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ABSTRACT 
 

 
 Fabrication of high-speed semiconductor circuits depends on etching sub-

micron trenches and holes with straight walls, guided by sheath-accelerated ions 

which strike the substrate at a normal angle.  Electrons accumulate at the non-

conductive entrance of each trench, charging it negatively and preventing the 

penetration of electrons to the bottom of the trench.  This “electron shading” 

effect causes an ion charge at the bottom which is well known to cause damage to 

thin oxide layers.  In addition, the deflection of ions by electric fields in the trench 

can cause deformation of the trench shape.  To study this effect, we have 

calculated the ion orbits self-consistently with their charging of the trench walls.  

We find that a) the orbits depend only on the electric fields at the entrance and are 

sensitive to changes in the shape of the photoresist layer there; b) there is an “ion 

shading” effect that protects part of the wall; and c) the number of ions striking 

the wall is too small to cause any deformation thereof. 
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I.    INTRODUCTION 

 In plasma processing, a planar sheath separates the plasma from the silicon wafer onto 
which submicron circuits are built by deposition and etching.  These features have a minimum 
size (or critical dimension CD) of 60 nm or below.  The sheath thickness s is at least 5λD, where 
λD is the Debye length defined below, and can be several times this if a large negative dc bias is 
applied to the wafer.  Taking n = 1012 cm-3 and KTe = 1 eV as extreme values likely to exist at the 
sheath edge, we find that s is at least 37 μm, extending over the 200-300 mm diameter of the 
wafer.  Thus, the sheath is at least 100 times thicker than the feature sizes and orders of 
magnitude wider.  We can therefore assume that ions emitted from the sheath edge have straight 
trajectories normal to the wafer as they approach its surface. 

 The phenomenon of electron shading as hypothesized by Hashimoto1 is illustrated in Fig. 
1.  Ions are launched from the sheath edge and are accelerated unidirectionally toward the wafer 
by the sheath electric field, reaching energies of tens of volts or more.  Bombardment of the 
trench bottom loosens the first few monolayers, allowing the etchant atoms of Cl or F to combine 
much more effectively than without the ions.  Electrons, the repelled species, remain in an 
isotropic Maxwellian distribution and charge the non-conductive photoresist to its floating 
potential.  This negative charge allows very few electrons to enter the trench; thus, the ions 
deposit a positive charge onto the trench bottom.  If the trench is in an insulator, as in this 
example, no harm is done; but in the over-etch period, the trench can break through into the 
conducting silicon layer.  If this layer is connected to the gate of a transistor, as illustrated at the 
right, this positive charge can cause a large electric field inside the gate oxide insulator, 
damaging it.  For an oxide thickness of 20A, say, even a 1-V potential drop across it amounts to 
an electric field of 5MV/cm.  This is a serious problem in computer chip manufacturing, is well 
known, and is well documented. 
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Fig. 1.  Geometry of plasma etching of a submicron feature.  The dark material at the top is a patterned photoresist 
mask which defines the trench or via (hole) to be etched.  The proximity of the plasma’s sheath edge is greatly 

exaggerated. 

 In addition, the charging of the walls of a trench, if they are non-conducting, causes 
electric fields which can deflect the ions.  This effect has been cited2 as a cause for “notching” 
and “trenching” deformities observed at trench bottoms.  This is also shown in Fig. 1.  In the 
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present work we try to evaluate this effect quantitatively by calculating the ion orbits self-
consistently with the wall charges which they themselves deposit. 

Scale invariance.  If they are small enough, the exact size of the trenches is irrelevant; and a 
universal result can be obtained.  To show this, we write Poisson’s equation as  

 2
0 ( )e iV e n nε ∇ = − , (1) 

where V̂ is in dimensional units.  In steady state, Eq. (1) determines the electric fields felt by the 
ions.  With the usual definitions 

 2 2 2
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where n0 is the quasineutral plasma density in the main plasma, Eq. (1) can be written 
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Let w be the scale length of the gradient ∇ , and define / w≡r r , so that 2 2 2w∇ = ∇ , yielding 
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We have already shown that w/λD is extremely small, and it appears squared here.  Though ni >> 
ne in the trench, ni / n0 is still < 1.  Thus, as long as w2/λD

