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A simple method for analyzing cylindrical Langmuir probe curves in a cold-ion plasma is described
which yields the ion density in weakly collisional plasmas for which purely collisionless theories

give erroneous results. The method is based on

an extrapolation to the floating potential of the

saturation ion current raised to the 4/3 power. This procedure is not supported by theory but
apparently works because effects neglected in the theory tend to cance200® American

Institute of Physics.[DOI: 10.1063/1.1462630

I. INTRODUCTION AND METHODOLOGY

Langmuir probe measurement of the plasma demsity

the weakly collisional rf discharges used in semiconductog
fabrication is difficult not only because of contamination of

the probe tips but also because it has been fbtimat colli-

sometimes with more than one minimum, as illustrated in
Fig. 3 for a differentl —V curve. The experimenter has then
to chooseV, judiciously. Next, the ion part of the character-
stic is raised to the 4/3 power and plotted agaivist as
shown in Fig. 4. A straight line is fitted to the part of the
curve that is not affected by electron current. Extrapolating

sionless theories of ion collection are subject to large errorg, V;, wherel =1,—1,=0, gives an estimate 6f(V;). Note
! | e ’ .

in these plasmas. We have found experimentally that saturgq ¢ the extrapolation t;

tion ion currents I; to cylindrical probes in the
10'°-10" cm ™ density range tend to follow apec V3 law.
Extrapolating to the floating potentidl;, which is easily
measured, one can obtain an estimate of theaomrlectron
current atV;. SinceV;~5KT,, the sheath is well estab-
lished at this potential, and the expectefV;) can be cal-

culated without the uncertainties inherent in extrapolating tqq this curve yields the electron
the space potentidlg (= 0) due to the weak ion-accelerating

fields there. Thel;=V3* is reminiscent of the Child—

Langmuir(CL) law for plane electrodes. If one assumes that

the sheath thickness is given by the CL lauweglecting the
cylindrical curvaturg the collection area expands ¥§*,
giving rise to the observed shape of theV curve. The ion

current at the sheath edge is given by the Bohm sheath ¢

terion as

li=agnAgCs, CSE(KTe/M)llz,

D

where A, is the sheath area, ane, is a constant equal to
e 2=0.61 if Tj=0 and ~0.5 if T, is slightly elevated
above room temperatufeHence, knowingV;—V, and
[;(V;), one can computa using the value oK T, from the
electron part of thé —V curve. As we shall show in detall,

the CL formula should not be applicable in these circum-

stances, but this procedure heuristically gives values iof

is much shorter than t¥/g, so
that the estimate of;(V;) should be more accurate than
I;(Vs). The ion current is then calculated from the straight
line fit to 1" and subtracted from the total current to glye
This is plotted semilogarithmically in Fig. 5. Note that the
ion correction td . has made the curve follow a Maxwellian
over a much larger range &f(=V,). Fitting a straight line
temperati(€, in eV

le=Apnve €Xp(—7p), Ve =(KTe/2m) V2,

n=—(V—Vy)/KT, @

A, being the probe area amdhe plasma density in the body
of the plasma. The reciprocal of the slope of thé.tV,
"turve is then equal t§T,. The value ofl, atV,=V gives
an estimate o, called Ng, which is based or, alone.
SinceN, depends exponentially ov, it is subject to large
errors arising from uncertainty in the determinationvaf.

To find n from I,(V;), we assume a sheath thickness
given by the CL formuld

1 /2
d=3 a_O(Z”f)3/47‘D: 1.01873\p

Ap=(goKTo/ne?)*?, @

good agreement with independent measurements using miith »; known onceV, and T, have been determined. The

crowave interferometryNote thatl; is a particle current; the

sheath radius is the sum dfand the probe radiuR, . Using

electrical current isel;, the ions being assumed singly Eq.(3) into Eq. (1) for a probe length_ then gives

charged.

The procedure, then, is as follows. A sampteV curve
is shown in Fig. 1. First, the space potentdalis found from
the minimum in thedl/dV curve, shown in Fig. 2. In this

case, a clear minimum can be founq by drawing a Smoo_ﬂ%quation forn/2
curve through the data points. In rf discharges plasma noise
and inadequate rf compensation often make this curve hashy, n={[—B+(B2+4AC)'?]/2A}?,
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n=N;(CL)=1;(Vy)/2m(Ry+d)LaoCs. (4)

Note, however, thad depends o, which is proportional
to n~ 2. Equations(3) and (4) thus constitute a quadratic
, whose solution gives the ion density as

®)

© 2002 American Institute of Physics

Downloaded 22 Apr 2002 to 128.97.88.10. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



