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ABSTRACT

High-density, radiofrequency plasmas used in semiconductor proc-

essing have progressed to densities n ≥ 5 × 1011 cm-3, where the methods used

to interpret Langmuir probe characteristics in low-density (109-11 cm-3) plasma

reactors are no longer valid.  Though theory and computations for arbitrarily

dense collisionless plasmas exist, they are difficult to apply in real time.  A

new parametrization and iteration scheme is given which permits rapid analy-

sis of Langmuir probe data using these theories.  However, at high n, meas-

ured ion saturation curves are shown which do not agree in shape with the

“correct” theory, yielding anomalously high values of n.  The discrepancy

with independent measures of n, which can exceed a factor of two, is believed

to be caused by charge-exchange collisions well outside the sheath.  Probe de-

signs for avoiding this discrepancy are suggested.

I.  Background
A majority of the critical steps in the fabrication of a computer chip now involve

plasma processing.  The standard capacitive discharges used for these processes are gradually
being replaced by so-called high density plasmas, particularly Inductively Coupled Plasmas
(ICPs) and Helicon Wave (HW) plasmas, which are both driven by radiofrequency power.
These sources are capable of increasing the plasma density n from the 109-11 cm-3  range to
the order of 5 × 1012 cm-3.   In the low density regime, it is common practice in the industry
to use the Orbital Motion Limited (OML) theory of ion collection.  This theory can be
applied successfully well outside its intended range, but its error is greatly enhanced at high
densities.  Though a suitable theory exists, it is normalized in such a way that the result must
be known before the calculation is begun.  In this paper we present a method for parametriz-
ing the theoretical curves so that fast, real-time analysis of probe curves at any density can be
made with modern computers.  This paper will treat only cylindrical probes, since spherical
ones are impractical.  Except at the end, collisions will be neglected because in high density
plasmas the sheaths are much thinner than the mean free path.  Attention will be focused on
saturation ion currents, which present the most difficult problems.

The OML theory of ion collection was developed by Mott-Smith and Langmuir [1],
who found that the ion current to a negatively biased probe is independent of the shape of the
plasma potential V(r) as long as the current is limited only by the angular momentum of the
orbiting ions.  This required either the arbitrary assumption of a “sheath edge” s, beyond
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which the ion energy distribution was Maxwellian, or a V(r) varying so slowly that no
“absorption radius”, inside of which all ions are drawn in, exists between the probe and
infinity.  This condition is never satisfied even at modest densities.  For s → ∞ and a Max-
wellian ion distribution at temperature Ti,  the OML current to a cylindrical probe is given by
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where /p ieV KTχ ≡ − , Vp  is the probe voltage, Ap the probe area, and jr the random thermal
ion current.  As Ti → 0, the Ti dependences of χ and jr cancel, and a finite limiting value of
the OML current exists:
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At the opposite extreme of dense plasmas and thin sheaths, ions enter the sheath with the so-
called Bohm velocity

1/ 2( / )B ev KT M= ,  (3)

so that the saturation ion current is

p BI neA vα≈         (4)

independently of Vp , since the sheath adds very little to the probe radius Rp.  Here, αn = ns is
the ion density at the sheath edge, with α ≈ ½.   The exact value of α depends on the condi-
tions in the presheath, which can cause the “saturation” current to increase with Vp, even for a
plane probe.   Since the presheath thickness is generally ≥ Rp, there is no simple way to treat
a plane probe theoretically.

Between 1926 and 1957 many probe papers appeared, but all of them involved the
arbitrary assumption of a sheath edge, since computers did not exist to handle the disparity in
scale length between the sheath region and the quasineutral plasma region.  In 1957 Allen,
Boyd, and Reynolds (ABR) [2] derived a relatively simple differential equation which could
be solved to give V(r) for all r without division into sheath, presheath, and plasma regions.
However, this theory was only for spherical probes and only for Ti = 0, so that ions moved
radially into the probe, there was no orbital motion, and the absorption radius was at infinity.
Chen [3] later extended the Ti = 0 calculations to cylindrical probes.  For finite Ti, ions with
small angular momentum J would strike the probe and be collected, while those with large J
would miss the probe and contribute twice to the ion density at any radius r which they
reached.  Thus, the density used to solve Poisson’s equation for V(r) depends on the current I,
which is unknown.  This difficult problem was solved by Bernstein and Rabinowitz (BR) [4]
in 1959, but only for monoenergetic ions.  The angular momentum forms an effective poten-
tial barrier for the ions, and those with sufficient energy E to overcome the barrier are
collected.  Thus, the constants of motion E, J determine the fate of each velocity class.  In
addition, V(r) may have a local minimum in which ions can be trapped in closed orbits.
Fortunately there has never been, to our knowledge, any indication of the existence of such a
population of collisionally trapped ions.  A simpler method, valid only for highly negative
probes, was given by Lam [5], who took advantage of the disparity in scale lengths at various
radii.  Using boundary layer techniques from aerodynamics, he derived a graphical method
for computing ion currents.  With modern computers, however, this method is no longer
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useful.  Computations based on the ABR, BR, and Lam theories were given by Chen [3,6].
Experimental verification of the BR results was done by Chen, Etievant, and Mosher [7]

The Bernstein-Rabinowitz computations were extended to Maxwellian distributions
in the dissertation of Laframboise [8].  Since each velocity class (E, J) had its own idiosyn-
crasies, and there were convergence problems in the solution of the integral equations, these
calculations were difficult and non-trivial.  Unfortunately, only the cases β ≡ Ti / Te = 0, 0.5,
and 1 were treated; if β  had been taken to be 0.1, the results could have been used forthwith,
without the nonuniform convergence problems in the case Ti = 0.  When Ti → 0, one might
expect the BR-Laframboise (BRL) results to reduce to the ABR results, but they do so only
for the spheres, not for cylinders.  The reason is that as r → ∞  while Ti → 0, the angular
momentum J takes the indeterminate form ∞ × 0, which is zero for spheres but finite for
cylinders.  By asymptotic analysis of the governing equations, Laframboise showed that this
limit depends on whether V(r) varies faster or slower than 1/r2.   For cylinders, it varies more
slowly, causing J to be finite even if Ti = 0.  Consequently, the ABR theory cannot be used
for cylindrical probes; we must use the Laframboise curves or the BR results, which are only
slightly different from each other for β << 1.