2 << 1, we need only solve the  
dimensionless Laplace’s equation 
 2 0η∇ =  (5) 

subject to the boundary conditions ( ) atb b bη η= =r r r .  The solution would be the same as that 

of the dimensional problem 2 0η∇ =  with the boundary conditions ( ) atb b bη η= =r r r .  Thus, 
only the aspect ratio of the trench matters, and not its absolute size, if the Debye length λD  is >> 
w.  Experiments scaled to macroscopic dimensions can be done as long as this condition is 
satisfied by going to very low density.  The space charge deep inside the sheath is negligible.   

 The ion trajectories are computed from 
2
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In terms of r, this becomes 2 2 2 2/ sw d dt c η= − ∇r .  Defining /sc t wτ ≡ , we have 

2 2/d dτ η= −∇r ,                           (7) 

which has the same form as Eq. (6), regardless of w.  Thus, the ion orbits are geometrically the 
same on any scale; only the time scale is changed.  The computations are in these scale-
independent dimensionless units.  Collisions are completely negligible, since all mean free paths 
are longer than λD and hence much larger than s.  
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II.  COMPUTATIONAL METHOD 

 The two-dimensional region used for computations is shown in Fig. 2.  A block of 
dielectric with κ ≈ 4 is surrounded by a vacuum sheath region bounded by a conductor 
representing the sheath edge, S dimensionless units away.  In practice S is much larger than the 
feature size and its value is not significant.  At the bottom of the trench, shown at the top in this 
inverted diagram, is a conducting “collector” representing the substrate being etched; the trench 
grows in the direction of increasing y.  Ions are accelerated toward the dielectric block by the 
sheath electric field, and the surface they strike first is normally photoresist.  The trench walls are 
photoresist near the entrance and either oxide or polymer-coated silicon further down.  This 
geometry can represent either polysilicon etch with polymer deposition or oxide etch at the 
beginning of over-etch.  The photoresist surface is divided into cells xj, while the trench walls are 
divided into smaller cells yj.  The dielectric has width 2L = 14 and height H = 10, while the 
trench has width 2W and depth D, with aspect ratio AR = D/W.  Ions are injected vertically from 
the V ≡ 0 sheath edge at y = 0 with the Bohm velocity cs.  The collector is at an adjustable 
potential Vc. 

S

S

2 L

H

2 W

D

IONS

DIELECTRIC

SIDEWALL 
BINS  yj

COLLECTOR

HORIZONTAL 
BINS  xj

SHEATH  (VACUUM)

 
Fig. 2.  Computational region.  The sheath edge is at the bottom, and the trench is shown inverted, with the collector 
at the top. The outer region is vacuum, and the inner region a dielectric material.  Ions are emitted from the sheath 

edge at the bottom. 

 We make three physically reasonable simplifying assumptions: 1) the sheath edge is 
planar, and monoenergetic ions are ejected at 90° to it; 2)  the ion velocity at the sheath edge has 
the Bohm value cs, corresponding to an energy ½KTe; and 3) the electrons have a Maxwellian 
distribution everywhere.  The last is true if Vc is negative, as is normal for a biased wafer, so that 
electrons see a repelling potential everywhere.  The Boltzmann relation 

 / exp[( ) / ]e s s eVn n V V T= − ,        /eV eT KT e≡  (8) 

then holds for any shape.  Here ns = ni = ne at the sheath edge by definition, and we have taken Vs 
to be 0.  Thus, the bulk plasma has potential V = +½TeV. 
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 The potential on a floating surface is found by equating the electron and ion fluxes.  The 
electron flux is 

 exp[( ) / ]e e r s r s eVn v n v V V TΓ = = − ,  where ½( / 2 )r ev KT mπ=  (9) 

is the random thermal velocity normal to a surface.  The ion flux at y = 0 is simply 

 ½
0 (0) ( / )i s s s en c n KT MΓ ≡ Γ = = . (10) 

In the absence of a trench, the substrate surface at y = 6 charges to the usual floating potential Vf 
given by Γi(6) =  Γi(0) = Γe: 

 ½( ) / ln( / 2 ) 4.68f s eVV V T M mπ− = − ≈ −  for argon. (11) 

We have set Vs = 0, so that the computation is in a grounded box.  Since Vs is ≈−½TeV  relative to 
the plasma, Vf is ≈ –5.18TeV  relative to the plasma or ≈ −15V for KTe = 3 eV in argon. 

