
_________________________________________________________________________________________________________

Electrical Engineering Department
Los Angeles, California 90095-1594

UNIVERSITY OF CALIFORNIA   •   LOS ANGELES

Ion orbits in electron-shading damage
T. G. Madziwa-Nussinov, D. Arnush, and F.F. Chen

Paper submitted to
Plasma Processing Induced Damage Conference 2003

LTP-302     February, 2003

Low Temperature Plasma
Technology Laboratory



ION ORBITS IN ELECTRON SHADING DAMAGE
Tsitsi Madziwa-Nussinov, Donald Arnush, and Francis F. Chen

Electrical Engineering Department, University of California, Los Angeles
Los Angeles, California 90095-1594, USA

In Hashimoto�s1 hypothetical mechanism for electron shading damage, the photoresist at
the tops of trenches and vias collects a negative charge from the thermal electrons, creating an
electric field (E-field) which prevents electrons from reaching the trench bottom, where a
�collector� is located.  The ions, accelerated by the sheath electric field, are driven straight into
the trench and impinge on the collector, charging it positive if it is isolated.  The electric fields
inside the trench can also deflect the ions into the sidewalls, causing notching and other
deformations of the etch profile2.  Though this mechanism is widely accepted, it has never been
verified in direct experiment.  The present effort is to test the hypothesis by scaling the
submicron features to macroscopic size so that the currents and potentials inside the trench can
be measured and compared with computations.  This paper concerns the theoretical part of this
work; namely, self-consistent computations of the E-fields and ion orbits inside the trenches.

Such a scaled experiment is possible because of the scale invariance of the governing
equations.  Let capped ( x! ) quantities be dimensional and normal letters be dimensionless.
Poisson�s equation is
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Let s be the scale length of the gradient ∇, and define / s≡r r! , so that
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In microtrenches,  s << λD; the r.h.s. can be neglected, and we need only solve Laplace�s
equation 2 0η∇ =  subject to the boundary conditions ( ) atb b bη η= =r r r .  The solution would

be the same as that of the dimensional problem 2 0η∇ =
!

 with the boundary conditions
( ) atb b bη η= =r r r! ! ! .  Thus, only the aspect ratio of the trench matters and not its absolute size, as

long as the Debye length λD  is >> s.  In other words, the space charge deep inside the sheath is
negligible.  The problem in the scaled experiment is to create a plasma with sufficiently large λD;
this will be presented in another paper.

The ion trajectories are computed from
2

2
2

e
s

KTd e eV c
M M edt

η η= − ∇ = − ∇ = − ∇
r! ! !

.         (4)



2

In terms of r, this becomes  2 2 2 2/ ss d dt c η= − ∇r ;  and defining /sc t sτ ≡ , we have

2 2/d dτ η= −∇r ,                       (5)

which has the same form as Eq. (4), regardless of s.  Thus, the ion orbits are geometrically the
same on any scale; only the time scale is changed.  The computations are in these scale-
independent dimensionless units.  Collisions are completely negligible.

The computational grid is shown in Fig. 1.  A block of dielectric with ε ≈ 4 is surrounded
by a vacuum sheath region bounded by a conductor representing the sheath edge, S
dimensionless units away.  In practice S is much larger than the feature size and its value is not
significant.  The bottom of the dielectric block is the substrate being etched, and the trench grows
in the direction of increasing y. The bottom surface would normally be photoresist and is divided
into cells xj, while the trench walls are divided into smaller cells yj. The dielectric has width 2L =
14 and height H = 10, while the trench has width 2W and depth D, with aspect ratio AR = 2W/D.
Ions are injected vertically from the V = Vs surface at y = 0 with the Bohm velocity cs.  The
�bottom� of the trench (at the top) is covered with a collector at potential Vc.
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           Fig. 1         Fig. 2:  AR = 7, Vc = −18V

The electrons are assumed to be Maxwellian and follow the Boltzmann relation

/ exp[( ) / ]e s s eVn n V V T= − ,  where /eV eT KT e≡ (6)

and ne = ni = ns at the sheath edge..  As long as Vc < 0, electrons are in a repelling potential
everywhere, and this relation holds in any geometry.  The potential on a floating surface is found
by equating the electron and ion fluxes.  The electron flux is

exp[( ) / ]e e r s s eV rn v n V V T vΓ = = − ,  where ½( / 2 )r ev KT mπ= (7)

is the random thermal velocity normal to a surface.  The ion flux at y = 0 is simply
½

0 (0) ( / )i s s s en c n KT MΓ ≡ Γ = = . (8)

In the absence of a trench, the substrate surface at y = 6 charges to the usual floating potential
given by Γi(6) =  Γi(0) = Γe:

½( ) / ln( / 2 ) 4.68f s eVV V T M mπ− = − ≈ −  for argon (9)

Initial 1st iteration

2nd iteration final
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We now set Vs = 0, so that the computation is in a grounded box.  Since Vs is ≈−½TeV  relative to
the plasma,   Vf is ≈�5.18TeV  relative to the plasma or ≈ −15V for KTe = 3 eV in argon.