1450 Phys. Plasmas, Vol. 9, No. 4, April 2002 Chen, Evans, and Arnush

0.08 0.5
2 mTorr, 500W 0.0 {
2 0.06 - 05
E ool -1.0
3 3 st
§ 002 5 20
w -2.5
0.00 r-===x -3.0
3.5
0.02 : . ; " . o . . ‘ o
0 0 0 20 0 2 a0 0 5 10 15 20 25
Probe voltage (V) v
FIG. 1. Typicall — V characteristic taken with a probe 0.15 mm in diameter FIG. 3. Example of a case where the "knee” of the-V curve is ill-
and 1 cm long. defined.
where In a strictly one-dimensiondlLD) problem, we must assume
- 2 12 a sheath edge, since if the ion velocitywere zero at infin-
A=Rp, B=7ni(eoKTe/€9)™, ity, the density there would have to be infinite for the ion flux
6 iy .
C=1,(Vp)/2mL aoCs. (6)  to be finite. For convenience we choose the sheath edge to be

the plane wheréa) eV=—3KT, relative to the plasma po-

tential, so that the Bohm criterion is satisfied the(®, v;

=c,, and(c) n=ng=nye Y2 Shifting the origin of bothx
Although it will be shown that this method yields values andV to this point, we now have, for Maxwellian electrons

of n in agreement with microwave measurements, it is not

easy to justify theoretically. First, the CL formula used dor Ne=Ns€

is for plane sheaths, not cylindrical ones. Second, the CL n=—eVIKT,. 9)

formula gives only a crude approximation to the sheath ) ) .

thickness because it neglects the Debye sheath, where th®r the ions, energy conservation requires

electron density cannot be neglected. Treatments which jump  1\j,2=iMmc2—eV, v;=(c2—2eVIM)¥2 (10)

discontinuously from quasineutral plasma to pure ion sheaths

are referred to astep modelé Sometimes, a constant ion Continuity of ion flux then gives

Il. COMPARISON WITH THEORY

-7
eVIKTe— ne

density is assumed is what is calledratrix sheatt? The Nv; =NCs,

Bohm formula requires ions to enter the sheath with the ve- - (11)
locity ¢, whereas the CL formula assumes zero velocity. G 2ev| V2 1
Hutchinsorl has modified Eq(3) to include an initial ion ni—nsv—i— 7 mc? =ns(1+27) 7%

velocity cs. If we takeV=0 in the plasma rather than at the Equation(8) then b
sheath edge as in Ref. 5, Hutchinson’s formula becomes quation(8) then becomes

_ d2v KT d?
d=1.018[ »— %]1/2_2 1/2)1/2([77_ %]1/2+21/2))\D_ (7) —zzins[e’”—(l+2n)71’2]=— e_727.
dx= &g e dx

Use of this formula did not improve the results. o
The exact solution for a combined Debye-CL sheath inNormalization to the Debye lengthp at the sheath edge
plane geometry can be derived from Poisson’s equation  Yields
d?v e 7'=[(1+27) =€ 7], (13
Wzs—o(ne—ni)- 8

(12

00 & . . . . N . .
70 60 50 40 -30 -20 -10 [ 10
-12 . . . v
0 5 10 v 15 20 % FIG. 4. lon current i‘”3 vs V, and a least-squares fitted straight line. The

electron current has not been subtracted from tliata. The intersection of
FIG. 2. First derivative of thé—V curve. The points have been smoothed the line with the vertical line at floating potenti&l; yields the value of
over the digitization noise, and the line is a further smoothing of the data.l;(V¢) used in the analysis.
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FIG. 5. Semilogarithmic plot of electron curreht vs V and the least- FIG. 7. The two curves of Fig. 6 on a log—log scale, compared with the

squares fitted line. The solid points are the raw data without correction fonormalized Child—Langmuir sheath thickness. The dashed line is the float-

the ion contribution. ing potential of a plane probe. Argon is assumed in all computations in this
paper which depend ol.

where the (') indicates derivative with respect t@
=x/\ps. Following standard procedure, we multiply by an
integration factorp’ and integrate frompy=0 to 7. Setting
7' =0 at&=0, we obtain

have the right value, the slopes do not agree at larger probe
biases. Thus, it is difficult to see why the measured ion satu-
ration current increases a$p|3’4, as predicted by the inexact

7' =V2[(1+27p)Y2+e 7-2]Y2 (14 CL formula but not by the exact calculation.

