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 INTRODUCTION

Of all the ways to measure a plasma, the Langmuir probe is probably
the simplest, since it consists of sticking a wire into the plasma and measuring
the current to it at various applied voltages.  However, it is an intrusive, not
remote, technique; and the �wire� must be carefully designed so as not to in-
terfere with the plasma nor be destroyed by it.  Worse than that, the interpre-
tation of the current-voltage (I � V) curves is difficult and has spawned a large
literature of theoretical papers.  In a short lecture, little of this can be dis-
cussed in detail.  Specialized topics and related electrostatic diagnostics, such
as emissive probes, double probes, capacitive probes, oscillation probes,
probes in flowing or high pressure plasmas, and probes in a magnetic field can
be mentioned only summarily.

On the other hand, the most widespread use of Langmuir probes at
present is in the semiconductor industry, where radiofrequency (rf) sources
are used to produce plasmas for etching and deposition.  These partially ion-
ized plasmas require special techniques in probe construction and theory.
Emphasis will be given to this new forefront of diagnostics research.
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I. THE PROBE CHARACTERISTIC

A.  Parts of the I � V curve
Let the plasma potential (space potential) be Vs, and the potential applied to the probe

be Vp.  If the chamber walls are metal and grounded, Vs is normally of the order of 5KTe.
When Vp >> Vs, an electron current Ie is collected; the probe current is negative.  When Vp <<
Vs, an ion current Ii is collected.  It is customary to plot I � V curves with Ie positive and Ii
negative.  Such a plot is shown in Fig. 1. There are five main parts.
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Fig. 1.  An idealized I � V curve.  The left curve is expanded 10X to show the ion current.

The space potential Vs is near the �knee� of the curve.  At the far left, where all the
electrons have been repelled, we have the Ion Saturation current, Isat.  The Floating Potential
Vf, is where the ion and electron currents are equal, and the net current is zero.  In the Transi-
tion Region, the ion current is negligible, and the electrons are partially repelled by the nega-
tive potential Vp−Vs.  In a Maxwellian plasma, this part of the curve is exponential.  When Vp
(or just V) reaches Vs, all of the random thermal flux of electrons is collected.  In the Electron
Saturation region, Ie grows only slowly because of the expansion of the sheath.  From the I �
V curve, the plasma density n, electron temperature KTe, and plasma potential Vs can be de-
termined, but not the ion temperature.

B.  The Transition Region

The exponential part of the I-V curve, when plotted semi-logarithmically vs. the probe
voltage Vp, should be a straight line if the electrons are Maxwellian:

exp[ ( ) / )]e es p s eI I e V V KT= − , (1)

where  
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, (2)

A being the exposed area of the probe tip.  Here Ies is the saturation electron current, or ran-
dom thermal current to a surface at Vs.  Eq. (1) shows that the slope of the (ln I)−Vp  curve is
exactly 1/TeV  and is a good measure of the electron temperature.  (It is convenient to write
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KTe/e as TeV , the electron temperature in eV).  This is a very robust relationship, and Te is the
easiest quantity to obtain from a probe.  As long as the electrons are Maxwellian and are re-
pelled by the probe, the EEDF at a potential V < 0 is proportional to

2 2(½ v ) / | |/ ( v / 2 )(v) e e ee e em eV KT eV KT m KTf − + − −∝ = .     (3)

We see that f(v) is still Maxwellian at the same Te; only the density is decreased by
exp(−e|V|/KTe).  Thus, the slope of the semilog curve is independent of probe area or shape
and independent of collisions, since these merely preserve the Maxwellian distribution.
However, before Ie can be obtained from I, one has to subtract the ion current Ii.  This can be
done approximately by drawing a straight line through Isat and extrapolating it to the electron
region.
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Fig. 1.  A semilog plot of electron current from an I � V curve in an rf plasma.  The lower curve is the raw data
before the ion current is subtracted from the total current.1

One can estimate the ion contribution more accurately by using one of the theories of ion
collection discussed below, but refinements to this small correction are usually not necessary,
and they affect only the high-energy tail of the electron distribution.  One easy iteration is to
change the magnitude of the Isat correction until the ln I plot is linear over as large a voltage
range as possible.  Fig. 1 shows a measured electron characteristic and a straight-line fit to it.
The ion current was calculated from a theoretical fit to Isat and added back to I to get Ie.  The
uncorrected points are also shown; they have a smaller region of linearity.  If the EEDF
(Electron Energy Distribution Function) is not Maxwellian, f(v) can sometimes be deter-
mined from the shape of this curve.  This will be discussed later.

C.  Electron saturation
The exponential growth of Ie with Vp should continue until Vp = Vs, when none of the

electrons is repelled by a negative potential.  The electron current �saturates�. Since the elec-
tron velocities are ≈(m/M)1/2 times larger than ion velocities, one would expect Ies to be >200
times as large as Isat (in argon).  In low-pressure, unmagnetized, dc discharges, this is indeed
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true2; the knee of the curve is sharp and is a good measure of Vs.  For Vp > Vs, Ie increases
slowly as the collection area grows due to an increase in sheath thickness, the shape of the
curve depending on the shape of the probe tip.  One might think that measurement of Ies
would give information on the electron density, but this is possible only at low densities and
pressures, where the mean free path is very long.  Otherwise, the current collected by the
probe is so large that it drains the plasma and changes its equilibrium properties.  It is better
to measure n by collecting ions, which would give the same information, since plasmas are
quasineutral.  More importantly, one should avoid collecting saturation electron current for
more than a few milliseconds at a time, because the probe can be damaged.

However, this ideal situation is rarely found in practical devices.  Effects such as col-
lisions and magnetic fields will lower the magnitude of Ies and round off the knee so that Vs is
hard to determine.  In particular, magnetic fields strong enough to make the electron Larmor
radius smaller than the probe radius will limit Ies to only 10-20 times Isat because the probe
depletes the field lines that it intercepts, and further electrons can be collected only if they
diffuse across the B-field.  The knee, now indistinct, indicates a space potential, but only that
in the depleted tube of force, not Vs in the main plasma.  In this case, the I � V  curve is expo-
nential only over a range of a few KTe above the floating potential and therefore samples
only the electrons in the tail of the Maxwellian.  Figure 2 shows an I � V curve in a magnet-
ized plasma, where the knee is just a small bend occurring where Ie is only 10-30 times the
ion current.
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Fig. 2.  Example of an I � V curve in a magnetized, rf plasma.

Collisions can also limit Ies.  In the high-pressure limit, electrons must diffuse through
the neutral gas to reach the sheath edge, so the current there is limited by the diffusion rate.
In rf plasmas, Vs − Vp can fluctuate at the rf frequency, and electron collection depends on the
phase and velocity of the electron when it enters the sheath.  An example of an I � V curve in
an unmagnetized rf plasma is shown in Fig. 3.a Here electron saturation begins at Ie not much
larger than the maximum ion current.  The curve is linear only over a relatively small current
range.  This range is reduced even further by the presence of a fast electron population.
Figure 4. shows such a case.  The electron tail can distort the apparent electron temperature
of the bulk.  This will be discussed in a later section.  In Fig. 3b, electron saturation current
increases linearly from the knee to the value Ies should have.  The reason for this is not yet
known.
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Fig.3.  Example of an I � V curve in an unmagnetized rf plasma (a) with and (b) without fast electrons1.