In the computation, let N be the number of ions (≈104) emitted at y = 0 over a surface area
LZ per unit time, where Z is a length in the z direction.  The emitted ion flux is 0 /N LZΓ = =
nscs.  If Nj ions strike a surface cell of width ∆xj, the ion flux to that cell is Γi,j = Nj / ∆xjZ.  The
ratio of this to the undisturbed flux Γ0 is then

( ) ( / )( / ) ( )( / )j j j j jR x N N L x F x L x= ∆ = ∆ , (10)

where F(xj) is the fraction of all ions that end up in cell xj.  Fluxes Γ(yj) to the trench wall are
normalized similarly.  The electron flux Γe,j to a cell is exp( / )s r j eVn v V T .  Equating this to the

ion flux Γi,j = nscs R(xj) and using Eq. (9), we find for floating potential of that cell

( ) [ln( / ) 4.68]j eV j jV x T F L x= ∆ −   relative to the sheath edge. (11)

Ion orbits are computed first with all the insulating surfaces at Vf and the collector at Vc.
Nj is then found, and the potential distribution V(xj) is calculated and used in the first iteration.
The ion orbits are then recalculated, giving data for the next iteration.  This is continued until Nj
and V(xj) converge to steady values.  When no ion falls on a cell, Eq. (11) diverges.  In that case,
we assume that the cell actually receives one ion or a fraction of an ion, resulting in V(xj) ≈
−40V.  The results are not sensitive to this approximation.  Figure 2 shows the distribution of
ions Nj to the cells yj on the trench wall after several iterations; the entrance is on the left, and the
collector on the right.  In some cases, V(xj) does not converge but oscillates between two or three
patterns after 25 iterations.  This is caused by the fact that ions are kinematically shielded from
some cells, and the location of these cells depends on the fields from the previous iteration.
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          Fig. 3      Fig. 4

Figure 3 shows equipotential lines for Vc = −40V and AR = 7 (not to scale).  It is seen that
the E-fields are concentrated near the trench entrance, and the interior is almost field-free.  Thus,
the ions receive a kick as they enter and then coast to the collector.  Since the E-fields are
affected by the shape of the corner, we have rounded it into an arc, as shown in Fig. 4.  This has
a large effect on the ion distribution on the sidewall, as seen in Fig. 5..  To test this further, we
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  Fig. 5         Fig. 6

added small bumps to the arc section, and these affect the ion orbits also.  Thus, as the
photoresist shape changes during an etch, the ion orbits change.  Figure 6 shows the ion
distribution as Vc is varied at AR = 3 and as AR is varied at Vc = -18V.  In general, there are so few
ions hitting the sidewall that they cannot cause changes in the etch profile.  The situation is clear
in the sample orbits shown in Fig. 7.  On a real scale, the ion trajectories are almost straight; very
few hit the sidewalls.  When the y-axis is shrunk by a factor

-12

-8

-4

0

4

0 4 8 12

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

��������

Scale: 1 to 1

Aspect ratio
Bias: -26 V

��������������������������������
��������������������������������
��������������������������������
��������������������������������

Photoresist
k 

      
-12

-8

-4

0

0.6 0.8 1 1.2

Scale:  20 to 1

Aspect ratio: 5 to 1
Bias: -26 Volts

         Fig. 7a     Fig. 7b

20 (Fig. 5b), it is seen that the field of the collector affects the ions before they enter the trench.
The sidewall cells at the entrance are shielded from the ion flux−−an ion-shielding effect.

Fig. 8a`             Fig. 8b

We have also examined cases where part of the sidewall is conducting or the collector is large
(Fig. 5a) and also when there are neighboring trenches (Fig. 5b).  The general result is that the
field lines are straighter and there are fewer sidewall ions when the collector or AR is large.
                                                
1  K. Hashimoto, Jpn. J. Appl. Phys. 33, 6013 (1994).
2  G.S. Hwang and K.P. Giapis, J. Vac. Soc. Technol. B 15, 70 (1997).

Vc Corner N To sidewall To collector

−18V Square 10593 21 (0.2%) 830 (7.8%)

−18V Curved 10606 31 (0.3%) 1201 (11%)

−26V Square 10593 34 (0.3%) 813 (7.7%)

−26V Curved 10606 0 (0.0%) 1201 (11%)

Vc S.W. Coll. AR S.W. Coll.
-18 65 778 3 65 778
-22 57 785 5 34 1005
-26 44 822 7 17 1184
-40 32 834
-60 0 866