Since the use of the CL formula is not justified because
sheath is not plane by cylindrical, we next solve the
heath equation for cylinders. In this case, the calculation can
e carried out to infinity, and the arbitrary conditions at a
then#” or another derivative must be given a finite value inSheath edge are not needed. However, in a simple treatment,

order for the curve to rise above zero. In practice, the boundQO"iSionS are ignore_d as well as ihe orbiting _Of lons aro”r?d
ary condition ony’ and 7" is determined by matching to the the probe due to their angular momentum. Poisson’s equation

The next integration has to be done numerically, and th?he
result is shown in Fig. 6 for two assumed valueszgf0).
The “sheath thickness” is indeterminate because it depend
on the assumed boundary conditionéat 0. If ' =0 there,

presheath. The two curves of Fig. 6 are plotted Iogarithmi-Is now

cally in Fig. 7. Oncen becomes appreciable, the curyé) 19/ oV) e

has a definite shape, but its position relative to the sheath Fﬁ(r§> = S_O(ne_ ni),

edge cannot be found without a presheath calculation. Also - (16)
shown in Fig. 7 is the CL sheath thickness according to Eq. Ne= nee®V Te=nge”7,

(3) and the floating potentiak;=4.68 of a plane probe in wheren—n, andV—0 asr—. The ion velocity is
argon® We see that it is possible to choose a boundary con-

dition that makes the computed sheath thickness agree with vi=(—2eV/IM)¥*=(2y)";, (17)
dc (Vy), but that the slopes of the curves are different theregng flux conservation gives

The increase in; with V, depends on the normalized probe

radius li/vi _ Ii (277)—1/2 (18)

2mr  2wrc
Ep=Ry/\p. (15 S
Adding §, to the right-hand curve of Fig. 7 results in Fig. 8.

Although the sheath radius ® can agree with the CL pre-
diction if the small gradients at the sheath edge happen to

wherel; is the inward ion flux per unit probe length. Nor-
malizing top=r/\p, we now have for Eq(16)

100
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FIG. 8. Normalized sheath radii for various valuesRyf/\;, as calculated
FIG. 6. Calculated potential in a plane sheath with different assumed boundpointg and as estimated with the CL formuliines). The right-hand curve
ary conditions at the sheath edge 0, whereV=0, V'=0, andV"#0. of Fig. 7 was used. The dashed line is the floating potential.
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FIG. 9. Potential profiles in a cylindrical sheath for two values of normal-
ized probe currend. The dashed line is th&=50 curve reduced by 10. The
line &, marks the probe radius.

J an lip 1 2
— | p—] = = —12_ a7
ﬁp(pﬂp> 2mr nocs(zﬂ) pe
li 2
= E— —12_ a7
277”07\005(27]) pe 7. (19

The coefficient of the ion term is a dimensionless ion curren
defined by

I 1
J: 23 277”0 )\DCS. (20)
In terms ofJ, Poisson’s equation is simply
g [ Im —12_ o
—_ — = —_ 7
07p(pap> Jn pe . (21)

This is the cylindrical equivalent of the Allen—Boyd—
Reynolds(ABR) equation for spherical probésSolutions of

Eq. (20) for various values of were first done in 1964 on an
IBM mainframe® Recent computations by Chen and Arntish

Chen, Evans, and Arnush
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FIG. 10. The functionsy(¢) and 7;(¢,,) for J=10 in argon. The “classical
sheath edge” is the radius gt=0.5, where the ions have velocitg. The
“effective sheath radius” is that at which the assumed probe current would
be collected if the Bohm criterion were satisfied thésich it is noj.

artificial sheath edge is introduced, and hence there is no
confusion betweeip, and\ps: \p is always evaluated us-

‘ng the densityn, at infinity.

For the present application, we need to fin(v;). We
start by fixing the value ofl. The floating condition id;
=1l,, wWherel, per unit length is given by

(22

andl; is given by Eq.(20). Solving for %;, we find thatn,
cancels, and we have

gp( M )1/2

J \4mm
However, (£,) must also satisfy the solution(p) of Eq.
(21) for the given value ofl and p=¢,. Figure 10 shows

le=27RpNover X~ 75),

ni=In (23

on a personal computer are in agreement with the earligoth »(p) and 7:(£&,) for J=10 on the same plot. The inter-

results, which have been fitted with analytic functibiisr
easy application. In the limitp—o, Eq. (21) has the
asymptotic formy~J?/p?. Starting with this solution, one
can integrate Eq(21) inwards to obtain the potential profile
7(p). Examples for two values of are shown in Fig. 9.
These are universal curves which apply to all probe raglii
characterized by the important parame&gE=R,/\p [EQ.
(19)].