D.  Floating potential
The potential Vf is defined by Ii = Ie, where Ie is given by Eqs. (1) and (2) if the elec-

trons are Maxwellian.  Ii can be calculated from one of the theories presented in a later sec-
tion but for this purpose can be estimated from the Bohm current3

½, ( / ) , 0.5B s s eI neAc c KT Mα α= ≡ ≈ , (4)

where M is the ion mass. This current is caused by the electric field in the presheath which
accelerates ions to a velocity of cs, the minimum required to form a sheath.  Setting Eqs. (1)
and (4) equal yields

2ln
2

e
f s

KT MV V
e mπ

 = −  
 

. (5)

The value of Vf − Vs is about �3.5TeV  for hydrogen and −5.4TeV  for argon.  Vf is more nega-
tive than this if there are fast �primary� electrons or if there are uncompensated rf fields.
Strictly speaking, Eq. (4) applies only to plane probes.    For cylindrical probes there is a
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Fig. 4.  Decrease of Vf for cylinders from its asymptotic value as ξp is decreased.  The effective Bohm
coefficient α is also shown, as well as its value normalized to α0 = 0.61.

geometrical correction4 which lowers the value of −5.4TeV to between �4 and �5TeV, de-
pending on the ratio of probe radius to Debye length.  The function Vf(ξp) is shown in Fig. 4,
where ηf = eVf/KTe.  An analytic fit to this curve is given by
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where A = 0.583, B = 3.732, C = −0.027, and D = 5.431.

E.  Space potential
The time-honored way to obtain the space potential (or plasma potential) is to draw

straight lines through the I � V curve in the transition and electron saturation regions and call
the crossing point Vs, Ies. This does not work well if Ies is curved, as in Fig. 3a.  In that case,
there are two methods one can use.  The first is to measure Vf and calculate Vs from Eq. (5).
The second is to take the point where Ie starts to deviate from exponential growth; that is,
where ( )eI V′ is maximum or ( )eI V′′ is zero.  If ( )eI V′  has a distinct maximum, a reasonable
value for Vs is obtained, as illustrated in Fig. 5.

It would be dangerous to equate  the current there to Ies in order to compute ne, for
two reasons.  First, the knee can occur before Vs is reached, as in Fig. 3.  Second, according
to Eq.(1), Ies depends exponentially on the assumed value of Vs, so that a small error in Vs
would induce a large error in the inferred value of n.  The only sure way to measure Vs is to
use a hot, or emitting, probe5, for which Vf  ≈ Vs.

In magnetized plasmas, which frequently have low-frequency oscillations, fluctua-
tions in Vf. can be measured with a floating probe.  If KTe does not vary, the Vs spectrum
should be the same as the Vf spectrum.  Methods have been devised to separate
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Fig. 5.  Derivative of an I � V curve that has a distinct minimum at Vs.

sV!  from eT!  by using baffled probes which block most of the electron current to a floating
probe6.  Using a floating hot probe would be better, but it would be difficult to neutralize the
large capacitance of the heating circuit.  Floating probes must be terminated in a high imped-
ance, and the RC time constant of this resistor and the stray capacitance can limit the fre-
quency response.

F.  Ion saturation current

We have seen that measuring n with electron saturation current can be quite inaccu-
rate and could draw dangerously large probe currents in a dense plasma.  Saturation ion cur-
rents are much smaller and easier to handle because of the low output impedance that they
provide.  Unfortunately, interpretation of the Isat curve requires major computation, and the
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results can also be quite inaccurate.  Only on a good day can one measure n to within 10%
using Isat.  Here we present the simplest approximation, appropriate for plane probes or
probes with large ξp, where ξp is the ratio between probe radius and Debye length:

2 2
0/ , /p p D D eR KT neξ λ λ ε≡ ≡ . (7)

Cylindrical probe theory will be discussed in a separate section.  Spherical probes are the
easiest to treat theoretically, but they are impractical to make.

At densities above about 1011 cm-3, the sheath around a negatively biased probe is so
thin that the area of the sheath edge is essentially the same as the area of the probe tip itself.
The ion current is then just that necessary to satisfy the Bohm sheath criterion of Eq. (4),
where the factor α represents ns/n, the density at the sheath edge relative to the density in the
main plasma.  The coefficient α,  is only approximately 0.5; when probes are calibrated
against other diagnostics, such as microwave interferometry, α = 0.6-0.7 has been found to
be more accurate.   The theoretical value is α = exp(−1/2) = 0.61.  Note that Eq. (4)predicts a
constant Isat, which can happen only for flat probes in which the sheath area cannot expand as
the probe is made more and more negative.  In practice, Isat usually has a slope to it.  This is
because the ion current has to come from a disturbed volume of plasma (the presheath) where
the ion distribution changes from isotropic to unidirectional.  If the probe is a disk of radius
R, say, the disturbed volume may have a size comparable to R, and would increase as the |Vp|
increases.  In that case, one can extrapolate Ii back to Vf to get a better measure of Isat before
the expansion of the presheath.  This is illustrated in Fig. 6.  Saturation is quite good
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Fig. 6.  Extrapolation of Isat to V = Vf for a probe with ξp � 20.  If the current there is equated to the Bohm
current, the Bohm coefficient would have to be 0.74.

in this example, since Isat changes little over 80V in Vp.  The curve, however, is based on
collisionless theory, and may not agree with experiment.  As ξp is varied, the value of α that
one must use in applying the Bohm formula to a cylindrical probe would change as shown in
Fig. 7.  Better saturation with a plane probe can be obtained by using a guard ring, a flat
washer-shaped disk surrounding the probe but not touching it. It is biased at the same poten-
tial as the probe to keep the fields planar as Vp is varied.  The current to the guard ring is dis-
regarded.  A section of the chamber wall can be isolated to be used as a plane probe with a
large guard ring.
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II. DESIGN OF PROBES AND CIRCUITS FOR RF ENVIRONMENTS

A.  Probe construction
Since the probe is immersed in a harsh environment, special techniques are used to

protect it from the plasma and vice versa, and to ensure that the circuitry gives the correct I �
V values.  The probe tip is made of a high-temperature material, usually a tungsten rod or
wire 0.1−1 mm in diameter.  The rod is threaded into a thin ceramic tube, usually alumina, to
insulate it from the plasma except for a short length of exposed tip, about 2−10 mm long.
These materials can be exposed to low-temperature laboratory plasmas without melting or
excessive sputtering.  To avoid disturbing the plasma, the ceramic tube should be as thin as
possible, preferably < 1 mm in diameter but usually several times this.  The probe tip should
be centered in the tube and extend out of its end without touching it, so that it would not be in
electrical contact with any conducting coating that may deposit onto the insulator.  The as-
sembly is encased in a vacuum jacket, which could be a stainless steel or glass tube 1/4″ in
outside diameter (od).  It is preferable to make the vacuum seal at the outside end of the
probe assembly rather than at the end immersed in the plasma, which can cause a leak.  Ide-
ally, only the ceramic part of the housing should be allowed to enter the plasma.  Some
commercial Langmuir probes use a rather thick metal tube to support the probe tip assembly,
and this can modify the plasma characteristics unless the density is very low.  In dense plas-
mas the probe cannot withstand the heat unless the plasma is pulsed or the probe is mechani-
cally moved in and out of the plasma in less than a second.  When collecting ion current, the
probe can be eroded by sputtering, thus changing its collection area.  This can be minimized
by using carbon as the tip material.  Ordinary pencil lead, 0.3mm in diameter works well and
can be supported by a hypodermic needle inside the ceramic shield.  One implementation of
a  probe tip  assembly is shown in Fig. 8.   An  example of a  right-angled
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Fig. 8.  A carbon probe tip assembly with  rf compensation circuitry [Ref. 7].

probe with rf compensation circuitry is shown in Fig. 9.  Commercial probes are available
from Hiden Analytical and Scientific Systems, among others.  The probe tip assembly of the

Fig. 9.  A right-angled probe with rf compensation for 27MHz [Ref. 7].

Fig. 10.  Probe tip assembly in the Hiden Analytical ESPion system.

