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A floating potential method for measuring ion density
Francis F. Chen, John D. Evans, and Donald Arnush
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A simple method for analyzing cylindrical Langmuir probe curves in a cold-ion plasma is described
which yields the ion density in weakly collisional plasmas for which purely collisionless theories
give erroneous results. The method is based on an extrapolation to the floating potential of the
saturation ion current raised to the 4/3 power. This procedure is not supported by theory but
apparently works because effects neglected in the theory tend to cancel. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1462630#
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I. INTRODUCTION AND METHODOLOGY

Langmuir probe measurement of the plasma densityn in
the weakly collisional rf discharges used in semiconduc
fabrication is difficult not only because of contamination
the probe tips but also because it has been found1 that colli-
sionless theories of ion collection are subject to large er
in these plasmas. We have found experimentally that sat
tion ion currents I i to cylindrical probes in the
1010– 1012 cm23 density range tend to follow anI i}Vp

3/4 law.
Extrapolating to the floating potentialVf , which is easily
measured, one can obtain an estimate of the ion~or electron!
current atVf . SinceVf'5KTe , the sheath is well estab
lished at this potential, and the expectedI i(Vf) can be cal-
culated without the uncertainties inherent in extrapolating
the space potentialVs ~[ 0! due to the weak ion-acceleratin
fields there. TheI i}Vp

3/4 is reminiscent of the Child–
Langmuir~CL! law for plane electrodes. If one assumes th
the sheath thickness is given by the CL law~neglecting the
cylindrical curvature!, the collection area expands asVp

3/4,
giving rise to the observed shape of theI 2V curve. The ion
current at the sheath edge is given by the Bohm sheath
terion as

I i5a0nAscs , cs[~KTe /M !1/2, ~1!

whereAs is the sheath area, anda0 is a constant equal to
e21/250.61 if Ti50 and '0.5 if Ti is slightly elevated
above room temperature.2 Hence, knowingVf2Vs and
I i(Vf), one can computen using the value ofKTe from the
electron part of theI 2V curve. As we shall show in detai
the CL formula should not be applicable in these circu
stances, but this procedure heuristically gives values ofn in
good agreement with independent measurements using
crowave interferometry.~Note thatI i is a particle current; the
electrical current iseIi , the ions being assumed sing
charged.!

The procedure, then, is as follows. A sampleI 2V curve
is shown in Fig. 1. First, the space potentialVs is found from
the minimum in thedI/dV curve, shown in Fig. 2. In this
case, a clear minimum can be found by drawing a smo
curve through the data points. In rf discharges plasma n
and inadequate rf compensation often make this curve ha
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sometimes with more than one minimum, as illustrated
Fig. 3 for a differentI 2V curve. The experimenter has the
to chooseVs judiciously. Next, the ion part of the characte
istic is raised to the 4/3 power and plotted againstVp , as
shown in Fig. 4. A straight line is fitted to the part of th
curve that is not affected by electron current. Extrapolat
to Vf , whereI 5I i2I e50, gives an estimate ofI i(Vf). Note
that the extrapolation toVf is much shorter than toVs , so
that the estimate ofI i(Vf) should be more accurate tha
I i(Vs). The ion current is then calculated from the straig
line fit to I i

4/3 and subtracted from the total current to giveI e .
This is plotted semilogarithmically in Fig. 5. Note that th
ion correction toI e has made the curve follow a Maxwellia
over a much larger range ofV(5Vp). Fitting a straight line
to this curve yields the electron temperatureKTe in eV

I e5Apnver exp~2hP!, ver[~KTe/2pm!1/2,
~2!

h[2~V2Vs!/KTe ,

Ap being the probe area andn the plasma density in the bod
of the plasma. The reciprocal of the slope of the lnIe2Vp

curve is then equal toKTe . The value ofI e at Vp5Vs gives
an estimate ofn, called Ne , which is based onI e alone.
SinceNe depends exponentially onVs , it is subject to large
errors arising from uncertainty in the determination ofVs .