The part of the curve fop<¢, is irrelevant, and the part
for p> ¢, is unchanged by the probe, since all incoming ions
are absorbed by the probe, and thereforeandn, are not

section givesy; and¢, for that value of). By varyingJ, one
can generate the functiong(&,) andJ(»;) for given ¢,
the dimensionless versions ¥%(R;) andI;(Vy) for given
R,. Also shown in Fig. 10 is the position of the classical
sheath edge, as usually defined gt=1/2. Contrary

affected by the presence of a probe. This is not true if the
ions have angular momentum and can orbit the probe; in that
case the more complicated theory of Bernstein and Rabinow-
itz (BR)'® must be used. For a given value&, such as the
one shown in Fig. 9, the probe potential for givéns the
value of (¢,) on the curve for thal. Thus, in our example,
n~20 for J=10 and~1200 forJ=50. An I;—V, charac-
teristic for given¢, is generated by varying and cross-
plotting. Note that,, itself depends on the unknown value of
N, and the determination afi from J generally requires FIG. 11. Computed values ofi=—eV; /KT, a, anda/a, for a cylindri-

iFera_tion-pr’ howe\_/er' is independgnt Of)_’ ar_]d this quan- ¢4 probe in argon and purely radial ion orbits. The curve throughathe
tity is often plotted instead ad. In this cylindrical case, N0  points is the analytic fit of E(29).
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FIG. 12. Probe densities computed with the CL form{@3, the ABR theory( 4 ), and electron saturation curreft), compared with microwave densities
(—) at various pressures.

to the plane case, however, the ion density there is not ao(Rs/Ry)=v2J/ €. (25)

ng exp(—1/2) because; # n, at that point. The exact cylin- .

drical solution does not require the arbitrary assumption thallf we now define

quasineutrality holds up to the sheath edge. a=v2J/&,=ao(Rs/Ryp), (26)
We can, however, define an effective collection radiusE (24) takes its usual form withr replacin

(“sheath” radiug R, such that if the Bohm criterion were 9. usu P 9o

satisfied there, the correct ion current would flow to the li=2mR,angCs. (27

probe. The cylindrical equivalent of Et) is Thus, @ can be considered a cylindrically modified value of

(24)  the Bohm coefficientyy, and the ratiox/ o is a measure of

I; can also be expressed in termsJdfy Eq. (20). Equating
these two expressions, one can solveRgr obtaining

| i= ZWRSaonocs .

3 n‘\o\o\ﬁ\
o 24
:5- 3
°
. —Mw .
o-CL
——ABR
o . .
0.5 1.0 15 2.0
p
o R R
-80 -40 Vo -20 0 FIG. 14. Dependence of calculated density on the expopéntlip—vp.

Values ofn computed with the CL formula and the ABR theory are com-
pared with that measured with microwav@sW). The star marks the value
p=4/3.

FIG. 13. lon current at 1 mTorr, 450 W plotted H5vs Vp with p=4/3
(upper curvgandp=2 (lower curve. The straight-line fits are also shown.
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FIG. 15. Schematic of ion space charge around probe tip, causing ions to 0 10 20 30 40 50 60
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FIG. 16. ABR solution for the iol——) and electroi— — —) densities in

the expansion of the collection area beyond the probe areltae sheath for the casie= 10. The radius of a floating probe is shown by the

. . . . ine labeledR,. Similarly, Ry, is the radius where;=1/2, andRs is the
when the prObe is at the floatlng pOIem'al' The pOSItIORQf effective sheath radius for this case. For probes at higferthe lineR,
is shown in Fig. 10; it isnot at »=1/2. Computed values of will move to the left for fixedJ.
n¢, «, and a/ag as functions ofé, are shown in Fig. 11.
Note thatn; approaches the plane-geometry value of 5.18
and a/ay—1 asé,—. From Egs.(20) and (26) we can line than does!”®, suggesting that some ion orbiting is tak-

solve forng, obtaining ing place. Nonetheless, fitting with=4/3 gives more rea-
sonable values ofh. In this example,p=4/3 yields nq;

no=N;(ABR) = (Vo) , (29 =0.734 whilep=2 givesn;;=0.475, compared with a mi-
27RpCsa crowave density of 0.872, wher@,; is in units of

which can evaluated from the extrapolate@V;) per unit 10" cm . The sensitivity ofN;(CL) andN;(ABR) to pis
length onceR,, andK T, are known. The value ak(¢,) can shown in Fig. 14 fo_r the 2_mTorr, 900W point of Fig. 12. We
be found from the following analytic fit to the curve in Fig. S€€ thatp=4/3 gives yields better agreement between