Hiden system is shown in Fig. 10.  This has replaceable probe tips, well centered, and an ex-
tremely large auxiliary electrode (described later).
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A flat probe would seem to the simpler, since it would just draw the Bohm current

and the sheath area would not change with probe bias.  However, the current has to come
from somewhere.  In order for the probe not to disturb the plasma, the surface from which the
current comes must be much larger than the probe surface.  In that case, the probe acts like a
spherical probe, and the current will not saturate.  The disturbance is minimized if the flat
probe is part of a wall, but changing the probe bias would still affect the collection area.  The
planarity of the collecting surface can be improved by adding a guard ring, co-planar with the
probe and biased to the same Vp.  The current to the guard ring is affected by edge effects,
but it is not measured.  Only the current to the central probe area with a planar sheath is
measured.  An example of a plane probe is shown in Fig. 10.  Figure 11 shows such a probe
and guard-ring system mounted as part of a wall.
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Fig. 10  A flat probe with guard ring.

Fig. 11.  A flat probe with guard ring mounted on the grounded electrode of a capacitive discharge [Ref. 8].

B.  Probe circuits

There are two basic ways to apply a voltage V to the probe and measure the current I
that it draws from the plasma, and each has its disadvantages.  In Fig. 12a, the probe lead,
taken through a vacuum fitting, is connected to a battery or a variable voltage source (bias
supply) and then to a termination resistor R to ground.  To measure the probe current, the
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voltage across R is recorded or displayed on an oscilloscope.  This arrangement  has the ad-
vantage that the measuring resistor is grounded and therefore not subject to spurious pickup.
Since the resistor is usually 10-1000Ω, typically 50Ω, this is not a serious problem anyway.
The disadvantage is that the bias supply is floating.  If this is a small battery, it cannot easily
be varied.  If it is a large electronic supply, the capacitance to ground will be so large that ac
signals will be short-circuited to ground, and the probe cannot be expected to have good fre-
quency response.  The bias supply can also act as an antenna to pick up spurious signals.  To
avoid this, one can ground the bias supply and put the measuring resistor on the hot side, as
shown in Fig. 12b.  This is usually done if the bias supply generates a sweep voltage.  How-
ever, the voltage across R now has to be measured with a differential amplifier or some other
floating device; or, it can be optoelectronically transmitted to a grounded circuit.  Commer-
cial hardware can use a floating analog-to-digital converter to record the voltage across R.
The probe voltage Vp should be measured on the ground side of R so as not to load the probe
with another stray capacitance.

v
PROBE

R

PROBE

R

v

(a)       (b)

Fig. 12.  Two basic configurations for the probe circuit.

To measure plasma potential with a Langmuir probe, one can terminate the probe in a
high impedance, such as the 1 MΩ input resistance of the oscilloscope.  This is called a
floating probe.  A lower R, like 100K, can be used to suppress pickup.  The minimum value
of R has to be high enough that the IR drop through it does change the measured voltage.  A
rough rule of thumb is that IsatR should be much greater than TeV, or R >> TeV/Isat, where Isat is
the ion saturation current defined above.  The voltage measured is not the plasma potential
but the floating potential.  The large value of R means that good frequency response is diffi-
cult to achieve because of the RC time constant of stray capacitances.  One can improve the
frequency response with capacitance neutralization techniques, but even then it is hard to
make a floating probe respond to rf frequencies.  The rule of thumb quoted above comes
from the circuit diagram of Fig. 13, where the load line of the terminating resistor is shown
together with the probe characteristic.  The line on the left is for a small resistor used to
measure current; its slope is nearly vertical, so that the marked intersection with the I � V
curve gives the current near the set point Vp.  Note that Ie = −I is plotted vertically, so that the
load lines have negative slopes. The line at the right represents a large resistor used to
measure floating potential.  Its intersection with the I � V curve is near Vf.  Since the I � V
curve varies about Isat over a voltage range of about TeV , its effective impedance there is
about TeV /Isat.  Very approximately, then, R should be much larger than this value to measure
Vf.
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Fig. 13.  The operating points of a biased probe and a floating probe.

 C.   RF compensation
Langmuir probes used in rf plasma sources are subject to rf pickup which can greatly

distort the I � V characteristic and give erroneous results.  ECR sources which operate in the
microwave regime do not have this trouble because the frequency is so high that it is com-
pletely decoupled from the circuitry, and the measured currents are the same as in a DC dis-
charge.  However, in rf plasmas, the space potential can fluctuate is such a way that the cir-
cuitry responds incorrectly.  The problem is that the I � V characteristic is nonlinear.  The
�V� is actually the potential difference Vp - Vs , where Vp is a DC potential applied to the
probe, and Vs is a potential that can fluctuate at the rf frequency and its harmonics.  If one
displaces the I � V curve horizontally back and forth around a center value V0, the average
current I measured will not be I(V0), since I varies exponentially in the transition region and
also changes slope rapidly as it enters the ion and electron saturation regions.  The effect of
this is to make the I � V curve wider, leading to a falsely high value of Te and shifting the
floating potential Vf to a more negative value.  This is illustrated in Figs. 14 and 15.
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Fig. 14.  The center curve is the correct I � V curve.  The dashed ones are displaced by ±5V, representing
changes in Vs.  At the vertical lines, the average Ie between the displaced curves is shown by the dot.  The line
through the dots is the time-averaged I � V curve that would be observed, differing greatly from the correct
curve.
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Fig. 15.  Computed I � V curves for sinusoidal Vs oscillations of various amplitudes.

Without proper rf compensation, Langmuir probe data in rf discharges can give spu-
rious data on Te, Vf, and f(v).  However, if one needs to find only the plasma density, the
probe can be biased so that V never leaves the ion saturation region, which is linear enough
that the average Isat will be the correct value.

Several methods for reducing rf effects have been tried.  One is to tap off a sinusoidal
rf signal from the power supply and mix this with the probe signal with variable phase and
amplitude.  When the resultant I � V curve gives the lowest value of Te, one has probably
simulated the Vs oscillations.  This method has the disadvantage that the Vs oscillations can
contain more than one harmonic.  A second method is to measure the Vs oscillations with an-
other probe or section of the wall which is floating, and add that signal to the probe current
signal with variable phase and amplitude.  The problem with this method is that the Vs fluc-
tuations are generally not the same everywhere.  A third method is to isolate the probe tip
from the rest of the circuit with an rf choke (inductor), so that the probe tip is floating at rf
frequencies but is fixed at the DC probe bias at low frequencies.  The probe then follows the
Vs fluctuations, maintaining the same dc bias between Vp and Vs.  The problem is that the
probe tip does not draw enough current to fill the stray capacitances that connect it to ground
at rf frequencies.  One way is to place a large slug of metal inside the insulator between the
probe tip and the chokes.  This metal slug has a large area and therefore picks up enough
charge from the Vs oscillations to drive the probe tip to follow them.  However, we have
found7 that the best way is to use an external floating electrode, which could be a few turns
of wire around the probe insulator, and connect it through a capacitor to a point between the
probe tip and the chokes (Fig. 9).  The charge collected by this comparatively large �probe�
is then sufficient to drive the probe tip so that Vp - Vs remains constant.  In the Hiden probe
(Fig. 9), the auxiliary electrode is very large and is ac-coupled to the probe tip through a thin
insulating layer.  Note that this auxiliary electrode supplies only the rf voltage; the dc part is
still supplied by the external power supply.  The design of the chokes is also critical: they
must have high enough Q to present a resonantly high impedance at both the fundamental
and the second harmonic of the rf frequency.  This is the reason there are two pairs of chokes
in Fig. 9.  One pair is resonant at ω, and the other at 2ω.  Two chokes are used in series to
increase the Q.  A compromise has to be made between high Q and small physical size of the
chokes.  Figure 16 shows an I � V curve taken with and without the auxiliary electrode,
showing that the chokes themselves are usually insufficient.
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Fig. 16.  I � V curves taken with and without an auxiliary electrode.

Fig. 17.  Circuit diagram of a probe-plasma system with rf compensation.

