antenna with a greater amplitude in the direction. Despite almost as large as the lochk)},,,=42/m for propagation on
the broad spectrum with two sets of overlapping peaks iraxis. The optimal coupling is weaker for the more centrally
each direction shown in Fig. 1&, the phase variations out- peaked profilé€2,10 because of lower density on the surface
side the antenna are close to linear, with measuredand  where the currents are invariably lardgg. for a parabolic
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FIG. 19. Comparison of the magnetic field components and the contribu-
tions from theH and TG waves at=20 cm for HH(2,1,)) for (a) B, , (b)

B, . and(c) B,.

density profile is shown in Fig. 2), along with thep, for
an HH antenna of optimal length,,=0.164 cm, and for
one of lengthL ,,;=0.287 m corresponding to the first mini-
mum of Ra(1,L). Note the maximum of5, at k,=33/m
which coincides with the zero o, for L, =37/k,, as
well as the broad maximum @f, for L =Ly, which overlaps
significantly with the large values & at long wavelengths.
The power absorption profile,(r,m) for these two antenna
lengths is shown in Fig. Ztt) where the significant relative
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FIG. 20. The same as Fig. 19 but for the current density.

tances are 1.08, 2.57, and 6.Q] showing the advantage of
concentrating the antenna spectral power at the peak of the

S,.

V. SUMMARY AND CONCLUSIONS

A general expression relating the antenna current to the
plasma surface fields is derived and greatly simplified by
neglecting displacement currents. A fourth-order ODE is de-
rived for coupledH and TG waves in a radially nonuniform
plasma. Linearly independent solutions with short and long
radial wavelengths on the axis are obtained. Results are pre-
sented for a variety of density profiles fog=10"cm™3

reduction of heating is apparent. The antenna plasma resishdBy=100 G. For a constant density the computations re-
tance is shown as a function of L for the N3, HH, and H1produce the usudll and TG Bessel function solutions. They
antennas as shown in Fig. @)L The respective peak resis- maintain their long and short wavelength character for mod-
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TABLE Il. Antenna optimization.
(s,t) ay;; (M) L opt (M) Kopt (M%) Ropt ()
(10,9 0.0374 0.140 38 251
2,9 0.0284 0.164 32 2.57
(2,10 0.0170 0.190 28 1.73

erate changes in the density profile and hence may be inter-
preted as the extensionstdfand TG waves in those cases. It

is shown that layered solution methods which neglect some
density gradient terms lead to an exaggeration of the antenna
plasma resistance due to excess energy absorbed in a thin
layer near the surface. A study of antenna types and wave
polarization show major differences in the= +1 spectrum,
enhanced energy absorption near but not at the surface, and
helical antenna performance that improves with the number
of turns. A study of density profiles varying from constant to
near-Gaussian shows a steady progression of increasing and
narrowing of the short axial wavelength peak and reduction
of the long wavelength peak. The absorption radial profile
for the square density shape differs significantly from the
more realistic ones. As the density profile becomes more
peaked on axis, antenna plasma resistancefert 1 waves
varies little, but decreases significantly for=—1 waves
because there is no short wavelength resonance in the latter
case. In configuration space, for a parabolic density profile,
the wave magnetic field and current density shapes are close
to that of theH field, except near the surface. However, the
TG currentsare comparable to thel currents, and hence
their inclusion is critical to accurately calculating the absorp-
tion. A general discussion of the effects of TG waves at high
magnetic field for a radially nonuniform plasma showed that
they dominate the power absorption, in agreement with the
exact result for constant density.

APPENDIX: ODE INCLUDING IONS AND
DISPLACEMENT CURRENTS

To derive the general fourth-order ODE we start with
Eq. (14), commute the curl with the’s, divide by ay, and
define the following coefficients which have the indicated
limits for negligible displacement current and ionic effects

FIG. 21. (a) Plasma resistance as a function of antenna length for an HH

antenna and plasmas with various density profiles) ( (b) specific power
densityS, and antenna power spectrum for the optirbgl=0.164 m, and
first minimal L, =0.287 m, antenna lengths &), and(c) power deposi-
tion profile for antenna lengths d@b). Variation of antenna plasma resis-

tance with antenna length for three antentdis

- S a;
A:aD ac:_—>5, AOZ__,C—>50,
ay D aH
(A1)
’ 2
) _% o ko,
WD_aH_’ U= ay’ Kw ay K-
We then obtain in place of Eq17)
AV?B+kV xB—K2B
=u[—Agrx(VxB)+i(VxB),z]
—npVX[(VXB)z]+(n5+unp)(VXB),z.  (A2)

Using V-B=0 in ther component of Eq(A2) yields
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, m=A ) 2 1+m m
Br=—ar Btk Rtz T ge)B
2m 1 2 m? 5
TR P
7p [ M? m=, m-

Substituting firstB, and thenB; in the ¢ component of Eq.

(A2) results in

~, K2 m 1( , m
(A—”I]D)B¢=— I‘FTAOLH‘r—Z m +K—2m B,
L - +K2—1A
rA ' A w Soll
A , m m?\ ]~
+r—2 14+m —K—P Bd’
A m|~ m(m—A)
—| = +Aout —|Byt o] —7— B

m . m=A~ A
+T(A+1)B'+TB¢+TB¢'

(A4)
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Although it is generally most convenient numerically to
solve Eqgs(A3) and(A4) as coupled equations, they can be
reduced to a single fourth-order equation for one of the field
components. Taking the first and second derivative of each
equation yields six linear equations from which, for example,
the five quantitiedB, and its derivatives may be eliminated
by substitution to yield a single fourth-order equation for
B¢ .
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