 The potential to which each surface element Δxj of the photoresist or Δyj of the trench 
wall charges is computed as follows.  Let N be the number of ions (≈104) emitted at y = 0 over a 
surface area LZ per unit time, where Z is a length in the ignorable z direction.  The emitted ion 
flux is 0 /N LZΓ = = nscs.  If Nj ions strike a surface cell of width Δxj, the ion flux to that cell is 
Γi,j = Nj / ΔxjZ.  The ratio of this to the undisturbed flux Γ0 is then 
 ( ) ( / )( / ) ( )( / )j j j j jR x N N L x F x L x= Δ = Δ , (12) 

where F(xj) is the fraction of all ions that end up in cell xj. The electron flux Γe,j to a cell is 
exp( / )s r j eVn v V T .  Equating this to the ion flux Γi,j = nscs R(xj), we have 

 / ( ) /eVV T
r s j jv e c F x L x= Δ . (13) 

Using Eq. (11), we find the floating potential of that cell relative to the sheath edge to be 

 ( ) ln( / ) 4.68j eV j jV x T F L x⎡ ⎤= Δ −⎣ ⎦ , (14) 

where F(xj) is found by counting trajectories.   

                Fig. 3.  Flow diagram for the computation.          
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 The computational loop is shown in Fig. 3.  For a plasma characterized by KTe and ion 
charge-to-mass ratio, ion orbits are computed first with all insulating surfaces at potential Vf and 
the collector at potential Vc.  A Poisson solver with a triangular grid3 is used to calculate the 2D 
electric fields.  The time-independent trajectory of each ion emitted from the sheath edge is then 
calculated with a C++ program written for this purpose.  When the trajectory intersects a surface 
cell, its contribution to Nj is counted.  The potential of each cell V(xj) is then calculated from Eq. 
(14).and used in the first iteration.  The ion orbits are then recalculated, giving data for the next 
iteration.  This is continued until Nj and V(xj) converge to steady values.  When no ion falls on a 
cell, Eq. (14) diverges.  In that case, we assume that the cell actually receives one ion or a 
fraction of an ion, resulting in V(xj) ≈ −40V.  The results are not sensitive to this approximation.  
In this model, we neglect all collisions, secondary emission, and surface currents, though a test 
of the last effect will be mentioned later.  Details of the method are given in a dissertation4. 
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Fig. 4.  Vacuum equipotential contours in the computational region for AR = 4, Vc = -80V. 

 

Fig. 5.  Example of ion orbit intersections with a boundary.  The discrete ion positions usually straddle the boundary, 
and must be interpolated to get the exact position on the boundary. 

 Because of the scale invariance of the problem, only two parameters need to be set for 
any given geometry: the aspect ratio AR and the collector potential Vc.  For definiteness, all 
dielectrics are given a representative value of εR = 4.  For example, Fig. 4 shows the vacuum 
equipotential lines for AR = 4, Vc = −80 V, and the dielectric surfaces at the initial floating 
potential of −4.68TeV   = 14 V for KTe = 3 eV.  Figure 5 shows how the ion charges are counted.  
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Since the “time” steps are discrete, an ion trajectory does not necessarily intersect the boundary 
at the end of a step; the position has to be interpolated.  The number of such stopping points in 
each cell provides the value of Nj described above.  Once the iteration has converged, the orbits 
are universal curves for the given values of AR, Vc, and KTe.  The density is irrelevant since, as 
shown above, the space charge is negligible.  The size of the dielectric block does not matter as 
long as it it big enough.  Figure 6 shows the distribution of ions Nj to the cells yj on the trench 
wall after the first two iterations and the final one.  In some cases, V(xj) does not converge but 
oscillates between two or three patterns after 25 iterations.  This phenomenon will be discussed 
in a later section. 