11 N;(CL) and the microwave measurement than does2 or
0.00 1/2. This is generally true of the cases we have examined,
a~0.607+2432/ex§7.01£, ). (29 thoughp=4/3 has no theoretical justification.
Since ¢, depends om,, however, solution of Eq(28) re-
quires iteration. IV. DISCUSSION

The FP-CL method for cylindrical probes neglects three
major effects:(1) Electron density and cylindrical curvature

The procedure for finding/s and KT, from the | —V in the calculation of sheath thicknes®) orbiting of ions
curve, as well as the densily, from the electron saturation around the probe; an@®) loss of ions moving in the direc-
current, was described following Eqg2). The density tion, parallel to the probe axis. We have treatgdwith the
N;(CL) can then be computed from E@) usingl;(V;). For  ABR analysis, finding that it yields values ofthat are too
comparison, the density according to ABR theory can bdow. The reason is probably that some ions have enough
found from Eq.(28). All of these steps have been automatedangular momentum to orbit the probe and miss it. Taking full
on an Excel® spreadsheet to give, KT., Ne, N;(CL), account of this effect with the BR theotYhowever, yields
andN;(ABR) from a 1000-point —V curve in<1s. Here values that are too high. We have previously suggeéstet
we present data taken & 2 MHz argon inductively coupled a few collisions in the presheath can greatly decrease the
plasma with an rf-compensated Langmuir probe 0.015 cm iramount of orbiting, and that the geometric mean between
diam and 1 cm long at various pressures and rf powers. The(ABR) andn(BR) gives a good approximation in this case
probe densities are compared with those from microwavef partial orbiting. The FP-CL method apparently succeeds
interferometry. Details of the experiment are describedbecause of a fortuitous cancellation of effe¢ts and (2).
elsewheré! The data in Fig. 12 span arangedffrom~1  The effect of collisions was discussed by Stangeby and
to 4.5. The floating-potential-CL method gives values  Allen'? in connection with the discrepancy between the BR
agreeing with those from microwaves to within about 20%,and ABR theories for cylinders whéh— 0. They concluded
while the ABR method gives consistently lowerThe elec-  that the ratio of the mean free path to the absorption radius
tron densitiesdN, behave sporadically, as one would expectdetermined which theory was applicable. This ratio is appar-

IIl. COMPARISON WITH EXPERIMENT

from their sensitivity to the chosen value gf. ently of order unity in this paper, so that neither theory is
In these analyses$; was extrapolated t&'; by fitting a  valid.
straight line to the? vs V,, plot, wherep=4/3. Afit can also This one-dimensional treatment fails to account for the

be made for other values qf. In particular, Langmuir's finite length of the probe. Whe#, is small, incoming ions
orbital-motion-limited theory predictsp=2, and solutio5  are crowded together and form a large positive space charge
of the ABR equation show=2. Indeed, as shown in the near the probe surface. As shown in Fig. 15, this space
example of Fig. 13, at low densiti¢$ fits better to a straight charge creates an electric fidig, driving the ions out past
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the end of the probe. The(r) andng(r) profiles calculated wherel; now includes the probe length. With the help of Eq.
with the ABR theory forJ=10 are shown in Fig. 16. At the (26), we can now write
radius of a floating probe, there is an appreciable excess ion 2 52
charge. For large/, this value ofJ corresponds to a very I'LSS_ v2m(Rs — Rp) anoCs

small probe, and the ion charge can be extremely large unless li 2mRpL angCs

the ions can escape axially. Also shown in Fig. 16 are the 1 R.[R2 1R (a2

radius wherep=1/2 and the effective sheath radiRs. It is =__P ( —— 1) =__F ( —- 1) ) (36)
clear that quasi-neutrality does not hold downste1/2 in v2 LRy v2 L lag

the cylindrical ckase. . tthe endl ol From Fig. 11, we see that fof,=1 (the worst case
We can make a rough estimate of the endloss as follow ‘al ag)? is of order 20. For the probe dimensions used here,

Let <7_/> b_e an average potential in the sheath. The radial io ,/L=0.0075. The endloss correction of E¢B6) then
velocity is given by Eq(17) amounts to~11%. However, it could be larger with thicker
v, =CsV2(7). (30  probes.

) ) . . o In conclusion, we have found a rapid method for analyz-
With R, defined as in Eq(24), ion continuity gives, for ing probe characteristics which gives more accurate ion den-
r~Rp sity measurements in rf plasmas than any existing probe

Niv,Rp= aoNgCsRs. (31  theory. The method is entirely heuristic and is not supported
by a detailed treatment of the sheath. It apparently works

Using Eq.(26), we have for the average ion density in the because of the self-cancellation of neglected effects.
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