To find n from I i(Vf), we assume a sheath thicknessd
given by the CL formula3

d5
1

3
A 2

a0
~2h f !

3/4lD51.018h f
3/4lD ,

~3!
lD[~«0KTe /ne2!1/2,

with h f known onceVs and Te have been determined. Th
sheath radius is the sum ofd and the probe radiusRp . Using
Eq. ~3! into Eq. ~1! for a probe lengthL then gives

n5Ni~CL!5I i~Vf !/2p~Rp1d!La0cs . ~4!

Note, however, thatd depends onlD , which is proportional
to n21/2. Equations~3! and ~4! thus constitute a quadrati
equation forn1/2, whose solution gives the ion density as

n5$@2B1~B214AC!1/2#/2A%2, ~5!
9 © 2002 American Institute of Physics
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where

A5Rp , B'h f
3/4~«0KTe /e2!1/2,

~6!
C5I i~Vf !/2pLa0cs .

II. COMPARISON WITH THEORY

Although it will be shown that this method yields value
of n in agreement with microwave measurements, it is
easy to justify theoretically. First, the CL formula used ford
is for plane sheaths, not cylindrical ones. Second, the
formula gives only a crude approximation to the she
thickness because it neglects the Debye sheath, where
electron density cannot be neglected. Treatments which ju
discontinuously from quasineutral plasma to pure ion she
are referred to asstep models.4 Sometimes, a constant io
density is assumed is what is called amatrix sheath.3 The
Bohm formula requires ions to enter the sheath with the
locity cs , whereas the CL formula assumes zero veloc
Hutchinson5 has modified Eq.~3! to include an initial ion
velocity cs . If we takeV50 in the plasma rather than at th
sheath edge as in Ref. 5, Hutchinson’s formula becomes

d51.018~@h2 1
2#

1/22221/2!1/2~@h2 1
2#

1/2121/2!lD . ~7!

Use of this formula did not improve the results.
The exact solution for a combined Debye-CL sheath

plane geometry can be derived from Poisson’s equation

d2V

dx2 5
e

«0
~ne2ni !. ~8!

FIG. 1. TypicalI 2V characteristic taken with a probe 0.15 mm in diame
and 1 cm long.

FIG. 2. First derivative of theI 2V curve. The points have been smooth
over the digitization noise, and the line is a further smoothing of the da
Downloaded 22 Apr 2002 to 128.97.88.10. Redistribution subject to AIP
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In a strictly one-dimensional~1D! problem, we must assum
a sheath edge, since if the ion velocityv i were zero at infin-
ity, the density there would have to be infinite for the ion flu
to be finite. For convenience we choose the sheath edge
the plane where~a! eV52 1

2KTe relative to the plasma po
tential, so that the Bohm criterion is satisfied there,~b! v i

5cs , and ~c! n5ns5n0e21/2. Shifting the origin of bothx
andV to this point, we now have, for Maxwellian electron

ne5nse
eV/KTe5nse

2h
,

~9!
h[2eV/KTe .

For the ions, energy conservation requires
1
2Mv i

25 1
2Mcs

22eV, v i5~cs
222eV/M !1/2. ~10!

Continuity of ion flux then gives

niv i5nscs ,
~11!

ni5ns

cs

v i
5nsS 12

2eV

Mcs
2D 21/2

5ns~112h!21/2.

Equation~8! then becomes

d2V

dx2 5
e

«0
ns@e2h2~112h!21/2#52

KTe

e

d2h

dx2 . ~12!

Normalization to the Debye lengthlDs at the sheath edge
yields

h95@~112h!21/22e2h#, ~13!

.

FIG. 3. Example of a case where the ‘‘knee’’ of theI 2V curve is ill-
defined.

FIG. 4. Ion currentI i
4/3 vs V, and a least-squares fitted straight line. T

electron current has not been subtracted from theI i data. The intersection of
the line with the vertical line at floating potentialVf yields the value of
I i(Vf) used in the analysis.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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where the ~8! indicates derivative with respect toj
[x/lDs . Following standard procedure, we multiply by a
integration factorh8 and integrate fromh50 to h. Setting
h850 at j50, we obtain

h85&@~112h!1/21e2h22#1/2. ~14!