 
Fig. 6.  Evolution of the ion flux to the bins on the trench wall as the fields are iterated.  The trench entrance is on 

the left, and the collector on the right.   AR = 7, Vc = −18V. 

 

III.  RESULTS 

A.  Ion shading 
 The E-field pattern near the trench entrance is shown in Fig. 7.  Because of the sharp 
corners, the field is extremely strong there and causes a large deflection of the ions, as shown in 
Fig. 9a.  To suppress this unphysical effect, the corners were subsequently rounded into a 
circular arc, as shown in Fig. 8.  The resulting trajectories (Fig. 9b) are more reasonable, but the 
fact remains that no ions can strike the sidewall near the entrance.  This ion shadowing effect, 
which occurs in addition to the well-known electron shading effect, is caused by the E-fields 
outside the trench, which curve the orbits inward.  At large negative Vc’s, the entire sidewall can 
be protected from ion bombardment; this is shown in Fig. 10. The percentage of ions collected 
on the sidewall as a function of Vc is shown in Fig. 11 for three values of AR.  The decrease is 
more or less exponential.  Physically, the ions gain enough energy at large |Vc| that the negative 
sidewalls cannot deflect them.   
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       (a)         (b) 

 
Fig. 9.  Ion orbits a) in the field of Fig. 7 and b) with rounded corners.  The horizontal scale has been expanded to 

show the effect. 

Fig. 7.  Equipotentials near a square trench 
entrance. 

Fig. 8.  A rounded trench entrance, showing three 
regions (dielectric surface, arc, and sidewall), 

where the bins have different sizes. 
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     (a)       (b) 

Fig. 10.  Ion shading effect for AR = 5 and a) Vc = 26V and b) Vc = 40V.  The horizontal scale has been expanded. 
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Fig. 11.  Percentage of emitted ions falling on the sidewalls as a function of collector bias |Vc| for three 

values of AR.  The curve is an exponential fit to the AR = 5 data. 

 That the ion shading increases with AR is a more subtle effect.  Figure 12 shows the 
shaded regions for three values of AR at constant Vc.  The reason that ions are deflected into the 
sidewalls only for low AR can be seen from the self-consistent field patterns in Fig. 13.  It is seen 
that the fields are very strong at the ends of the trench, particularly at the corners.  At AR = 7, the 
interior of the trench is essentially field-free.  Ions are deflected into the sidewall only in the arc 
region.  At AR = 3, the fields extend into the interior, where Ex is large enough to impart 
transverse momentum to the ions streaking in the y direction. 

 Ion shading causes the collector current to saturate above a critical Vc above which no 
ions can be lost to the sidewalls.  This is shown in Fig. 14.  The decrease for |Vc| less than about 
20V is the loss to the sidewalls in Fig. 11, plus the loss to the arc region.  On the right-hand scale 
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is shown the percentage of ions emitted in the area geometrically over the trench.  This exceeds 
100% because ions are drawn into the trench by external E-fields.   
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Fig. 12.  Ion collection regions in trenches with Vc = -26V and AR = 7, 5, and 3, respectively.  The light regions of 
the trench wall are not struck by any ions. 

    

Fig. 13.  E-field patterns (equipotentials) for AR = 7 and 3, at Vc = -22V. 
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Fig. 14. Number of ions falling on the collector at AR = 7 as a function of collector voltage, expressed as a 

percentage of all ions emitted from x = -L to L (left scale) and as a percentage of ions emitted over the trench area 
(right scale). 