Further computations of this type were given later by Virmont and Godard [9], but
only for spherical probes.  Numerous extensions of collisionless probe theory have been
made; for instance, to collisional plasmas by Cohen [10], to flowing plasma by Chung et al.
[11], and to magnetized plasmas by Stangeby [12].  However, the collisionless theories
worked out in the 1960s are still state-of-the-art and are appropriate for high density, low
pressure plasmas.  These results, however, are normalized to units which depend on the
variables to be determined and are therefore difficult to apply to experiment.

II.  Parametrization of Laframboise curves
In 1965, Chen [13] showed that the apparent linearity of I2 – V curves of ion current

was fortuitous and unrelated to the OML formula of Eq. (2).  For instance, this dependence is
found in ABR theory, which has no orbital motions, and also for spherical probes, for which
OML theory would predict a linear I – V dependence.  Fig. 1, copied from that paper, shows
ABR curves of ion current over a large range of ξp, where ξp (or, simply, ξ ) is the ratio of
probe radius to Debye length:

2 1/ 2
0/ , ( / )p p D D eR KT neξ ξ λ λ ε≡ ≡ ≡ .  (5)

The slope of the curves at low ξp (low density) is indeed consistent with linear I2 – V, but the
curves bend at high ξp (high density), approaching true ion saturation with constant I.  Fig. 2
shows the I – V curves of Laframboise [8] for Ti  = 0 and various values of ξ.  Since they
cannot easily be recalculated, it is these curves that we wish to represent by analytic func-
tions for arbitrary values of ξ and Vp .  Following Ref. [8], we use the following normaliza-
tions:
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where Vp  and Vs are the probe and space (plasma) potentials, Ii is the ion current to a cylin-
drical probe with area Ap = 2πRpL, and Jr is a random ion current  per unit density (evaluated
at Te).  Eq. (6) is invariant to the system of units, but it is convenient to express Ii and e in
mks, with the other quantities in cgs.  Note that η depends on Vs and Te, and i on n, all
quantities which are not known until the analysis is complete.
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Steinbrüchel et al. [14,15] and Mausbach [16] have parametrized these curves with a

two-parameter function of the form
Bi Aη= ,     (7)

but it is clear that the bend in the I-V curves in Fig. 1 for large ξ cannot be represented by so
simple a function.  Instead, we have used the following four-parameter fitting function:

( ) ( )4 4 4
1 1 1

B Di A Cη η
= + ,    (8)

where the parameters ABCD are functions of ξ.  The first term on the right in Eq. (8) is
dominant for small η, giving an approximate i2 ∝ η dependence, while the second term
dominates at large η, where the slope is smaller.  The ratio C/A determines where the bend in
the curve occurs, and the exponent 4 affects the sharpness of the bend.  Fortunately the same
exponent could be used for all curves.

The parametrization proceeds in two stages.  In Stage 1, values of ABCD are found
which give good fits to the curves of Fig. 2 for the available values of ξ.  In Stage 2, func-
tions A(ξ), B(ξ)… are found so that the parameters ABCD can be evaluated for arbitrary ξ.
In Stage 1, the curves of Fig. 2 were carefully digitized by direct measurement.  For low
values of η and ξ we used the expanded graph in Ref. [8], shown in Fig. 3.  In addition to
these graphs, Laframboise [8] gave the numerical values of the points which were actually
computed.  Since the curves were no doubt interpolated by a draftsman, in collecting the data
set we gave extra weight to those points for which exact values were known.  An example of
a data set and the functional fit using Eq. (8) is shown in Fig. 4 on a log-log plot.  The scatter
in the points arises from errors in reading Figs. 2 and 3 because of the finite width of the
lines.  With four parameters (ABCD) to be varied in the least squares fit, a multiplicity of
solutions could be obtained depending on the starting values.  We first fit the slopes B and D
to the left and right portions of the curve, respectively, and then adjusted the values of A and
C to get an overall fit.  Only then were all four parameters varied to get the final least squares
minimization.

The entire data set and the corresponding least squares fits are shown in Fig. 5.  All
available values of ξ are listed, but to avoid clutter some values are not plotted.  The curve
for ξ  = 0 agrees with the OML limit given by Eq. (2).  Close examination of Fig. 5 will show
that the slope changes discontinuously at ξ = 3.  This value of ξ separates the region (ξ < 3)
in which the OML limit is approximately valid from the region (ξ > 3) where it is not.  The
physical meaning is that, for ξ  ≥ 3, the formation of an absorption radius begins to limit the
probe current.   Except for the point η = 0, which has little experimental value, the fitting
error over the entire range of η and ξ is less than ≈ 3%, and in most cases less than 1-2%.
The values of the parameters ABCD used in Fig. 5 are shown in Table 1; as explained above,
this is by no means a unique set of values.

In Stage 2, we attempt to express the parameters ABCD as analytic functions of ξ.
The values in Table 1 are plotted in Fig. 6a.  We see that all the curves have a discontinuity at
ξ = 3, except for the OML exponent B.  These jumps are real; attempts to smooth over them
yielded poor results.  More insight into this behavior can be seen from Fig. 3, where it is seen
that the curves change discontinuously to a horizontal line near ξ = 3.  The reason for this is
that, for cylinders, the BR theory converges poorly for small ξ, yielding currents larger than
the OML limit.  Laframboise argues that the ion current cannot exceed this limit because,
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when a thin sheath is formed, it shields the plasma from the probe potential, and ions cannot
be drawn in from large distances.  For lack of a better procedure, he arbitrarily cuts off the
ion current when it reached the OML value.  This limit is not observed in experiment.
Laframboise [8] shows data by Sonin [17] which follow the extrapolation of the curves of
Fig. 3 without an OML cutoff.  This is physically reasonable, since any small collision far
from the probe can change the angular momentum of an incoming ion.  The obvious solution
is to ignore the OML limit and use the extrapolation of the curves of Fig. 3.  Unfortunately,
the parameters ABCD(ξ) then behave even more erratically than in Fig. 6a, and we were
unable to fit them to smooth functions.