The next integration has to be done numerically, and
result is shown in Fig. 6 for two assumed values ofh9(0).
The ‘‘sheath thickness’’ is indeterminate because it depe
on the assumed boundary condition atj50. If h850 there,
thenh9 or another derivative must be given a finite value
order for the curve to rise above zero. In practice, the bou
ary condition onh8 andh9 is determined by matching to th
presheath. The two curves of Fig. 6 are plotted logarith
cally in Fig. 7. Onceh becomes appreciable, the curveh~j!
has a definite shape, but its position relative to the she
edge cannot be found without a presheath calculation. A
shown in Fig. 7 is the CL sheath thickness according to
~3! and the floating potentialh f54.68 of a plane probe in
argon.6 We see that it is possible to choose a boundary c
dition that makes the computed sheath thickness agree
dCL(Vf), but that the slopes of the curves are different the
The increase inI i with Vp depends on the normalized prob
radius

jp[Rp /lD . ~15!

Adding jp to the right-hand curve of Fig. 7 results in Fig.
Although the sheath radius atVf can agree with the CL pre
diction if the small gradients at the sheath edge happe

FIG. 5. Semilogarithmic plot of electron currentI e vs V and the least-
squares fitted line. The solid points are the raw data without correction
the ion contribution.

FIG. 6. Calculated potential in a plane sheath with different assumed bo
ary conditions at the sheath edgej50, whereV[0, V850, andV9Þ0.
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have the right value, the slopes do not agree at larger pr
biases. Thus, it is difficult to see why the measured ion sa
ration current increases asuVpu3/4, as predicted by the inexac
CL formula but not by the exact calculation.

Since the use of the CL formula is not justified becau
the sheath is not plane by cylindrical, we next solve t
sheath equation for cylinders. In this case, the calculation
be carried out to infinity, and the arbitrary conditions at
sheath edge are not needed. However, in a simple treatm
collisions are ignored as well as the orbiting of ions arou
the probe due to their angular momentum. Poisson’s equa
is now

1

r

]

]r S r
]V

]r D5
e

«0
~ne2ni !,

~16!
ne5n0eeV/KTe5n0e2h,

wheren→n0 andV→0 asr→`. The ion velocity is

v i5~22eV/M !1/25~2h!1/2cs , ~17!

and flux conservation gives

ni5
I i /v i

2pr
5

I i

2prcs
~2h!21/2, ~18!

where I i is the inward ion flux per unit probe length. No
malizing tor[r /lD , we now have for Eq.~16!

r

d-

FIG. 7. The two curves of Fig. 6 on a log–log scale, compared with
normalized Child–Langmuir sheath thickness. The dashed line is the fl
ing potential of a plane probe. Argon is assumed in all computations in
paper which depend onM.

FIG. 8. Normalized sheath radii for various values ofRp /lD as calculated
~points! and as estimated with the CL formula~lines!. The right-hand curve
of Fig. 7 was used. The dashed line is the floating potential.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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]

]r S r
]h

]r D5
I ir

2pr

1

n0cs
~2h!21/22re2h

5
I i

2pn0

1

lDcs
~2h!21/22re2h. ~19!

The coefficient of the ion term is a dimensionless ion curr
defined by

J[
I i

23/2pn0

1

lDcs
. ~20!

In terms ofJ, Poisson’s equation is simply

]

]r S r
]h

]r D5Jh21/22re2h. ~21!

This is the cylindrical equivalent of the Allen–Boyd
Reynolds~ABR! equation for spherical probes.7 Solutions of
Eq. ~20! for various values ofJ were first done in 1964 on a
IBM mainframe.8 Recent computations by Chen and Arnus6

on a personal computer are in agreement with the ea
results, which have been fitted with analytic functions9 for
easy application. In the limitr→`, Eq. ~21! has the
asymptotic formh'J2/r2. Starting with this solution, one
can integrate Eq.~21! inwards to obtain the potential profil
h~r!. Examples for two values ofJ are shown in Fig. 9.
These are universal curves which apply to all probe radiiRp ,
characterized by the important parameterjp[Rp /lD @Eq.
~15!#.