 

B.  Nature of the ion trajectories 
 The quantitative results can be better understood if one first observes the nature of the ion 
orbits.  Figure 15 shows three views of the trajectories at AR = 7 and Vc = -26V.  This figure has 
the normal orientation, with the substrate at the bottom, and is inverted relative to the 
computational grid of Fig. 2.  Figure 15a shows the orbits on a normal x − y scale.  The ions enter 
the trench at high velocity, and their deflections are so small that they cannot be seen on this 
scale.  In Fig. 15b, the horizontal scale has been expanded by a factor 20.  Here it can be seen 
that the ions enter the trench at an angle due to the external E-field.  No ions strike the first part 
of the wall, which is shaded.  The negative charges on the wall eventually deflect the ions 
outward, causing them to strike the corner of the trench.  In Fig. 15c, the horizontal scale has 
been stretched by a factor 80, and intermediate orbits have been plotted, shown by the thin lines.  
Orbits which pass near the corner of the photoresist actually cross and take shapes that are 
sensitive to the strong fields at the entrance corner.  Note that the corner is actually circular but 
looks sharp only on this 80-to-1 scale.  The pulling of ions into the trench by the charge on the 
photoresist is shown more clearly in Fig. 16.  Incident ions (indicated by the solid lines) headed 
for the photoresist surface are drawn into the trench by the fields in the arc region.  Since this 
region is charged negatively, the deflection direction is counter-intuitive.  However, the 
equipotentials shown in Fig. 13 show that the net E-field from all negative surfaces actually point 
away from the arc region. 
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         Fig. 15(a)           Fig. 15(b) 
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Fig. 15.  Ion orbits for AR = 5 and |Vc| = 26V with the horizontal scale (a) normal, (b) expanded by a factor 20, and 
(c) expanded by a factor 80 relative to the vertical scale.  The orbit spacing has been decreased near the wall for 

clarity.   Fig. 16.  Ion orbits near the trench edge for AR = 7 and Vc = 22.  The figure is inverted relative to Fig. 15. 

 The ions also arrive at the collector with different energies.  Figure 17 shows the ion 
perpendicular velocities as they strike various parts of the collector.  Those near the sidewall are 
moving laterally and therefore would not penetrate as deeply into the surface of the collector.  
The curve is double-valued: the low-energy ions are those in crossing orbits (Fig. 15c). 

 

Fig. 17 
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C.  Effect of photoresist shape 
 As etching progresses, the photoresist will change its shape at the trench entrance, and 
this will affect the ion orbits.  Since the E-fields are strongest there, we expect that the ion orbits 
would be sensitive to these changes.  First, consider the change from a mathematically sharp 
edge to the rounded edge used in our calculations.  This was originally done to improve the 
convergence of the iterations, but the change in orbits was significant. Table 1 shows the 
percentage of ions landing on each part of the trench for a sample of about 104 ions emitted from 
the entire sheath area.  On the photoresist surface, including the arc region, the potential is solved 
self-consistently, as it was on the trench walls. 

Table 1: Ion distributions with sharp and rounded corners 

AR =7, Vc = -18V Case A: 
Sharp corner 

Case B: 
Rounded corner 

Collector 7.9% 9.9% 

Sidewalls 0.5% 0.3% 

Arc N/A 20.7% 

Flat surface 91.6% 69.1% 

   

AR =7, Vc = -26V   

Collector 8.2% 10.1% 

Sidewalls 0.18% 0.00% 

 
 Table 1 shows that fewer ions reach the collector if the corner is sharp rather than 
rounded.  This is because the sharp corner more effectively shields ions approaching the trench at 
an angle.  In either case, the fraction of ions hitting the sidewall is extremely small and cannot 
cause the trench profile defects that have been observed.  As expected, the collector current 
increases and sidewall current decreases at the higher |Vc| of 26V.  The difference between cases 
A and B is even more noticeable in the distribution of ions shown in Fig. 18.  In case A, ions are 
collected over most of the sidewall, while in case B ions are shielded from all but the last bin. 

       
         (a)      (b) 
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       (c)         (d) 

Fig. 18.  Distribution of ion collection for sharp (a and c) and rounded (b and d) trench entrances, as shown on an 
x−y plot (a and b) and as a histogram of the sidewall bins (c and d). 
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Fig. 19.  Profiles of trench entrances without and with bumps. 