The fitting of ABCD(ξ) to analytic functions was carried out in two steps.  In Step 1,
the values for ξ  < 3 were ignored, and the origin of the curves was shifted to ξ = 3.  The
following functional forms were used:

, , ( ) ( ) exp[ ( ) ]
exp[ ln( )] (1 ln )

d gA B D a b c f c
C a b c d f g

ξ ξ ξ
ξ ξ

= + − − −
= + − − + −

     (9)

Thus, each parameter A, B, C, or D, was fitted using six other parameters abcdfg, which we
shall call coefficients to avoid confusion.  Possible values for these are given in Table 2.  This
is by no means a uniquely optimized set; we simply show that a set exists which can be used
to reproduce the Laframboise curves accurately. Fig. 6a shows the resulting curves of
ABCD(ξ), as analytic fits to the points in that figure.   With these smoothed parameters, the
calculated data points of Fig. 5 can be fitted within 3% down to ξ = 3.

In Step 2, we sacrifice accuracy in order to fit the parameters ABCD(ξj) for all known
values, ξj, of ξ.  The parameters ABCD are chosen not to give the best fit to the data but to
give a reasonable fit while varying more smoothly as functions of ξ.   Since C becomes large
for ξ < 3, the second term in Eq. (8) is negligible for small ξ.  We therefore choose a function
C(ξ) which fits the points ξ > 3 in Fig. 6 and which diverges rapidly for ξ < 3.  The function
D(ξ) is then immaterial for ξ < 3 and needs to be fitted only for large ξ.  Having chosen C(ξ)
and D(ξ), we then fix C and D at their smoothed values while optimizing A and B.  This
results in a new set of parameters ABCD, given in Table 3, which are to be fitted with new
functions A(ξ) and B(ξ).  The new set of functions, involving new coefficients abcdf, is as
follows:

1
1 1

ln( / )
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c

c f
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B D a b d
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ξ −

= +
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        (10)

Table 4 gives the new coefficients, and Fig. 6b shows the points and fitting curves of Step 2,
valid for all ξ.  In spite of the fact that the points in Fig. 6b are still erratic and the fits poor,
the smooth curves in this figure yield I – V  curves agreeing with those in Fig. 2 to within ≈
5% for 0 < ξ < 100.   The largest discrepancies occur for ξ ≈ 4-5, where both terms in Eq. (8)
are significant.  Again, we emphasize that the parameters of Table 3 are by no means
optimized.  By degrading the Stage 1 fit using other local minima in the least-squares
process, it may be possible to make the points ABCD(ξj) lie on smoother curves that can be
fitted more readily.
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Comparison of the two parametrizations is shown for two sample values of ξ in Figs.

7a and 7b on log-log plots.  Though it is not easy to see on this scale, the Step 1 coefficients
give closer fits than the Step 2 coefficients.  The largest discrepancies are for η < 1, where
the ion current is only a small contribution to the total current anyway.   Note that the fits of
Fig. 5 are better than those of Fig. 7 because the parameters ABCD in Fig. 5 were not
calculated from analytic functions.

Finally, we consider the effect of finite ion temperature.  Fig. 8 shows the
Laframboise calculations [8] for i vs. η at ξ = 10 for various ratios Ti / Te.  Since in partially
ionized gas discharges Ti rarely exceeds 0.1eV, the correction for finite Ti is entirely
negligible except for η < 1.

III.  Analysis procedure.
To obtain accurate values of n, Te, and Vs (but not Ti) from the I-V characteristic, the

most difficult task is to separate the ion current Ii from the electron current Ie, and vice versa,
in the region near the floating potential, where both contribute to the total current I.  Now
that we have accurate ion curves for small values of η, we can subtract Ii from Ie, and then Ie
from Ii, in an iterative procedure.  We shall illustrate this technique using data from an
inductively coupled discharge in 10mTorr of argon, taken with an RF-compensated probe of
radius 0.075 mm and length 1 cm (Hiden ESPion).  A similar iterative scheme is used by
Hopkins and Graham [18].

Except in negative-ion plasmas, it is inadvisable to attempt to obtain the electron
density ne from the saturation electron current, though this has been done successfully in
quiescent, field-free plasmas of very low density.  There are several reasons for this.  The
space potential Vs, at which ne is determined, is usually found from the inflection point of the
I-V  curve or from the “knee” at which the extrapolated lines of the saturation and transition
regions cross.  This point is ill defined, and ne depends exponentially on the choice of Vs.
Magnetic fields and collisions can move the knee of the curve.  Radiofrequency fluctuations
can distort this particularly nonlinear part of the curve.  Drawing large electron currents to
the probe can also deplete the plasma or damage the probe.  If ni and ne were to differ by as
much as 0.1%, Poisson’s equation shows that d2Vs/dx2 would be of order 200 V/cm2, which is
impossible outside of a sheath.  Therefore, apart from low-density (n < 3 × 1010 cm-3), RF-
free plasmas, ne is in principle best determined from the ion saturation current, assuming
quasineutrality; and any disagreement between ni and ne [18, 19] simply shows the error in
measuring ne.  In the following procedure, we do not use electron saturation except for an
initial estimate of n.  However, it will be seen that there are still problems with the theories of
ion collection.

Step 1.  The current to the end area of the probe is subtracted out by dividing the measured
probe current I by an aspect ratio factor Ar, defined by

22 , ( ) / (1 / 2 )p r p pS R L A S R S R Lπ π= = + = + . (11)

Depending on the value of ξ, the end of the probe can collect from a hemispherical sheath or
a plane one.  Since the correction is small, we have simply assumed a small increase in the
cylindrical area.  The entire I-V curve in this example is shown in Fig. 9.

Step 2.  The data are smoothed to remove digital noise, and dI/dV is computed; the maximum
of this gives a first estimate of the space potential Vs.  This estimate will not affect the final
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determination of Vs, which is found from the ion and electron fits and the condition of
quasineutrality.  If the electron distribution is Maxwellian, the ratio I/(dI/dV) yields a first
estimate of Te:

exp[ ( ) / ] ,
/
e e

e p s e
e p

I KTI e V V KT
dI dV e

∝ − =  ,        (12)

which is Te in eV.  These curves are shown in Fig. 10, with Te read directly from the right-
hand scale.  From the minimum in the dI/dV curve, the space potential is seen to be ≈13V.
Since the ion contribution to Ie has not yet been subtracted, the apparent Te varies with Vp.
Taking a potential ≈2Te more negative than Vs, we estimate Te to be about 2.1 eV in this
example.

