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ABSTRACT

The floating potential of a cylindrical probe is computed
numerically, and the results are fitted to analytic functions.  They
differ significantly from the plane approximation.

The formula normally used to calculate the space potential from the measured
floating potential is derived for plane probes and is erroneous when applied to cylindrical
probes in the low-density plasmas (n < 1012 cm-3 ) used in industrial plasma processing.  The
floating potential Vf  is that at which the collected ion and electron fluxes are equal.  If Ap is
the  probe area, n0 the density in the body of the plasma, and V = 0 the potential there, the
electron flux ΓAp to the probe is

1/ 2
0 exp( / ), ( / 2 )e p th f e th eI A n v V KT v KT mπ= ≡ . (1)

[Note:  I ≡ total particle current for plane probes and current per unit length for cylindrical
probes; the electrical current ±eI is not used here.]   For a plane probe, the ion current is
given by the Bohm criterion at the sheath edge, defined as the point where the ions have an
inward drift velocity cs, having fallen to the potential V = Vsh =  −½ KTe, where the density n
is ns = n0 exp(−½).  Thus,
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M being the ion mass and α0 has the value exp(−½) = 0.61.  A spread in ion energies can
bring α0 closer to the convenient value of 0.5.  Setting Ii = Ie yields the usual formula for the
floating potential:
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 in argon. (3)

The ion collection area for a cylindrical probe, however, depends on the radius Rsh of
the sheath, which is not known a priori.   In this case, there is no need for the artifice of a
sharp sheath edge, since solutions of Poisson’s equation can be extended to infinity.  Two
collisionless theories are available for calculating V(r): the Bernstein-Rabinowitz1 (BR)
theory, which takes into account the angular momentum of the ions which orbit the probe;
and the Allen-Boyd-Reynolds2 (ABR) theory, which neglects orbiting, so that ions move
only radially and axially.   Chen3 has recently shown that the BR theory overestimates the
ions’ angular momentum in partially ionized plasmas because of collisions in the presheath.
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Hence, for plasma processing purposes, we shall employ the ABR equation as modified by
Chen4 for cylindrical probes:
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where
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The normalized ion current J is defined by
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For each value of J, Eq. (4) can be solved to yield η(ξ) for all ξ.  The constraint that the
probe be floating can be expressed as follows.  The radius ξp of a probe at floating potential
can be found from the condition Ii = Ie at the probe surface, where

02 exp( ), 2e p th f i p p iI R n v I R n vπ η π= − = . (7)

Here np is the ion density at the surface of the floating probe, and vi is the ion velocity there,
given from energy conservation by

½(2 )i f sv cη= . (8)

Setting Ii = Ie yields
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Substituting Eqs. (8) and (9) into Ii and Ii into Eq. (6) gives
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Solution of Eq. (4) yields the potential distribution

( , )Jη η ξ= . (12)

Integration of Eq. (4) is non-trivial, and care must be taken to join smoothly to the
quasineutral solution at large radii.  For each J, Eqs. (11) and (12) give two curves whose
intersection yields a pair of values (ηf, ξ p), as illustrated in Fig. 1.

Varying J generates the function ηf(ξp), shown in Fig. 2 for argon, which approaches
the plane limit of 5.18.  If we now define

2 / pJα ξ≡ , (13)
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Fig. 1.  The potential profile η(ξ) ( ) and the floating potential condition ηf(ξ) (•) for the case J = 10, ξ p = 15 in
argon.  The Bohm criterion is met at the “sheath edge”  where η = ½ (− − −).
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Fig. 2.  Decrease of ηf ( ) with decreasing ξp = Rp/λD due to the increase in sheath area as measured by α (•)
and α /α0 (♦). The line through the ηf points is an analytic fit.

Eq. (11) takes the same form as Eq. (3), with α in place of α0.   Thus, from Eq. (2), αAp is
the effective collection area of a floating probe, and the ratio α /α0 expresses the expansion
of this area as ξp is decreased.  The functions α and α /α0 are also shown in Fig. 2.  There is
no need to define a “sheath edge”; but if one is defined at the radius Rsh where η = ½, as in
Fig. 1, conservation of current requires Ii = 2πRshnscs.  However, ns is not 0.61n0 as in the
plane case, since quasineutrality has not been assumed at Rsh, and ni ≠ ne there. Using Eqs.
(13) and (6), we can conveniently express the ion current to a floating probe in terms of the
function α(ξp):
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with α acting as an effective Bohm coefficient.

The following analytic fits to the computed curves may be useful for probe analysis:
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where A = 0.583, B = 3.732, C = −0.027, and D = 5.431; and
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where E = 4000, F = 7.01, and G = 0.096.  In the plane probe limit ξp → ∞, ηf approaches the
value of 5.18 for argon, and α and α/α0 approach 0.61 and 1, respectively.  In the range ξp =
1−10 commonly encountered in rf discharges, ηf is of order 3.7 − 4.6 for argon, significantly
less than the usual value of 5.2.  The reason is that the sheath thickness at Vf causes a
cylindrical probe of given area to collect more ion current than a plane probe, and thus the
sheath drop has to be lowered to permit more electron flow.

FIGURE CAPTIONS
Fig. 1.  The potential profile η(ξ) ( ) and the floating potential condition ηf(ξ) (•) for the

case J = 10, ξ p = 15 in argon.  The Bohm criterion is met at the “sheath edge”  where η =
½ (− − −).

Fig. 2.  Decrease of ηf ( ) with decreasing ξp = Rp/λD due to the increase in sheath area as
measured by α (•) and α /α0 (♦).The line through the ηf points is an analytic fit.
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