To calculate how much compensation is necessary, we have to understand the probe-
plasma circuit, shown in Fig. 17. The probe tip is coupled to the oscillating space potential

rfV!  through a sheath capacitance Csh.  The sheath impedance is represented by Rsh and Csh,
and that of the auxiliary electrode by Rx and Cx.  The latter is coupled to the probe tip P at Vp
through a capacitance Ccp.  The impedance of the chokes is Zck, and Cs1 and Cs2 are stray
capacitances.  Vb is the bias supply, and Rm the current-measuring resistor.  By solving
Poisson�s equation, Csh and Cx are are found to be9, 7

3 / 4
0 ,

, 7 / 4
( )1

2
s psh x

sh x
D e

e V VA
C

KT
ε

λ

−− 
=  

 
,       (8)

where the A�s are the respective surface areas.  The corresponding impedances |Zsh,x| are
1/ωCsh,x.  For the probe tip to follow rfV! , the effective impedance Zeff of the isolating
inductors Zck must be large compared with the larger of |Zsh,x|.   Zeff is the parallel
combination of Zck and the stray impedance to ground of the short wire between P and the
chokes.  For instance, a 1 cm long wire has a capacitance to ground of ≈ 0.25 pF, and the
stray impedance at 2 MHz is ≈ 330 kΩ.  For maximum effectiveness, Zck should be of this
order.  RF compensation is effective against fluctuations of order rfV!  if
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 

!
, (9)

so that the rf amplitude leaking through to Rm is much smaller than the characteristic voltage
over which the probe current varies; namely, TeV .  Figure 18 shows a sample calculation of
this criterion for an electrode with Ax = 2 cm2 and inductors with Zck = 250 KΩ at 2 MHz.
We have taken | rfV! | / Te = 30 and |Vs � Vp| / Te = 5.  This is the region near the floating
potential where the nonlinearity of the I � V  curve is most severe.  It is seen that an unaided
probe cannot satisfy Eq.(9), and a 2-cm2 electrode is required to measure densities down to
the mid-1010 cm-3  range.
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Fig. 18.  Example of design curves for an auxiliary electrode.

III. THEORIES OF ION COLLECTION
A.  Planar sheaths

Presheath

n = n0

V =  Vs

x = xs = 0 d

PROBE

-V

Vp

n = ns ~ no/2

Plasma

V = 0

C-L
sheath

Debye
sheath

b

Vb

Fig. 19.  Structure of the sheath regions at a plane probe (not to scale!).

Though the space potential varies smoothly between the  plasma and the probe or
wall, it is customarily divided into several regions for convenience.  These are shown in Fig.
19.  Adjacent to the surface is the Child-Langmuir (CL) sheath, where the electron density ne
is negligible.  Next is the Debye sheath, in which the electron density ne drops exponentially
with V.  At the sheath edge x = xs (usually set as the origin), quasineutrality holds, so that ne ≈

V
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ni.  Here the electron distribution is isotropic (except for the few energetic ones that reach the
probe), but the ion distribution is unidirectional, since the probe absorbs all the incoming
ions.  To reach this state, a presheath region must exist, in which a small electric field accel-
erates the ions to a velocity cs, giving rise to the Bohm current of  Eq. (4).  The potential drop
corresponding to an energy of ½Mcs

2 is ½KTe.  Eq. (1) then shows that the density ns there is
0 exp( 1/ 2) 0.61sn n= − = , which is closer to 0.5 if the ions are not completely cold.  The De-

bye sheath is usually thicker than the CL sheath, and the presheath is much thicker than both.
Its length is scaled to the collision mean free path or ionization length.  Finally, at the ex-
treme left, the presheath joins on to the main plasma, which is neutral and ideally has no
electric field.

The exact solution for a combined Debye-CL sheath in plane geometry can be de-
rived from Poisson�s equation

2

2 0
( )e i

d V e n n
dx ε

= − . (10)

In a strictly 1-D problem, we must assume a sheath edge, since if the ion velocity vi were
zero at infinity, the density there would have to be infinite for the ion flux to be finite.  We
therefore choose  x = 0 to be at xs, where the Bohm formula holds, and define V = 0 there.
For Maxwellian electrons, we have everywhere

/ , /eeV KT
e s s en n e n e eV KT

η
η−= = ≡ − .                               (11)

For the ions, energy conservation requires

( )½2 2 2½ ½ , 2 /i s i sMv Mc eV v c eV M= − = − . (12)

Continuity of ion flux then gives

( )
-1/2

-1/2
2

2, 1 1 2s
i i s s i s s s

i s

c eVn v n c n n n n
v Mc

η
 

= = = − = +  
 

(13)

Eq. (10) then becomes

( )
2 21/ 2

2 20
1 2 e

s
d V e KT dn e

edx dx
η ηη

ε
−− = − + = −  

(14)

Normalization to the Debye length λDs at the sheath edge yields

( ) ½'' 1 2 e ηη η − − = + −  
, (15)

where the (′) indicates derivative with respect to / Dsxξ λ≡ .  Following standard procedure,
we multiply by an integration factor η′ and integrate from η = 0 to η.  Setting η′ = 0 at ξ  = 0,
we obtain

½ ½' 2[(1 2 ) 2]e ηη η −= + + − . (16).

The next integration has to be done numerically, and the result is shown in Fig. 20 for two
assumed values of η′′(0).  The �sheath thickness� is indeterminate because it depends on the
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Fig. 20.  Numerical solution of the plane sheath problem for two different initial values of V� on (a) linear and
(b) logarithmic scales.   The dashed line in (b) is the floating potential, and a floating probe would be located at
its intersection with the V(x) curve.  The solid line in (b) is the slope predicted by the CL law; it is not followed
until x is much larger.

assumed boundary condition at ξ = 0.  If η′ = 0 there, then η′′ or another derivative must be
given a finite value in order for the curve to rise above zero.  In reality, the boundary condi-
tion on η′ and η′′ is determined by matching to the presheath.  The two curves of Fig. 20a are
plotted logarithmically in Fig. 20b.  Once η becomes appreciable, the curve η(ξ) has a defi-
nite shape, but its position relative to the sheath edge cannot be found without a presheath
calculation, which is not only difficult but also depends on the details of the discharge.  Thus,
a plane sheath does not have a unique thickness.  The sheath edge conditions are artificially
chosen to simplify the problem to make it tractable, and these control the sheath thickness.
There is currently a dispute in the literature10,11,12,13 as to where the sheath edge should be
chosen and whether or not a valid matching condition to the presheath is possible.  In any
case, there is no useful solution of the plane probe problem without assuming a sheath edge,
and the matching condition there affects only the position of the sheath edge on a presheath
length scale.

As far as saturation ion currents to a plane probe are concerned, there is strictly no
collisionless theory possible.   An infinitely large probe collects all the ions created.  A sec-
tion of it would collect the Bohm current with a coefficient α  representing the density at the
sheath edge.  This density depends on  the geometry of the surface where the ions come
from, and this surface may not be planar.

B.  Orbital Motion Limit (OML) theory
As the negative bias on a probe is increased to draw Ii, the sheath on cylindrical and

spherical probes expands, and Ii does not saturate.  Fortunately, the sheath fields fall off rap-
idly away from the probe so that exact solutions for Ii(Vp) can be found.  We consider cylin-
drical probes here because spherical ones are impractical to make, though the theory for them
converges better.  The simplest theory is the orbital-motion-limited (OML) theory of Lang-
muir and associates14.