Step 3.  A rough estimate of plasma density n can be found from Ie(Vs):
1/ 2( ) ( ) ( / 2 )s e s eI V I V neS KT mπ≈ = .        (13)

This yields a density of ≈ 1.7 × 1011 cm-3.   A second estimate can be found from the Bohm
formula of Eq. (4) applied to the current at the most negative probe potential measured.
Since the sheath has expanded at that potential, α should be given a value >> ½, perhaps 2.
This yields a density of ≈ 6 × 1011 cm-3.  These estimates may differ considerably, but they
are needed only to provide an order of magnitude.

Step 4.  Having working values of Vs, Te, and n, we can now evaluate λD, ξ, and Jr from Eqs.
(5) and (6).  The parameters ABCD(ξ) can then be evaluated using Eq. (9) if ξ >> 3, or Eq.
(10) if ξ is less than 3 or close to 3, together with Tables 2 and 4, respectively.  Eq. (10) can
always be used but is somewhat less accurate.

Step 5.  The theoretical ion current can now be found as a function of Vp from Eq. (6) :

i rI nJ i=  ,     (14)

with i given by Eq. (8) as a function of η.   Using the preliminary values of Vs and Te, we can
convert Ii(η) into Ii(Vp) using Eq. (6).  The measured and calculated curves of Ii

2 are shown in
Fig. 11.  The reason that we plot Ii

2 – V rather than Ii – V is that measured Ii
2 – V curves tend

to be linear over a larger range of densities than one would expect from this theory.

Step 6.  The values of n and Vs are then adjusted for a least squares fit to the data, avoiding
the region near Vs.  The value of n controls the magnitude of the curve, and the value of Vs its
slope.  The result is the thin line in Fig. 11.  The discrepancy between theory and experiment
near Vs is expected, since the contribution of electrons has not yet been subtracted.  In
general, the value of Vs given by this fit (≡Vs

i) will differ from that required to fit the electron
current (≡Vs

e);  this will be discussed later.  Note that we do not vary Te at this step.  From
Eq. (6), we see that i2 and η both vary as Te

–1, so that a fit of i2(η) is independent of Te.
Unfortunately, i depends weakly on Te through the value of ξ, and iteration is necessary.

Step 7.  Next, the calculated ion current is subtracted from the probe current to obtain the
electron current.  We do not subtract the measured ion current, since that contains an electron
component.  Fig. 12 shows a semilogarithmic plot of Ie, as compared with the raw data.  In
this case, subtracting the ion current has greatly improved the linearity of this curve.  The
solid line is a graph of the equation

1/ 2( / 2 ) exp[ ( ) / ]e
e e p s eI neS KT m e V V KTπ= −        (15)
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using the value of n determined by the ion fit.

Step 8.  A least squares fit of the Ie data is made by varying Te and Vs
e,  yielding the line

shown in Fig. 12.  The resulting value of Vs
e is the space potential required by

quasineutrality, regardless of where the “knee” of the I – V  curve is located.  For each trial
value of Te or Vs

e, ξ and η will change, and the ion curve has to be recalculated.  The Ie data
are then also recalculated because the ion subtraction has changed.  Despite the complexity,
these least square fits of a 500-point data set require less than 15 seconds on a 400MHz
computer using an uncompiled spreadsheet program.  Since Te has changed, the ion curve in
Fig. 11 will no longer fit the data.

Step 9.  Steps 4-8 are repeated until consistent values of n, Te, Vs
i, and Vs

e are obtained.  In
this example, the result is n = 5.15 × 1011 cm-3, Te = 2.09 eV, Vs

e = 14.9 eV, and Vs
i = 17.1

eV.

Step 10.  The electron current can now be subtracted from the ion data to give the true ion
current.  This can be done in two ways.  If the ion-corrected electron current is subtracted, the
result is shown in Fig. 13.  If the theoretical electron current (assuming a Maxwellian
distribution) is subtracted, the result (not shown) has a discontinuity near Vs because of the
discrepancy between Vs

e and Vs
i.  Non-Maxwellian electrons would cause these curves to

differ even more.

Some disagreement between Vs
e and Vs

i can be expected because a) the ion current for
η ≈ 0 cannot be calculated accurately, being sensitive to small perturbations and poor
convergence; b) it is fit least well by our analytic functions; and c) it is furthermore sensitive
to ion temperature (cf. Fig. 8).  However, it is surprising that the discrepancy is so large and
is not always of the same sign.  This problem has not been encountered before, because no
attempts had been made to evaluate Ii near η = 0 accurately.  Another possibility is that ion
trapping in closed orbits is occurring at low potentials.  However, Laframboise [8] points out
that with cylindrical probes trapped ions can escape by moving parallel to the axis.  As is
evident from the erratic behavior of Fig. 13 near Vs, it is difficult to separate Ii and Ie near the
space potential, and this may affect the apparent electron distribution function at low
energies.

IV.  Analysis with other probe theories
It is apparent from our sample case (Fig. 11) that the BRL theory diverges from the

experimental points at large negative voltages.  As will be seen in Sec. VI, this discrepancy
vanishes at low densities but becomes large at high densities.  For this reason, we need to test
the accuracy of the other available theories.  Ion currents predicted by the OML theory are
simply given by Eq. (2).  The curves of the ABR theory, however, require parametrization.
The procedure is essentially the same as that in Sec. II, and the details will be omitted.   Since
the bend in the ABR curves is opposite to that in the BRL curves (Fig. 5), the fitting function
of Eq. (8) has been modified, and the normalized ion current i is replaced by Jξp, which is
independent of n:

2 1/ 2 4 4 1/ 4( / ) (2 ) [( ) ( ) ]B D
p i p e eJ I R e KT MKT A Cξ η η= = + (16)

Here Ii is the ion flux, not current, per cm length, and cgs units are used.  In practical units,
Eq. (16) can be written
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1/ 2

11(mA) 0.327( ) ( / ) /i p eV pI J T n A Lξ ξ= , (17)

where n11 is n in units of 1011 cm-3, A is the atomic number of the gas, and L the probe length
in cm.  The computed data to be fitted were taken from the original curves reproduced in Ref.
13, including Fig. 1 of the present paper.  The parameters ABCD(ξ) for the best fit to the
ABR data are shown in Table 5.  These parameters are fitted with the following functions of
ξ:

2

,

, ln (ln )

b dA C a c

B D a b c

ξ ξ

ξ ξ

= +

= + +
(18)

The fitting coefficients abcd are shown in Table 6.
          The OML, BRL, and ABR theories predict different magnitudes and shapes for the ion
saturation curves.  This can be seen in Fig. 14, which compares the three theories with the
same data used for the example of Figs. 9-13.  It is seen that the OML curve fits the linear I2-
V  dependence of the data almost exactly.  The deviation of the data from this line at the
highest voltages is in the "wrong” direction and is probably caused by secondary electron
emission.  The ABR curve fits the data well at low voltages but shows some saturation at
high voltages.  The BRL curve shows more saturation and does not follow an I2-V depend-
ence at all.   As shown in the figure, each theory requires a different value of density in order
to fit the data.  In general, the BRL and OML theories agree at small values of ξ, as they
should, since Laframboise [8] forced them to do so as explained in Sec. II.   For large ξ,  the
data follow the OML curve much more closely than the BRL curve, even though the OML
theory is not expected to be accurate for ξ > 3.  Indeed, the BRL fit is so poor at large ξ that
there is considerable latitude in choosing the combination of n and Vs

i that gives the best fit.
In practice, we chose a combination that also straightens the lnIe-V curve as much as possi-
ble.  The ABR theory in general fits the shape of the data curves better than does the BRL
theory; but, as we shall see, the resulting values of n are too low to be realistic.  When the
OML theory is applicable, the values of Vs

e and Vs
i agree well, but for large ξ these values

diverge because of the inaccuracy of the theories near the plasma potential.  Usually the
OML fit requires too large a value of  Vs

i, while the BRL and ABR theories require too small
a value of  Vs

i.

V.  Comparison of theories with experiment
We have analyzed some 15 probe curves taken by Evans and Zawalsky [20] with

various probe radii and plasma conditions in an ICP, using a Hiden ESPion probe system.
Experimental details are outside the scope of this article and will be given in a separate
paper.  The values of KTe are insensitive to the method of analysis used, but the densities n
can vary a factor 3 or more from theory to theory, leading to a large uncertainty in the
interpretation of the data.  The discrepancy, however, follows a trend which can be discerned
in the four cases chosen for illustration in Fig. 15.  The bar marked “Hiden” is the density
given by the ESPion software package and differs from the OML result only because the
value of KTe involved a slightly different fit to the data.  The values of KTe, shown by the
connected points, are almost the same for all methods, but the values of n differ by an
amount which increases with ξ = Rp/λD.   The BRL formalism consistently yields density
values larger than the OML theory, while the ABR densities are always lower than the OML
density.
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The ABR theory, which neglects angular momentum and ion orbiting, overestimates

the ion current to the probe, thus underestimating the density.  Since it accounts for an
absorption radius, which the OML theory does not, it could have predicted a lower ion
current and higher density than does the OML theory; but apparently the effect of angular
momentum is larger, and the ABR density is always lower than the OML density.  Though
the BRL and OML theories both incorporate angular momentum, the OML formula neglects
the formation of an absorption radius and allows the probe potential to attract ions from large
distances, thus overestimating the current and underestimating the density.   However, the
BRL theory does not necessarily give the right answer, because it does not fit the shape of the
ion I – V  characteristic as well as does the OML theory.

A comparison of the three theories for our test cases is shown in Fig. 16, which plots
the BRL/OML and ABR/OML density ratios as functions of ξ.   The BRL/OML ratio ap-
proaches unity as ξ → 0, as expected, and increases monotonically with ξ.  As ξ increases
and the sheath becomes thin, the probe potential is shielded from distant points in the plasma,
an effect neglected in OML theory.  Hence, OML predicts too large a current and too small a
density, the error increasing with ξ.  To test the sensitivity to ξ, we analyzed two I – V
curves assuming an incorrect value of Rp, and hence of ξ.  These cases are shown by the two
points marked with a star (∗) and lie well off the trend-line of the other points. The
ABR/OML ratio is usually below unity, for reasons stated above.

We believe that BRL theory is also inaccurate because it applies to strictly collision-
less plasmas.  In the presence of charge-exchange collisions in a gas like argon, the angular
momentum of an incoming ion far from the probe can easily be destroyed by a collision, after
which the ion will be accelerated radially by the probe’s electric field.  Enough angular
momentum remains, however, for the current to be lower than that predicted by ABR theory.
Our previous experimental check of BRL theory [7] was done in a thermionic Q-machine,
which was fully ionized and gave large values of ξ because of the low temperature.  There,
the ion current was well saturated and fitted the shape of the BRL curves.  In a partially
ionized plasma, however, collisions well outside the sheath can change the angular momen-
tum distribution so that the ion curves more closely follow the I2 – V  dependence predicted
by the OML theory and, to a lesser extent, the ABR theory.   

Well saturated ion curves can also be obtained in a partially ionized plasma by using
a large probe at high density.  Fig. 17 shows data from a helicon plasma in the n = 1013 cm-3

range [21] attaining a value of ξ = 56.  Though not shown, the BRL/OML and ABR/OML
density ratios fall on an extrapolation of the trend line in Fig. 16.  The straight I2 – V  line
corresponding to the OML theory is clearly inappropriate, since it crosses the axis at 154 V,
and an unreasonably low density has to be assumed to achieve the small slope of the curve.
The ABR theory, however, fits the data quite well with a reasonable density, while the BRL
curve has a lower slope than the data.  In these fits, Vs

i has been adjusted so that the electron
current is Maxwellian after the ion current has been subtracted.  Near the floating potential,
the data points in Fig. 17 fall below the theory because they have not yet been corrected for
the electron contribution.

To compare the probe results with independent measurements of density, we have
obtained preliminary data by Evans and Zawalsky [20] using microwave interferometry.  Fig.
18 shows these density measurements as a function of RF power (Prf) in a commercial ICP,
compared with probe-determined densities analyzed with the BRL and ABR theories.   It is
seen that there is reasonable agreement among all three methods at low Prf (small ξ), but that
at high Prf (large ξ) the BRL density is too high, and the ABR density too low compared with
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the microwave determination.  However, the geometric mean of the BRL and ABR densities
(shown by the dotted line and starred points) agrees well with the microwave measurement
and has the proper slope.