 To see the effect of small changes in the entrance shape, we added a small bump onto the 
arc region in two locations.  The statistics are shown in Table 2 for a sample of 50,000 ions.  In 
case D, the bump is farther from the trench than in case C (Fig. 19).  The sidewall distributions 

Table 2: Ion distributions with small bumps 
 

AR =7, Vc = -18V Case B: No bump Case C: Near bump Case D: Far bump 

Collector 9.9% 8.6% 9.0% 

Sidewalls 0.3% 0.0% 1.8% 

Arc 20.7% 17.7% 17.4% 

Flat surface 69.1% 73.7% 71.8% 

 
are shown in Fig. 20.  It is clear that even a small deformation of the photoresist will change the 
ion orbits drastically.  The sidewall ions then cause fields within the trench.  The self-consistent 
equipotential lines for these three cases are shown in Fig. 21.  In case B, with a rounded entrance 
but no bumps, the E-field is very strong near the entrance.  The ions are given a kick there and 
then coast to the trench bottom (at the top in the figure) through the nearly field-free trench.  The  



 15
Fig. 20 

 
 

     
Fig. 21. E-field patterns for case B (no bumps), (C) near bumps, and (D) far bumps on the photoresist.  The position 

of the bumps is indicated by the red dots in the color version. 
 
collector is given only a small bias in this example, so that ions are not strongly drawn into it; 
some of them hit the sidewall near the bottom, giving rise to E-fields near the bottom corner.  In 
case C, the kink shadows part of the arc region, and the negative surface charge in the shadow 
gives the ions an extra kick, causing them all to land on the collector.  In case D, the bump is far 
enough back that the ions are deflected into the arc region, lowering the field there.  Having 
undergone less acceleration, the ions are drawn by transverse fields into the sidewall.  
Nonetheless, the top part of the sidewall is still shadowed.  This sensitivity to the exact shape of 
the photoresist means that the ion orbits change during the etch and cannot be predicted.  
Fortunately, the ion flux to the sidewalls is in every case so small compared with that on the 
collector that it cannot significantly affect the quality of the etch. 

D.  Effect of overall geometry 
 The conducting surface connected to the trench bottom can extend beyond the trench, and 
this can affect the electric fields in the trench.  To study this, we changed the collector shape.  
Figure 22 shows three collector geometries.  In Fig. 22a, the collector has the same width, 2W, as 
the trench.  In Fig. 22b, the collector has a width of 4W or 8W.  In Fig. 22c, the trench extends 
into a collector of width 4W.  This represents the case of polysilicon etch, the entire dielectric 
part being photoresist.   

1. Change of collector width.  When the collector width is increased, the number of ions hitting 
the sidewall is shown in Table 3 for AR = 5, two values of Vc, and three collector widths,  taken 
from a total sample of 26,515 ions.  The distribution of ions on the sidewall in the Vc = -26V case 
is shown in Fig. 23.  Though the statistics are poor, the trend is for the wider collectors to allow 
more ions to the sidewalls.  The reason is that the equipotential lines near the trench bottom are 
essentially straight for collector widths greater than 4W, while for a width of 2W the lines are 
curved, and the corresponding E-field pulls ions away from the wall.   
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     (a)       (b)       (c) 

Fig. 22.  Three types of collectors studied. 

 

Table 3: Sidewall ions with wide collectors 
 

 2W 4W 8W 

-18V 141 154 157 

-26V 30 35 36 
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Fig. 23.  Distribution of sidewall ions for three collector widths.  The entrance is at the left and 

the collector at the right. 

2.  Etching into the metal.  In the configuration of Fig. 22c, we have examined the cases of AR = 
5 and 7 and Vc = -26V and –15.5V, with 2 or 6 bins (out of 14) extending into the metal.  The 
geometry studied is shown in Fig. 24a, and the field pattern in Fig. 24b.  Ion orbits near the wall 
are shown in Fig. 25, including the transition between dielectric and metal walls.  From these 
computations, we observed that a) at low |Vc| ions landed in both the metal and the dielectric 
parts of the sidewall, b) deeper penetration into the metal results in fewer ions to the dielectric, 
and c) the same trends occur at AR = 5 as at AR = 7. 
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     (a)             (b) 

Fig. 24.  Computational region (a) and equipotential lines (b)  for trenches extending into the metal. 
 

 

Fig. 25.  Ion orbits near the wall for AR = 5 and Vc = -15.5V. 