Consider ions coming to the attracting probe from infinity in one direction with ve-
locity v0 and various impact parameters p.  The plasma potential V is 0 at ∞ and is negative
everywhere, varying gently toward the negative probe potential Vp . Conservation of energy
and angular momentum give
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2 2
0 0

0

½ ½ a a

a

mv mv eV eV
pv av

= + ≡ −

=
  (17)

where eV < 0 and a is the distance of closest approach to the probe of radius Rp .  Solving, we
obtain

1/ 2
2 2

0
0 0 0

½ ½ 1 , 1a a a
a

V v Vmv mv p a a
V v V

   
= + = = +   

   
. (18)

If a  ≤  Rp, the ion is collected; thus, the effective probe radius is p(Rp).  For monoenergetic
particles, the flux to a probe of length L is therefore

1/ 2
02 (1 / )p a rR L V VπΓ = + Γ ,   (19)

where Γr is the random flux of ions of that energy.  Langmuir then extended this result to en-
ergy distributions which were Maxwellian at some large distance r = s from the probe, where
s is the �sheath edge�.   The random flux Γr is then given by the usual formula

1/ 2

2
i

r
KTn

Mπ
 Γ =  
 

.           (20)

With Ap defined as the probe area, integrating over all velocities yields the cumbersome ex-
pression

½ ½erf( ) [1 erf ( ) ]p r
sA e
a

χ χ Γ = Γ Φ + − + Φ 
 

 ,       (21)

  where 
2

2 2/ , ,p i p
aeV KT a R

s a
χ χ

 
≡ − Φ ≡ = 

− 
.

Fortunately, there are small factors.  In the limit s >> a, when OML theory applies, if at all,
we have Φ << χ, and for Ti → 0, 1/χ << 1.  Expanding in Taylor series, we find that the Ti

dependences of  χ and Γr cancel, and a finite limiting value of the OML current exists, inde-
pendently of the value of Ti.

1/ 2

0

| |2
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p
pT

eV
I A ne

Mπ→

 
→  

 
.           (22)
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Thus, the OML current is proportional to |Vp|1/2, and the I − V curve is a parabola, while the I2

� V curve is a straight line.  This scaling is the result of conservation of energy and angular
momentum.  Because ions have large angular momentum at large distances, though they
have small velocities, they tend to orbit the probe and miss it.  The probe voltage draws them
in.  The value of Ti cancels out mathematically, but Ti has to be finite for this physical
mechanism to work.

The OML result, though simple, is very restricted in applicability.  Since the sheath
radius s was taken to be infinite, the density has to be so low that the sheath is much larger
than the probe.  The potential variation V(r) has to be gentle enough that there does not exist
an �absorption radius� inside of which the E-field is so strong that no ions can escape being
collected.  Except in very tenuous plasmas, a well developed sheath and an absorption radius
exist, and OML theory should be invalid, though it may give good results outside of its in-
tended range.  At higher densities, the I2 � V dependence of Isat is often observed and is
mistakenly taken as evidence of orbital motion in a regime where OML cannot apply.

An Excel program for analyzing an I � V curve using OML theory is available on the
author�s website15 under Presentations.

C.  Allen-Boyd-Reynolds (ABR) theory
To do a proper sheath theory, one has to solve Poisson�s equation for the potential

V(r) everywhere from the probe surface to r = ∞.  Allen, Boyd, and Reynolds16 (ABR) sim-
plified the problem by assuming ab initio that Ti = 0, so that  there are no orbital motions at
all:  the ions are all drawn radially into the probe.  Originally, the ABR theory was only for
spherical probes, but it was later extended to cylindrical probes by Chen17, as follows.  As-
sume that the probe is centered at r = 0 and that the ions start at rest from r = ∞, where V = 0.
Poisson�s equation in cylindrical coordinates is

( ) /
0

0

1 , eeV KT
e i e

V er n n n n e
r r r ε

∂ ∂  = − = ∂ ∂ 
.              (17)

To electrons are assumed to be Maxwellian.  To find ni,  let I be the total ion flux per unit
length collected by the probe.  By current continuity, the flux per unit length at any radius r is

( )½/ 2 , where 2 /i i in v I r v eV MπΓ = = = − .       (18)

Thus,   
-1/22

2i
i

I eVn
v r Mπ
Γ − = =  

 
.           (19)

Poisson�s equation can then be written

-1/2
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0
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we can write this as
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The Debye length appears on the left-hand side as the natural length for this equation.  We
therefore normalize r to λD by defining a new variable ξ:
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Eq. (23) now becomes
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Defining
1/2
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eI MJ
KT nπ ε

 
≡  

 
,      (26)

we arrive at the ABR equation for cylindrical probes:

-½J e ηηξ η ξ
ξ ξ

− ∂ ∂
= − ∂ ∂ 

.      (27)

For each assumed value of J (normalized probe current),  this equation can be inte-
grated from ξ = ∞ to any arbitrarily small ξ.  The point on the curve where ξ = ξp (the probe
radius) gives the probe potential ηp for that value of J.  By computing a family of curves for
different J (Fig. 22), one can obtain a J − ηp curve for a probe of radius ξp by cross-plotting
(Fig 23).  Of course, both J and ξp depend on the unknown density n0, which one is trying to
determine from the measured current Ii.  (KTe is supposed to be known from the electron
characteristic.)  The extraction of n0 from these universal curves is a trivial matter for a com-
puter.  In the graphs the quantity Jξp is plotted, since that is independent of n0.  Note that for
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small values of ξp, I2 varies linearly with Vp, as in OML theory, but this agreement is acci-
dental18, since there is no orbiting here.

        Fig. 22. ABR curves for η(ξ).              Fig. 23.  V−I curves derived from η(ξ).

An Excel program for analyzing an I � V curve using ABR theory is available on the
author�s website15 under Presentations.

D.  Bernstein-Rabinowitz-Laframboise (BRL) theory
The first probe theory which accounted for both sheath formation and orbital motions

was published by Bernstein and Rabinowitz19 (BR), who assumed an isotropic distribution of
ions of a single energy Ei.  This was further refined by Laframboise20 (L), who extended the
calculations to a Maxwellian ion distribution at temperature Ti.  The BRL treatment is con-
siderably more complicated than the ABR theory.  In ABR, all ions strike the probe, so the
flux at any radius depends on the conditions at infinity, regardless of the probe radius.

Fig. 24.  Definition of absorption radius.   Fig. 25. Effective potential seen by ions with angular momentum J.

That is why there is a set of universal curves.  In BRL theory, however, the probe radius must
be specified beforehand, since those ions that orbit the probe will contribute twice to the ion
density at any given radius r, while those that are collected contribute only once.  The ion
density must be known before Poisson�s equation can be solved, and clearly this depends on
the presence of the probe.  There is an �absorption radius� (Fig. 24), depending on J, inside
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of which all ions are collected.  Bernstein solved the problem by expressing the ion distribu-
tion in terms of energy E and angular momentum J instead of vr and v⊥.  Ions with a given J
see an effective potential barrier between them and the probe.  They  must have enough en-
ergy to surmount this barrier before they can be collected.  In Fig. 25, the lowest curve is for
ions with J = 0; these simply fall into the probe.  Ions with finite J see a potential hill.  With
sufficient energy, they can climb the hill and fall to the probe on the other side.  The dashed
line through the maxima shows the absorption radius for various values of J.  For cylindrical
probes, BRL requires the solution of the equation

1/ 22
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1/ 22
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1 1 /1 sin for >
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1 /sin for
1 /

d d
d d

η ι ξξ ξ ξ
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ι ξ ξ ξ
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−

−

  
= −     +   

 
= <  + 

(23)

where β is the ion energy over KTe, ι (iota) is a dimensionless probe current per unit length,
and the other symbols are as in the ABR theory.  The absorption radius ξ0 occurs there the
argument of sin-1 is unity.

For convergence at ∞, the computation tricky and tedious, more so when the ions
have an energy spread.  It turns out that KTi makes little difference if Ti/Te < 0.1 or so, as it
usually is.  Laframboise�s extension to a Maxwellian ion distribution is not normally neces-
sary; nonetheless, Laframboise gives the most complete results.  Fig. 26 shows an example of
ion saturation curves from the BRL theory.  One sees that for large probes (Rp/λD >>1) the
ion current saturates well, since the sheath is thin.  For small Rp/λD, Ii grows with increasing
Vp as the sheath radius increases.