An exact treatment of the problem for partially ionized plasmas would require adding
a collision term to the Bernstein-Rabinowitz formalism, but even then the results would
depend on the pressure and species of the gas and would not be expressible in terms of
universal curves.  We have attempted to devise a hybrid technique, using the ABR theory for
radii above a critical radius Rc to account for the shielding of potentials by thin sheaths, and
the finite-sheath-thickness OML theory for r  < Rc to account for ion orbits in the collision-
less region.  For instance, one could choose Rc to be the mean free path, but this is usually
well outside the sheath.  Alternatively, one could choose Rc to be several Debye lengths
larger than Rp, or to be the radius at which η = ηc = 1.  The ABR current would be calculated
for a probe with Rp = Rc and ηp = 1, thus neglecting the ions’ angular momenta in the exterior
region.  The OML current can then be calculated for a sheath edge at r  = Rc and a Maxwel-
lian ion distribution there with Ti ≤ Te.  Setting the two currents equal to each other should
yield the value of Rc or ηc, whichever is the unknown.  The process is repeated for each
probe potential Vp.  The density assumed initially would be adjusted and the process repeated
until the curve agrees with the data.  Unfortunately, our attempts to carry out this procedure
failed.

VI.  Summary and conclusions
The proper use of probe theory for high density, partially and fully ionized plasmas is

treated in this paper, which incorporates several distinct research results:

1.  A double parametrization technique has been developed to facilitate the use of the
Laframboise and Allen-Boyd-Reynolds computational results.  This algorithm permits rapid
generation of theoretical I – V  curves for arbitrary values of λD/Rp,  leading to real-time
analysis of probe data with fast portable computers.

2.  An iteration scheme is described which uses the parametrized curves to separate
the ion and electron currents collected by the probe.  Though this separation fails between the
floating and space potentials because of inaccuracies in the theory, this method yields more
accurate determinations of density and electron temperature than previously possible.

3.  Comparison with experiment reveals a dilemma:  The OML (or ABR) theory fits
the shape of the ion saturation curves better than the BRL theory in regimes where the OML
(or ABR) theory should be inapplicable.  The correct density, as determined by microwave
interferometry, lies between those given by the BRL and OML (or ABR) theories.  We
surmise that the cause of the failure of the collisionless BRL and OML formalisms is neutral
charge exchange, which destroys ion angular momentum far from the probe.

4.  In partially ionized plasmas, collisionless probe theories are inadequate for 3 < ξp
< 100, and density determinations can be in error by a factor of two or more. The correct
density is bracketed by the predictions of the BRL and OML (or ABR) theories.  For ξp < 3,
the OML theory can be used, since it agrees with the BRL theory in that range.  For ξp > 100,
the ABR theory should be sufficiently accurate, since the sheath is so thin that ion orbiting
would not be a problem.  The ABR differential equation would have to be solved, however,
since the parametrization in this paper was done only up to ξp = 70.  More simply, the Bohm
formula can be used for large ξp.  For intermediate values of ξp, it is found phenomenologi-
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cally that the geometric mean of the BRL and ABR densities agrees with independent
measurements, though there is no theoretical justification for this.

5. In view of these results, the design of Langmuir probes for use in RF plasmas is
discussed in Appendix A.

6. For dense, fully ionized plasmas, straight-line extrapolation of the ion saturation
curve is commonly used.  The accuracy of this approach compared with the exact BRL
curves is assessed in Appendix B.  It is also shown there that the slope of the Ii – V  curve is
approximately 3/4.
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APPENDIX A:   PROBE DESIGN

Because of the effect of collisions for intermediate values of ξ,  probes should have
either very small or very large diameters to operate in regimes where collisionless theories
can be trusted.  Fig. 19 shows values of ξp = Rp/λD as a function of n for various probe
diameters.  One sees that a diameter of 0.2 mm or less can be used with the OML theory up
to densities of ≈1011 cm-3.  For n > 1012 cm-3,  a 2-mm diam probe can access the region ξp >
100, and it should be long enough to resemble an infinite cylinder.  One should not attempt to
draw saturation electron current with such a probe!  In the density range 1011-12 cm-3, it is
difficult to choose a probe size for which an existing theory gives the correct result in a
weakly collisional plasma.  However, the I – V  curve of a thick probe can sometimes be
successfully analyzed using a modified Bohm formula (Appendix B).

In regimes where the theory is good, determination of the probe area is a limiting
factor in the accuracy of Langmuir probe measurements.  The probe radius can change from
ion sputtering, either during measurement or during discharge cleaning of the surface.  Short
probes have end collection which is difficult to account for.  If the insulating ceramic is too
large, plasma may creep into into it, extending the probe length; and if it is too narrow, the
probe tip may make electrical contact with conducting films deposited on the ceramic.  To
minimize the interference of the probe with the plasma, the mounting hardware near the
probe tip should be no larger than 2 mm in diameter.

In reactive ion etchers (RIE), inductively coupled plasmas (ICPs), and helicon
sources used in semiconductor processing, there are large fluctuations in Vs at the RF
frequency.  It is well known [22] that this can greatly distort the I-V characteristics.  Many
methods of RF compensation have been published, but the most successful seem to be the
use of tuned inductors close to the probe tip, in conjunction with a nearby floating electrode
which is AC coupled to the probe to drive Vp in synchronism with the RF fluctuations [19,
23].  The area of the floating electrode should be large enough to drive the probe tip but
small enough to give spatial resolution; a criterion is given below.  In plasma sources with
insulating walls, insertion of a large grounded electrode is necessary to serve as a reference
for Vp.  A floating double probe cannot be used in this situation because the entire assembly
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does not float at the RF frequency unless extraordinary means are used to drive its stray
capacitance.  Furthermore, the RF compensation of each tip would have to be identical.
Since RF oscillations tend to decrease the floating potential Vf, one can compare RF
compensation schemes by observing how positive a value of Vf  is obtained.  However,
because of stray capacitances, one can never be sure of measuring Vf correctly by terminating
the probe in a high resistance.  The safest way to measure Vf is to terminate in a low
resistance and detect the zero-crossing of the probe current.