The part of the curve forr,jp is irrelevant, and the par
for r.jp is unchanged by the probe, since all incoming io
are absorbed by the probe, and thereforeni and ne are not
affected by the presence of a probe. This is not true if
ions have angular momentum and can orbit the probe; in
case the more complicated theory of Bernstein and Rabin
itz ~BR!10 must be used. For a given value ofjp , such as the
one shown in Fig. 9, the probe potential for givenJ is the
value ofh(jp) on the curve for thatJ. Thus, in our example
h'20 for J510 and'1200 for J550. An I i2Vp charac-
teristic for givenjp is generated by varyingJ and cross-
plotting. Note thatjp itself depends on the unknown value
n0 , and the determination ofn from J generally requires
iteration.Jjp , however, is independent ofn0 , and this quan-
tity is often plotted instead ofJ. In this cylindrical case, no

FIG. 9. Potential profiles in a cylindrical sheath for two values of norm
ized probe currentJ. The dashed line is theJ550 curve reduced by 10. The
line jp marks the probe radius.
Downloaded 22 Apr 2002 to 128.97.88.10. Redistribution subject to AIP
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artificial sheath edge is introduced, and hence there is
confusion betweenlD andlDs : lD is always evaluated us
ing the densityn0 at infinity.

For the present application, we need to findI i(Vf). We
start by fixing the value ofJ. The floating condition isI i

5I e , whereI e per unit length is given by

I e52pRpn0ver exp~2h f !, ~22!

and I i is given by Eq.~20!. Solving forh f , we find thatn0

cancels, and we have

h f5 lnFjp

J S M

4pmD 1/2G . ~23!

However,h(jp) must also satisfy the solutionh~r! of Eq.
~21! for the given value ofJ and r5jp . Figure 10 shows
both h~r! andh f(jp) for J510 on the same plot. The inter
section givesh f andjp for that value ofJ. By varyingJ, one
can generate the functionsh f(jp) and J(h f) for given jp ,
the dimensionless versions ofVf(Rp) and I i(Vf) for given
Rp . Also shown in Fig. 10 is the position of the classic
sheath edge, as usually defined ath51/2. Contrary

FIG. 11. Computed values ofh f52eVf /KTe , a, anda/a0 for a cylindri-
cal probe in argon and purely radial ion orbits. The curve through tha
points is the analytic fit of Eq.~29!.

-

FIG. 10. The functionsh~j! andh f(jp) for J510 in argon. The ‘‘classical
sheath edge’’ is the radius ath50.5, where the ions have velocitycs . The
‘‘effective sheath radius’’ is that at which the assumed probe current wo
be collected if the Bohm criterion were satisfied there~which it is not!.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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FIG. 12. Probe densities computed with the CL formula~h!, the ABR theory~l!, and electron saturation current~n!, compared with microwave densitie
~ ! at various pressures.
n
-
th

iu
e
he

of

.

-

to the plane case, however, the ion density there is
n0 exp(21/2) becauseniÞne at that point. The exact cylin
drical solution does not require the arbitrary assumption
quasineutrality holds up to the sheath edge.

We can, however, define an effective collection rad
~‘‘sheath’’ radius! Rs , such that if the Bohm criterion wer
satisfied there, the correct ion current would flow to t
probe. The cylindrical equivalent of Eq.~1! is

I i52pRsa0n0cs . ~24!

I i can also be expressed in terms ofJ by Eq. ~20!. Equating
these two expressions, one can solve forRs , obtaining

FIG. 13. Ion current at 1 mTorr, 450 W plotted asI i
p vs Vp with p54/3

~upper curve! andp52 ~lower curve!. The straight-line fits are also shown
Downloaded 22 Apr 2002 to 128.97.88.10. Redistribution subject to AIP
ot

at

s

a0~Rs /Rp!5&J/jp . ~25!