Fig. 26.  Laframboise curves for Ii − V characteristics in dimensionless units, in the limit of cold ions.  Each
curve is for a different ratio Rp/λD.

One might think that the ABR result would be recovered if takes Ti = 0 or Ei = 0 in
the BRL computation.  However, this happens only for spherical probes.  For cylindrical
probes, there is a problem of nonuniform convergence.  Since the angular momentum is Mvr,
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for r → ∞ ions with zero thermal velocity have J = (M)(0)(∞), an indeterminate form. The
correct treatment is to calculate the probe current for Ti > 0 and then take the limit Ti → 0, as
BRL have done.  The BRL predictions have been borne out in experiments in fully ionized
plasmas21, but not in partially ionized ones.

An Excel program for analyzing an I � V curve using BRL theory is available on the
author�s website15 under Presentations.

E.  Parametrized ion curves
Since the ABR theory requires solution of a differential equation and the BRL theory

involves such delicate computations that only a programming expert could do, these theories
are not easily applied to experimental measurements.  However, it is possible to reduce the
computed curves to algebraic form by fitting them to simple functions.  This has been done
by Chen9.  The Laframboise results are given in graphs such as that in Fig. 26.  The probe
voltage is normalized to KTe, which is determined from the transition region, and the ion cur-
rent is normalized to the Bohm current, which depends on KTe and the density n.  There is
one curve for each value of ξp (or ξ) = Rp/λD.  If ξp is known, one can find the curve on
which the experimental points lie by varying n, and thus n can be determined.  Of course, λD

and thus ξp also depends on n, but the iteration to find n can easily be done by a computer.
But first the graphical curves of Fig. 26 have to be parametrized to facilitate interpolation
between available values.  The following definitions will be needed to convert the results into
laboratory units:
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    (24)

The Laframboise curves can be fitted with the following function:
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Fig. 27.  Analytic fits (lines) to computed data (points) by Laframboise.
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Figure 27 shows the fit for available values of ξp on a log-log scale.  Note that the curves
approach the OML limit I2 ∝ V as either ξp or η gets small.  The parameters A,B,C, and D
depend on the value of ξp (abbreviated as ξ) as shown in Fig. 28.  They do not vary smoothly,
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Fig. 28.  Behavior of the parameters A,B,C, and D with ξ.

and to find an analytic fit we had to somewhat degrade the fits on Fig. 27.  The result  is
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where the coefficients a to f are given by

Table 1:  Coefficients for computing BRL curves

a b c d f
A 1.12 .00034 6.87 0.145 110
B 0.50 0.008 1.50 0.180 0.80
C 1.07 0.95 1.01 � �
D 0.05 1.54 0.30 1.135 0.370

With these fits, the BRL theory can be applied to experimental data.  The fits are good to
±5%, which is sufficient, since obtaining n to within 10% with probes is not always possible.
One reason is simply that the probe tip changes its area due to sputtering.

The curves of Figs. 22 and 23 for the ABR theory can similarly be parametrized.  Eq.
(25) can still be used, but Eq. (26) can be replaced by simpler functions:

2

,
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  (27)

The values of coefficients a to d are given by



25
Table 2:  Coefficients for computing ABR curves

a b c d
A 0.864 1.500 0.269 2.050
B 0.479 -0.030 -0.010 �
C 1.008 1.700 0.336 2.050
D 0.384 -0.150 0.013 �

F.  Tests of collisionless theories

1.  Fully ionized plasmas
The first test of the BRL theory was done in a Q-machine, a fully ionized potassium

plasma at 2300K, by Chen et al.21.  Though there was a strong magnetic field, the ion Larmor
radii were large enough that the ion current was not affected by it.  Both cylindrical and
spherical probes were used.  Figure 29 shows that the slope of Isat agrees will with BRL the-
ory.  The density was measured independently by microwaves and plasma oscillations, and it
was compared with n calculated from Isat.  Figure 30 shows that the agreement over two or-
ders of magnitude was within 10%, as long as Isat was taken at η = 20.

Fig. 29.  Saturation ion currents in a potassium Q-machine [Ref. 22].

Fig. 30  Variation of Isat with n as compared with BRL theory.



26
2.  High density rf plasmas

The situation is entirely different in partially ionized rf plasmas.  In Fig. 31, four
probe curves were obtained in rf discharges of different density; i.e., different ξp.  Each was
analyzed using OML, BRL, and ABR theory.  The  �Hiden� density was obtained automati-
cally by software using OML theory and differs from the �OML� density only in the estimate
of KTe.  One sees that the ABR theory gives too low a density, and the BRL theory too high a
density, except at low densities, where BRL converges to OML, as it should.  Figure 32
shows that I2 varies linearly with Vp at high density, and both OML and ABR agree with this
slope, though different n has to be assumed.  The BRL theory, however, predicts a more satu-
rated curve.  Comparison between theories is shown clearly in Fig. 33. in which n is varied
by increasing the discharge power.  It is seen that BRL predicts too high a density, and ABR
too low a density, and the disagreement can be larger than a factor 3.  Fortuitously, the geo-
metric mean seems to agree with the correct density, as measured with microwaves.
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Fig. 31.  Densities (bars, left scale) and Te�s (points, right scale) obtained with various theories from the same
probe curves in four discharges with varying ξp [Ref. 9].

It is reasonable for the ABR theory to give too low a value of n, since it does not
account for orbiting, and thus the expected current is larger than that measured.  The lower
measured Isat then yields a low value of n.  The BRL theory, on the other hand, includes
orbiting from ions that have angular momentum far from the probe and predicts a low Isat.  A
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few charge-exchange collisions, even in the presheath, would destroy this angular
momentum and increase the collected current above what is predicted; thus, the BRL theory
yield too high a value of density from the measured Isat.
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Fig. 33.  Comparison of ABR and BRL densities with n measured by microwave interferometry.  The dashed
line is the geometric mean between the ABR and BRL densities [Ref. 9].

3.  Low density dc plasmas`
Recent work by Sternovsky, Robertson, and Lampe22,23 has evaluated the effect of

these collisions.  The theory starts with the OML theory, valid for very low densities.  Since
the ions� temperature Ti is close to the temperature of the neutrals. a collision far from the
sheath does not change the ion distribution appreciably, and therefore does not affect the
OML current originating there.  A collision in the strong-field region, however, replaces an
accelerated ion with a thermal ion, which has a much greater probability of being dragged
into the probe rather than orbiting it.  This gives rise to an additional �charge-exchange
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current� Icx.  To compute Icx requires knowing the potential distribution V(r).  The Poisson
equation which determines this is nonlinear, since ne depends exponentially on V(r), but it is
greatly simplified by the fact that ni is constant regardless of the shape of V(r), a consequence
of Liouville�s theorem  in cylindrical geometry.  The net ion current Ii,net is then the sum of
Icx and the normal OML current.  An experimental test is shown in Fig. 34a.  Note that the

        (a)  (b)

Fig. 34. (a) The bottom curve is the measured Isat, and the curve Icx is the charge-exchange part of it deduced by
subtracting IOML [Eq. (22)].  The dashed line is the computed Icx [Ref. 22]. (b) Agreement at various pressures at

a constant density of 1.4 × 107 cm-3 .

collisions have caused the ion current to increase linearly, as observed, rather than saturating.
The theory was further checked by Sternovsky et al.22 by comparing Icx with theory at
different pressures and with different probe radii Rp.  The results for Rp = 0.19 mm are shown
in Fig. 34b, with very good agreement.  At these low values of ξp, Icx removes ions from the
OML current, but these ions would mostly have orbited the probe anyway, so that the OML
curve in Fig. 34a needs no correction.  At higher values of ξp, however, the sheath is not
thick compared with Rp, so that many of the ions contributing to Icx would have been part of
Ii, and therefore the OML contribution to Ii,net needs to be decreased.  This correction was
made in a second paper by the same authors23.