A criterion for designing the auxiliary floating electrode was given by Sudit and Chen
[23].  The probe tip P is coupled to the oscillating space potential rfV!  through a sheath
capacitance Cs, given approximately by
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where As is the sheath (or probe) area.  The capacitance Cx of an auxiliary electrode of area
Ax coupled to the probe tip at point P is given by the same formula.  The corresponding
impedances |Zs,x| are 1/ωCs,x.  For the probe tip to follow rfV! , the effective impedance ZLeff of
the isolating inductors, ZL, must be large compared with the larger of |Zs,x|.  ZLeff is the
parallel combination of ZL and the stray impedance to ground of the short wire between P
and the chokes.  For instance, a 1 cm long wire has a capacitance to ground of ≈ 0.25 pF, and
the stray impedance at 2 MHz is ≈ 330 kΩ.  For maximum effectiveness, ZL should be of this
order.  RF compensation is effective against fluctuations of order rfV!  if
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Fig. 20 shows a sample calculation of this criterion for an electrode with Ax = 2 cm2 and
inductors with ZL = 250 KΩ at 2 MHz.  We have taken | rfV! | / Te = 30 and |Vs – Vp| / Te = 5.
This is the region near the floating potential where the nonlinearity of the I – V  curve is most
severe.  It is seen that an unaided probe cannot satisfy Eq. (20), and a 2-cm2 electrode is
required to measure densities down to the mid-1010 cm-3  range.

Though in principle the electron energy distribution function (EEDF) can be found
from the second derivative of the I – V curve of a cylindrical probe, in practice a high degree
of data smoothing is required to obtain this derivative.  Furthermore, we see from Fig. 12 that
the shape of the Ie – V curve depends on the quality of the ion subtraction.  Nonetheless,
several authors [24, 25, 26] have succeeded in obtaining interesting EEDF data with
Langmuir probes.  We regard these as exceptional tours-de-force by extraordinary
experimentalists, rather than results that can be reproduced outside a dedicated laboratory.
To measure the EEDF, one has to compute the second derivative of the I – V  curve, which
can be done with adequate smoothing of the data.  Another method is to use a dithered probe,
whose voltage is modulated around Vp at a frequency low enough to pass the RF chokes, and
with an amplitude small enough that the ion current does not change.  Synchronous detection
of the second harmonic should then yield d2I/dV2.
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APPENDIX B:  USE OF THE BOHM FORMULA FOR THIN SHEATHS

At high densities where the ion current is well saturated, it is common practice to use
the Bohm formula of Eq. (4) to estimate the ion density, neglecting the expansion of the
sheath.  There is always a question of what probe voltage should be used for this reading, and
what value of α should be used in the formula.  In Fig. 21 we have generated artificial probe
curves for a 3-eV argon plasma using the BRL theory with Maxwellian electrons, adjusting
the density to give (a) ξ = 20 and (b) ξ = 40.  Straight line extrapolations are drawn through
the low- and high-voltage parts of the curves.  The dashed line is the current predicted by Eq.
(4), with the value of α adjusted to match the current extrapolated to the floating potential Vf.
At ξ = 20, it makes a difference which extrapolation is used, but the error is small with the
more linear curve for ξ = 40.   The value of α, therefore, depends on ξ.  This variation is
shown in Fig. 22 for two practical cases: (a) when the ion current is measured at a constant
offset of 25KTe from Vf , and (b) when the ion curve is extrapolated to Vf .  Note that this
simple method of analysis works only when the BRL theory is applicable.  If the I – V
characteristic has been distorted by collisions, it will not be linear enough for this method to
give accurate results.

The reason that ion curves do not reach a saturated value until ξ is of order 100 is that
the sheath thickness at Vf is actually about 5λD, and to this must be added the thickness of the
Child-Langmuir (C-L) sheath, which increases with V0

3/4 = |Vp – Vs|3/4 and greatly increases
the collection area.  When the plane C-L sheath thickness is evaluated with  the ion current
set equal to the Bohm value, the total sheath thickness is given by27
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where λD is evaluated with the plasma density, not the density at the sheath edge.  Since the
collection area increases with d in cylindrical geometry, Ii increases as V0

3/4, as is often
observed.  Figure 23 is a plot of Eq. (21) with and without the last term representing the
Debye sheath.  A simple fit to Ii – V curves behaving as V0

3/4 can be obtained by dividing the
sheath into layers.  Let the probe radius be a, the radius of the C-L sheath be b, and let the
normal Debye sheath edge be at r = s.  Suppose we let b be the radius at which V = Vf.  Then

1/ 2ln[(2 / ) ] 5.4b e eeV KT M m KTπ= ≈ − (22)

for argon.  At the sheath edge s, the potential is -0.5KTe relative to the body of the plasma.
Thus, in Eq. (21) we should set V0 = Vp − 6KTe/e.  The ion current is then

( / )i BI d a I= (23)

where IB is the Bohm current given by Eq. (4).  The ABR theory, of course, gives the exact
solution without dividing the sheath into layers, but this approach is simpler and not subject
to deviations from the aymptotic behavior of the exact solution.  A variation of this
approximation was given by Hutchinson28.  Godyak et al.29 have pointed out that Eq. (21)
should be modified for cylindrical geometry, but using the Langmuir-Blodgett corrections as
quoted, for instance, by Chen6 would defeat the simplicity of this method.
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TABLES

Table 1.  Fitting parameters used for the curves of Fig. 5.

ξξξξ A B C D
0 1.585 0.451 1.218 0.526
1 1.453 0.477 1.233 0.517
2 1.445 0.494 1.224 0.514

2.5 1.412 0.531 1.255 0.486
3 1.142 0.541 2.146 0.316
4 1.433 0.646 1.306 0.378
5 1.513 0.670 1.244 0.351
10 1.473 0.635 1.166 0.257
20 1.384 0.622 1.104 0.181
50 1.203 0.544 1.095 0.091
100 1.181 0.532 1.067 0.055

Table 2.  Coefficients for calculating ABCD(ξ) for ξ > 3.

a b c d f g
A 1.142 19.027 3.000 1.433 4.164 0.252
B 0.530 0.970 3.000 1.110 2.120 0.350
C 0.000 1.000 3.000 1.950 1.270 0.035
D 0.000 2.650 2.960 0.376 1.940 0.234

Table 3. Degraded parameters for fitting the curves of Fig. 5.