If we now define

a[&J/jp5a0~Rs /Rp!, ~26!

Eq. ~24! takes its usual form witha replacinga0

I i52pRpan0cs . ~27!

Thus,a can be considered a cylindrically modified value
the Bohm coefficienta0 , and the ratioa/a0 is a measure of

FIG. 14. Dependence of calculated density on the exponentp in I i
p2Vp .

Values ofn computed with the CL formula and the ABR theory are com
pared with that measured with microwaves~MW!. The star marks the value
p54/3.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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the expansion of the collection area beyond the probe
when the probe is at the floating potential. The position ofRs

is shown in Fig. 10; it isnot at h51/2. Computed values o
h f , a, and a/a0 as functions ofjp are shown in Fig. 11.
Note thath f approaches the plane-geometry value of 5
and a/a0→1 as jp→`. From Eqs.~20! and ~26! we can
solve forn0 , obtaining

n05Ni~ABR!5
I i~Vf !

2pRpcsa
, ~28!

which can evaluated from the extrapolatedI i(Vf) per unit
length onceRp andKTe are known. The value ofa(jp) can
be found from the following analytic fit to the curve in Fig
11:

a'0.60712432/exp~7.01jp
0.096!. ~29!

Sincejp depends onn0 , however, solution of Eq.~28! re-
quires iteration.

III. COMPARISON WITH EXPERIMENT

The procedure for findingVs and KTe from the I 2V
curve, as well as the densityNe from the electron saturation
current, was described following Eq.~2!. The density
Ni(CL) can then be computed from Eq.~4! usingI i(Vf). For
comparison, the density according to ABR theory can
found from Eq.~28!. All of these steps have been automat
on an Excel® spreadsheet to giveVs , KTe , Ne , Ni(CL),
andNi(ABR) from a 1000-pointI 2V curve in !1 s. Here
we present data taken in a 2 MHz argon inductively coupled
plasma with an rf-compensated Langmuir probe 0.015 cm
diam and 1 cm long at various pressures and rf powers.
probe densities are compared with those from microw
interferometry. Details of the experiment are describ
elsewhere.11 The data in Fig. 12 span a range ofjp from '1
to 4.5. The floating-potential-CL method givesn values
agreeing with those from microwaves to within about 20
while the ABR method gives consistently lowern. The elec-
tron densitiesNe behave sporadically, as one would expe
from their sensitivity to the chosen value ofVs .

In these analyses,I i was extrapolated toVf by fitting a
straight line to theI i

p vs Vp plot, wherep54/3. A fit can also
be made for other values ofp. In particular, Langmuir’s
orbital-motion-limited theory2 predictsp52, and solutions8

of the ABR equation showp>2. Indeed, as shown in th
example of Fig. 13, at low densitiesI i

2 fits better to a straigh

FIG. 15. Schematic of ion space charge around probe tip, causing ion
stream axially.
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line than doesI i
4/3, suggesting that some ion orbiting is ta

ing place. Nonetheless, fitting withp54/3 gives more rea-
sonable values ofn. In this example,p54/3 yields n11

50.734 whilep52 givesn1150.475, compared with a mi
crowave density of 0.872, wheren11 is in units of
1011 cm23. The sensitivity ofNi(CL) andNi(ABR) to p is
shown in Fig. 14 for the 2 mTorr, 900W point of Fig. 12. W
see that p54/3 gives yields better agreement betwe
Ni(CL) and the microwave measurement than doesp52 or
1/2. This is generally true of the cases we have examin
thoughp54/3 has no theoretical justification.