4.  Moderate density rf plasmas
At densities typical of ICPs (1010-12 cm-3 ), Isat behaves neither like the OML current

nor the charge-exchange current.  On a plot of Ip vs. Vp, where p is an arbitrary exponent, the
best fit is obtained with p = 4/3, rather than 2 (IOML) or 1 (Icx).  An example is shown in Fig.
35. The value 4/3 is reminiscent of the Child-Langmuir law for space-charge-limited emis-
sion24:

1/ 2 3 / 2
0

2
4 2
9

VeJ
M d

ε =  
 

. (28)

For constant current density J, the sheath thickness d should vary as V3/2.  This suggests set-
ting J equal to the Bohm current density α0necs [Eq. (4)] and setting V = Vf  to find the sheath
thickness d at Vf.  From that, the density can be computed from the ion current measured at
Vf.  This FP method25 is illustrated in Fig. 36. In cases where  the Ii

4/3−V curve fits a straight
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line, extrapolation of this line to where Itot = 0 gives the ion contribution at Vf.   Eq. (28) can
then be solved for d, using the definition of λD and ηf = |Vf /TeV |, obtaining
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Fig. 35.  I p� V curve for Isat in an rf discharge showing that p = 4/3 gives a better fit than p = 2.
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Since the Bohm current is collected at a radius Rp + d, the density for a cylindrical probe of
length L can be calculated from the formula

0( ) / 2 ( )i f p sn I V R d eL cπ α= + . (30)

Eq. (29) also contains n in λD, but Eqs. (29) and (30) reduce to a simple quadratic equation
for n which gives surprisingly accurate results25.  Figures 37 shows the densities this method
gives compared with n measured with microwaves.  Also shown are the values given by the
ABR theory and the electron saturation current from the same data.  The FP method yields
good results down to about 2 mTorr in argon; below that, the agreement is not as good.  This
is not surprising, since the FP method should not work at all!  The CL formula is for plane
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Fig. 36.  Extrapolation of an I4/3-V curve to the floating potential.
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Fig. 37.  Comparison of the accuracy of the floating potential, ABR, and Esat methods.

probes.  When the FP method is formulated to include cylindrical effects, it is essentially the
same as the ABR theory.  The neglected effects are 1) orbiting of ions around the probe, 2)
the density of electrons in the sheath, and 3) escape of ions along the probe axis.  This last
effect is illustrated in Fig. 38.  It is almost always overlooked but fortunately is often small.
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Fig. 38.  Ions converging to a cylinder create a large positive space charge.  For a finite-length probe, this space
charge creates an electric field along the axis which can remove ions before they are collected.

An Excel program for analyzing an I � V curve using the FP method is available on
the author�s website15 under Presentations.  Since only straight-line fits are needed, this
program is very fast and can analyze a 1000-point I � V curve in << 1 sec, provided that the
curve is well behaved.

5.  Low density rf plasmas
We have seen that the OML theory for cylinders predicts a parabolic Ii � V curve,

where Ii
p varies linearly with Vp, with p = 2.  The ABR theory has this behavior at low ξp, and

a flatter curve, p > 2, at high ξp.  The BRL theory also predicts a more saturated curve than p
= 2.   In the previous section, we saw that in rf plasmas the ion current saturates less well,
with p ≈ 3/2.  The FP method can show such a dependence, but that method has no theoreti-
cal justification.  At even lower densities of 107-9 cm-3, rf plasmas show no ion saturation at
all, and Isat grows linearly with Vp.  An example of this is shown in Fig. 39, from a 2-mTorr
argon rf discharge with n in the 108 cm-3  range.  This behavior could be due to charge ex-
change collisions, as explained in paragraph 3 above, but it is surprising that the curve is so
nearly linear and that it is found at such low pressures.  This regime requires more investiga-
tion.
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Fig. 39.  Ion current vs. Vp in a very low density rf plasma.  The bottom curve is the raw data.  The data with the
electron current removed fits a straight line.

IV. SAMPLE ANALYSES OF EXPERIMENTAL RESULTS
A.  A typical RF plasma

As Fig. 40 shows, partially ionized rf plasmas typically have poor electron saturation
and a very indistinct �knee� of the I � V curve.  In this case, however, we are fortunate  that
the knee at least is smooth, yielding the dI/dV curve shown in Fig. 5.  Drawing a smooth line
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Fig. 40.  A typical I � V curve from an rf plasma.

through that curve yields a value for the space potential Vs, though Ie has not really saturated
there.  Another example of the dI/dV curve is shown in Fig. 41.  Here the function I/(dI/dV) is
also plotted.  As seen from Eq. (1), this function is simply TeV , plotted on the right scale in
Fig. 41.  For a Maxwellian distribution, this curve should be flat in the exponential region of
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Fig. 41.  Plots of dI/dV and I/(dI/dV).

the I � V curve, just to the left of Vs.  Fig. 41 shows only a slight flattening of the TeV  curve
there, at a TeV  value of about 2 eV.  The next step is to plot Ii in such a way that it can be ex-
trapolated.  This is shown in Figs. 35 and 36.  The exponent p in the Ip−V curve is chosen to
be 2, 4/3, 1, or whatever value fits best.  The BRL or ABR curves will not fit a simple power
law; an example is shown in Fig. 42.  In such a case, the theoretical curve is adjusted by
varying n for values of Vs and TeV  found from other parts of the I � V curve.
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Fig. 42.  Fit of ion data to a BRL curve.

Next, the extrapolated ion fit is subtracted from the electron current to give better data
for the semilog electron curve, Fig. 1.  If the Ii fit is good and the extrapolation is valid, the
transition region should be linear over a much wider range of Vp, as seen in Fig. 1.  This
yields a good value of KTe.  Knowing Vs and KTe, one can compute η [Eq. (24)] for use in
calculating the jparametrized Isat curves.  This process can be iterated, with the ion fit affect-
ing the electron data, and the TeV  value from Ie affecting the computed ion curves.  The
mechanism for this iteration can be set up on computer programs15, but in most cases the fit-
ting has to be tended manually using experienced judgment.  Only the floating potential
method works well automatically.
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B.  Example of a problematic probe curve

A very low densities I � V curves that do not have the classical shape can be  found.
An example is shown in Fig. 43, which seems to have no exponential region and no electron
saturation.  The ion characteristic was shown in Fig. 39, where it is seen that Isat grows line-
arly with bias voltage.  When shown on an amplified scale (Fig. 44), it is apparent that the
ion current is affected by collection of a fast electron population. To characterize these fast
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Fig. 43.  An non-standard I � V curve seen at low density.
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Fig. 44.  I � V curve near Vf, showing presence of fast electrons.

electrons, we first fit a line to Isat on Fig. 39 between �90 and −30 V to remove the ions from
Ie.  The relevant portion of the corrected Ie curve is shown in Fg. 45.  We can try to fit it with
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Fig. 45.  The bump in the electron distribution.
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where the subscript b refers to the �beam�.  To reach the probe biased at Vp, an electron must
have a velocity exceeding a critical velocity vc given by

2½ ( )c p smv e V V= − − ,    ½[ 2 ( ) / ]c p sv e V V m= − − .           (32)

For simplicity we can set Vs = 0 here and shift the axis back later.  We now define
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For a probe of area S and a beam density of ne, the beam current to a probe at Vp is then
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where I0 is the dimensional constant before the integral.  The integral can be evaluated nu-
merically, or it can be expressed in terms of an error function:
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The solid curve in Fig. 45 shows a fit of this function to the data, requiring a beam of energy
56 eV and temperature 0.3 eV  a rather narrow fast electron population.