ξξξξ A B C D
0.1 1.141 0.496 1.218 0.526

1 1.199 0.477 1.233 0.517
2 1.194 0.515 1.224 0.514

2.5 1.234 0.537 1.255 0.486
3 1.415 0.522 1.294 0.316
4 1.568 0.446 1.306 0.378
5 1.546 0.422 1.244 0.351

10 1.426 0.583 1.166 0.257
20 1.415 0.654 1.104 0.181
50 1.255 0.583 1.095 0.091

100 1.130 0.486 1.067 0.055
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Table 4. Coefficients for calculating ABCD(ξ) for all ξ .

a b c d f
A 1.12 .00034 6.87 0.145 110
B 0.50 0.008 1.50 0.180 0.80
C 1.07 0.95 1.01 — —
D 0.05 1.54 0.30 1.135 0.370

Table 5.   Parameters for fitting the ABR curves.

A B C D
0.5 0.314 0.493 0.314 0.493

1 0.846 0.488 1.033 0.360
1.5 1.511 0.468 2.152 0.283
2.5 3.637 0.409 4.329 0.298

4 6.677 0.423 10.63 0.200
6 14.79 0.367 21.67 0.140

10 21.75 0.430 55.68 0.158
30 291.5 0.205 417.1 0.039
50 796.2 0.167 1113 0.008
70 1691 0.122 2110 -0.030

Table 6.  Coefficients for calculating ABCD(ξ) for ABR theory.

a b c d
A 0.864 1.500 0.269 2.050
B 0.479 -0.030 -0.010 —
C 1.008 1.700 0.336 2.050
D 0.384 -0.150 0.013 —
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FIGURE CAPTIONS

1.  Curves of ion saturation current for increasing plasma density (from Ref. 13).  The
abscissa is proportion to ion current, and the ordinate to the probe potential.  The dashed
line has the slope of OML theory: I2 ∝ V.

2.  Laframboise curves of normalized ion current vs. normalized probe potential for Ti = 0.
The curves are labeled by the value of ξp = Rp / λD.  (From Ref. [8], Fig. 40.)

3.  Laframboise curves for ion current at low values of ξ (from Ref. [8], Fig. 43).  Each curve
is for constant η, and ξ is plotted on the abscissa from right to left.

4.  Example of fitting Laframboise data (points) with a four-parameter function (line).  The
radius of the points is ≈ 2%.  Points for which exact values were available are shown by
the large squares.  The orbital motion limit is shown by the dashed line.

5.  The Laframboise data set (points) and analytic fits (lines) for all available values of ξ.
The curves are in the same order as in the legend, but for clarity some curves are not
drawn.

6.  The parameters A, B, C, and D for available values of ξ and analytic fits to them for (a) ξ
> 3 and (b) all ξ.

7.  Parametric fits to the Laframboise data for (a) ξ = 5 and (b) ξ = 20.  The points have a
radius of 2%.  The solid line (Fit 1) shows the curve optimized for ξ ≥ 3; the dashed line
(Fit 2), the curve optimized for all ξ.

8.  Laframboise data for the variation of ion I-V curves with ion temperature, at ξ = 10.

9.  Sample I-V curve to be analyzed (Ie > 0 here).  The data were taken with an 0.15 mm
diam, 1 cm long probe in a 900-W, 2 MHz ICP (inductively coupled plasma) in 20 mTorr
of argon.  The density was of order 4 × 1011 cm-3, and KTe was ≈ 2 eV.

10.  Initial determination of Vs and Te from derivative of I-V curve.  Ion current is positive
here.

11.  Square of saturation ion current vs. probe voltage as measured (dots) and as computed
after optimization (smooth line).

12.  Semilog plot of electron current as originally measured (diamonds) and after subtraction
of ion component (circles).  The line is a fit to a Maxwellian distribution.

13. Linear plot of saturation ion current after subtraction of corrected electron current.  The
line is the theoretical fit.  The points at the right are electron currents which appear be-
cause of the mismatch between the space potentials assumed for the ion and electron fits.

14. Comparison of ion saturation data with the shapes of curves predicted by three probe
theories.  The densities required for the fits are shown in the legend.  The value of ξ for
this example is 5.0 for the BRL density and 4.1 for the OML density.

15. Comparison of density and temperature values obtained from different methods of probe
analysis for sample cases with ξ = (a) 1.1 , (b) 3.1, (c) 4.6, and (d) 9.1.
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16. Ratios of densities obtained with the BRL, OML, and ABR theories for test cases with

varying values of ξ (computed with the BRL density).  The starred points lying off the
line were calculated assuming an incorrect probe radius.

17. Data from a high-density helicon plasma compared with three theoretical curves.  The
inset shows the values of n and Te obtained from these fits.  The 2-kW discharge was in
8 mTorr of argon with a 600-G magnetic field, and the probe was 0.3 mm in diameter.

18. Values of density vs. ξ as obtained from the BRL and ABR theories, as compared with
microwave measurements (♦).  The stars (∗) are the geometric mean between the BRL
and ABR densities.

19.  Dependence of ξ on density, for Te = 3 eV and various probe diameters.  The thick line is
for Rp = 0.15 mm, a common and convenient size which, however, gives an intermedi-
ate value of ξ in high density plasmas.

20.  Example of design of auxiliary electrode for RF compensation.  Zaux () should be well
below ZLeff  (×) for the density measured.  Zsheath (----) is the sheath impedance without
an auxiliary electrode.  The conditions assumed were:  KTe = 3 eV, Rp = .075 mm, L = 1
cm, f = 2 MHz, Ax = 2 cm2, and ZL = 250 kΩ.

21.  BRL curves for a 3-eV argon plasma at densities corresponding to (a) ξ = 20 and (b) ξ =
40.  The straight lines are fitted to two regions of the ion saturation curve, and the
dashed line is the current predicted by the Bohm formula with the stated value of the
coefficient α.

22.  Variation of the coefficient α with ξ for the use of the Bohm formula applied to the ion
current (a) measured at Vf  - 25KTe (squares), or (b) extrapolated to Vf (diamonds).

23.  Child-Langmuir sheath thickness vs. probe potential, normalized to λD.  The points
include the Debye sheath thickness, whereas the line does not..
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