IV. DISCUSSION

The FP-CL method for cylindrical probes neglects thr
major effects:~1! Electron density and cylindrical curvatur
in the calculation of sheath thickness;~2! orbiting of ions
around the probe; and~3! loss of ions moving in thez direc-
tion, parallel to the probe axis. We have treated~1! with the
ABR analysis, finding that it yields values ofn that are too
low. The reason is probably that some ions have eno
angular momentum to orbit the probe and miss it. Taking f
account of this effect with the BR theory,10 however, yieldsn
values that are too high. We have previously suggested1 that
a few collisions in the presheath can greatly decrease
amount of orbiting, and that the geometric mean betwe
n(ABR) andn(BR) gives a good approximation in this cas
of partial orbiting. The FP-CL method apparently succee
because of a fortuitous cancellation of effects~1! and ~2!.
The effect of collisions was discussed by Stangeby a
Allen12 in connection with the discrepancy between the B
and ABR theories for cylinders whenTi→0. They concluded
that the ratio of the mean free path to the absorption rad
determined which theory was applicable. This ratio is app
ently of order unity in this paper, so that neither theory
valid.

This one-dimensional treatment fails to account for t
finite length of the probe. Whenjp is small, incoming ions
are crowded together and form a large positive space ch
near the probe surface. As shown in Fig. 15, this sp
charge creates an electric fieldEz , driving the ions out past

to

FIG. 16. ABR solution for the ion~ ! and electron~ ! densities in
the sheath for the caseJ510. The radius of a floating probe is shown by th
line labeledRp . Similarly, R1/2 is the radius whereh51/2, andRs is the
effective sheath radius for this case. For probes at higherhp , the lineRp

will move to the left for fixedJ.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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1455Phys. Plasmas, Vol. 9, No. 4, April 2002 A floating potential method for measuring ion density
the end of the probe. Theni(r ) andne(r ) profiles calculated
with the ABR theory forJ510 are shown in Fig. 16. At the
radius of a floating probe, there is an appreciable excess
charge. For largeVp this value ofJ corresponds to a very
small probe, and the ion charge can be extremely large un
the ions can escape axially. Also shown in Fig. 16 are
radius whereh51/2 and the effective sheath radiusRs . It is
clear that quasi-neutrality does not hold down toh51/2 in
the cylindrical case.

We can make a rough estimate of the endloss as follo
Let ^h& be an average potential in the sheath. The radial
velocity is given by Eq.~17!

v r5csA2^h&. ~30!

With Rs defined as in Eq.~24!, ion continuity gives, for
r'Rp

niv rRp5a0n0csRs . ~31!

Using Eq.~26!, we have for the average ion density in th
sheath

^ni&'
a0n0

~2^h&!1/2

Rs

Rp
5

an0

~2^h&!1/2. ~32!

Sinceh now varies alongz, its z-average is perhaps12^h&, so
that the ions escaping axially will have an average veloc

^vz&'cs^h&1/2. ~33!

Thus, the loss flux to both ends is given by

I loss52p~Rs
22Rp

2!^ni&^vz&&p~Rs
22Rp

2!an0cs . ~34!

Note that^h& has canceled out, so that it does not have to
evaluated precisely. Thetotal radial flux from ABR theory is
given by Eq.~27!

I i52pRpLan0cs , ~35!
Downloaded 22 Apr 2002 to 128.97.88.10. Redistribution subject to AIP
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whereI i now includes the probe length. With the help of E
~26!, we can now write

I loss

I i
5
&p~Rs

22Rp
2!an0cs

2pRpLan0cs

5
1

&

Rp

L S Rs
2

Rp
221D 5

1

&

Rp

L S a2

a0
221D . ~36!

From Fig. 11, we see that forjp51 ~the worst case!,
(a/a0)2 is of order 20. For the probe dimensions used he
Rp /L50.0075. The endloss correction of Eq.~36! then
amounts to'11%. However, it could be larger with thicke
probes.

In conclusion, we have found a rapid method for analy
ing probe characteristics which gives more accurate ion d
sity measurements in rf plasmas than any existing pr
theory. The method is entirely heuristic and is not suppor
by a detailed treatment of the sheath. It apparently wo
because of the self-cancellation of neglected effects.
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