A semilog plot of the electron characteristic is shown in Fig. 46. The beam is much
more apparent when the extrapolated ion current is removed.  However, a line through the
exponential part of the curve yields an unreasonably high value of KTe = 7.6 eV.  To get the
correct Te, we must subtract the beam current, given by Eq. (35),  The result is shown in Fig.
47.  The Maxwellian portion now corresponds to KTe = 4.8 eV, which could be true at these
low densities.  The beam and thermal fits were then further tweaked so that the curve of their
sum (the faint, broad curve) fit the data at the junction point.  Conclusion:  a false value of
KTe can result from simply drawing a straight line through the curve of Fig. 46.

At high positive Vp, it would appear from Fig. 46 that Ie reaches saturation, but clearly
the onset is far below Vs, since the transition region is so short.  When Ie is plotted on a linear
scale (Fig. 48) it is clear that Ie does not saturate at all:  it increases linearly with Vp.  Since
the density is low and the sheath thick, orbital theory should obtain here.  According to the
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Fig. 46.  The electron current on a semilog plot.  The thin solid curve is the raw data including the ions.  The
straight line is a fit to the exponential part.
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Fig. 47.  The electron current with ions subtracted (!) and with the beam also subtracted (").  The straight line
is a fit to the short exponential section.  The faint curve is the sum of this fit and the fit to the fast electron
component.
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Fig. 48.  Electron characteristic on a linear scale.  The data in the saturation region fit a straight line closely.
The curve is an exponential fit to the Maxwellian region.
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electron counterpart to Eq. (22), Esat should be proportional to V1/2.  A linear increase is more
characteristic of a spherical probe.  In this case, the probe is very long and thin, so that even
if the sheath becomes as large as the probe length, Ie should have a portion ∝ V1/2 when Rp <
d < L.  Another unlikely reason is that the probe is drawing more electron current than the
total ion current to the chamber walls.  In that case, the plasma cannot remain quasineutral
unless Vs rises to drive more ions into the wall.  Linear Esat is then a reflection of the linearity
of the Isat curve (which is not understood).  This problem of wall sheath impedance has been
discussed by Godyak et al.26,27  A dirty probe with a coating on the surface could also give
spurious I � V curves.  Conclusion:  there are Langmuir probe curves which do not have the
classical shape and require extraordinary treatment.

V.  SPECIAL TECHNIQUES

A.  Distribution functions

Since the ion current is not sensitive to Ti, Langmuir probes cannot measure ion tem-
perature, and certainly not the ion velocity distribution.  However, careful measurement of
the transition region of the I � V  characteristic can reveal the electron distribution if it is iso-
tropic.  If the probe surface is a plane perpendicular to x, the electron flux entering the sheath
depends only on the x component of velocity, vx.   For instance, the Maxwell distribution for
vx is

2 2 21(v ) exp( v / v ), v 2 /
vM x x th th e
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.        (36)

The coefficient normalizes f(v) so that its integral over all vx�s is unity.   If f(v) is not Max-
wellian, it will have another form and another coefficient in front.  The electron current that
can get over the Coulomb barrier and be collected by the probe will therefore be
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where vmin is the minimum energy of an electron that can reach the probe, and Vs = 0 by defi-
nition.  Taking the derivative and simplifying, we find
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so that f(vx) can be found from the first derivative of the I � V curve.  If the probe is not flat,
however, one has to take the three-dimensional distribution g(v) = 4πv2f(v), where v is the
absolute value |v| of the velocity, and take into account the various angles if incidence.
Without going into the details, we then find, surprisingly, that f(v) is proportional to the sec-
ond derivative of the I � V  curve:
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This result is valid for any convex probe shape as long as the distribution is isotropic, and for
any anisotropic distribution if the probe is spherical.  To differentiate I � V data twice will
yield noisy results unless a good deal of smoothing is employed.  Alternatively, one can
dither the probe voltage by modulating it at a low frequency, and the signal at the dither fre-
quency will be proportional to the first derivative.  In that case, only one further derivative
has to be taken to get f(v).  Figure 49 is an example of non-Maxwellian f(v)�s obtained by
double differentiation with digital filtering.

In special cases where the EEDF consists of two Maxwellians with well separated
temperatures, the two KTe�s can be obtained by straight-line fits on the semilog I � V curve
without complicated analysis.  An example of this is shown in Fig. 50.

    

B.  Double probes and hot probes
When Vs fluctuates slowly, one can use the method of double probes, in which two

identical probes are inserted into the plasma in close proximity, and the current from one to
the other is measured as a function of the voltage difference between them (c.f. Chen, loc.
cit.).  The I � V characteristic is then symmetrical and limited to the region between the Isat�s
on each probe.  If the probe array floats up and down with the rf oscillations, the I � V curve
should not be distorted.  However, it is almost impossible to make the whole two-probe sys-
tem float at rf frequencies because of the large stray capacitance to ground.  Even if both tips
are rd compensated, the rf impedances must be identical.  Nonetheless, many industrial plas-
mas have no contact with a grounded electrode, and a double probe has to be used, some-
times successfully.

Hot probes are small filaments that can be heated to emit electrons.  These electrons,
which have very low energies corresponding to the KT of the filament, cannot leave the
probe as long as Vp - Vs is positive.  As soon as Vp - Vs goes negative, however, the thermi-
onic current leaves the probe, and the probe current is dominated by this rather than by the

Fig. 49.  EEDF curves obtained with a Langmuir
probe in a TCP discharge (Ref. 27).

Fig. 50.  An I � V curve of a bi-Maxwellian EEDF.
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Fig. 51.  A double probe.   Fig. 52.  A hot probe.

ion current.  Where the I � V curve crosses the x axis, therefore, is a good measure of Vs.  The
voltage applied to the filament to heat it can be eliminated by turning it off and taking the
probe data before the filament cools.  One can also heat the probe by bombarding it with ions
at a very large negative Vp, and then switching this voltage off before the measurement.  In
general it is tricky to make hot probes small enough.  For further information on these tech-
niques, the reader is referred to the chapter by Hershkowitz (loc. cit.).

C.  Capacitively coupled probes
Though most laboratory experiments are done in an inert gas like argon or helium, rf

plasmas used in industry have reactive gases, which can wreak havoc on a Langmuir probe.
A common problem is that the probe surface becomes coated with an insulating layer.  Booth
et al28. have devised a transient probe to circumvent this problem.  The circuit is shown in
Fig. 53a.  A large rf pulse is applied through the back-to-back diodes and external capacitor
Cx to a coated flat probe.  The equivalent circuit is shown in Fig. 53b, where Zsh is the sheath
impedance, Cf is the capacitance of the film across which the potential drops from Vsurf  to Vc,
and the Cp�s are stray capacitances.  The rf pulse applies a negative dc voltage to the film sur-
face by the sheath rectification effect.  After the rf is turned off, this voltage decays through
Cf and Cx, providing a probe bias sweep.  The instantaneous Vp is measured at C with a high-
impedance probe.  The current is measured with the resistor R.

     
Fig. 53.  Circuit for transient flat probe (Ref. 28).

With the proper value of Cx, an entire I � V curve can be swept out in a few millisec-
onds.  As the film grows in thickness, Cf decreases, and the probe I � V  will decay at a faster
rate, as shown in Fig. 54.   Cx must be adjusted accordingly.  When the film becomes too
thick, the sweep will be too fast for the sheath to come to equilibrium.  Figure 5 shows a
normal ion characteristic obtained with this technique.  However, a guard ring (Fig. 11) must
be used  and adjusted properly.  Figure 56a shows the effect of the guard ring, and Fig. 56b
shows that the I � V curve behaves properly with pressure.
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     Fig. 54.  Change of decay rate with Cf.     Fig. 55.  I � V curve with transient probe.

Fig. 56.  I � V curves vs. (a) guard ring voltage and (b) pressure.
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