3.  Multiple trenches.  To see the effect of neighboring trenches, we considered the double 
trench configuration shown in Fig. 26a.  Since both collectors are biased to the same potential, 
the ions in each trench are attracted by the field of the collector on the other trench.  This results 
in an asymmetry, seen in the orbits of Fig. 26b and the plot of Fig. 27, such that more ions strike 
the inner sidewall than the outer one.  This asymmetry is shown quantitatively in the histogram 
of Fig. 28, where it is seen that the collector current is also asymmetric.  Compared with an 
isolated trench, there are more sidewall ions: 2.6% of 25,000 injected ions vs. 0.5%, or an 
increase of 2.5% per trench.  Even with this increase, the fraction of all ions entering a trench is 
still very small, and it decreases with increasing |Vc|.   
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           (a)           (b) 

Fig. 26.  (a) A double-trench configuration.  (b) Ion orbits in neighboring trenches, with AR = 5 and Vc = -26V. 
 
 

 

Fig. 27.  Ion distribution on sidewalls of a double trench. 

 
Fig. 28.  Distribution of ions collected on the inner and outer walls and on the collector of neighboring trenches.  

The inset is a detail of the distribution on the collector. 



 19
4.  Effect of dielectric constant.   In our calculations we have assumed a dielectric constant κ of  
4 for all insulating materials.  To see if a low-k material changes the results, we have compared κ 
= 4 with the rather extreme value κ = 2 and show results for the case AR = 5, Vc = -24V.  The 
ions suffer small deflections at κ = 2, resulting in a lower percentage of sidewall ions: 0.06% vs. 
0.11%.  Their distribution in the sidewall bins is shown in Fig. 29.  Since the numbers are so 
small, this difference does not affect our general conclusions. 

 
Fig. 29.  Distribution of ions along the trench wall for κ = 4 (left) and κ = 2 (right).  The collector is at the right.   

AR = 5, Vc= -26V. 

IV.  LIMIT CYCLES 

 The iteration procedure we have used does not always converge.  If we plot an output 
quantity, such as the number of sidewall ions, vs. iteration number, several types of behavior 
might be expected, as shown in Fig. 30.  One hopes for convergence as shown in (a), or at least 
oscillations damping to the final result, as in (b).  Unfortunately, we observe cases in which the 
result oscillates between two or more values, as in (c) or (d), but at least not as in (e).   

  

Fig. 30.  Types of convergence: (a) steady approach to result, (b) damped oscillations, (c) 2-limit cycle, (d) 3-limit 
cycle, (e) non-repetitive chaos. 

a

b

c 

d 

e 
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 Figure 31 shows a typical evolution of the profiles of sidewall ions with iteration number.  
In the zeroth iteration, all the bins have the normal floating potential, Eq. (11); and the ion orbits 
calculated in this field give the first ion distribution.  The potential on each bin is then calculated 
from Eq. (14), and a smooth curve is passed through V(yj) to generate the potentials for the next 
iteration.  Note that the most negative voltage is about –40V, corresponding to one ion landing 
on that bin.  This is to avoid the divergence of Eq. (14) when no ion is collected.  The results are 
not sensitive to this arbitrary cutoff.  In this example, the ion distribution converges after about  
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Fig. 31.  Progression of sidewall ion distribution with interation number.   

seven iterations.  In other cases, the ion distribution oscillates between two or among three 
values, as shown in Fig. 32 for AR = 5, Vc = −18V.  In this case, there are three values to which 
the iteration converges, with a periodicity of three iterations.  Figure 32 also shows that although 
the number of sidewall ions oscillates, the total number entering the trench is constant, the other 
ions having been directed into the collector.  The number of ions falling onto the arc section 
remains constant.  Figure 33 shows the distributions for the three states among which the system 
oscillates.  From this it is seen that these states correspond to different populations of ions in the 
last few bins near the collector, and the potential at these bins affects the trajectories in the next 
iteration.   

 This limit cycle behavior occurs only at low values of AR and |Vc|, since at high values 
there are no ions reaching the sidewalls.  Table 4 shows the values of Vc for which limit cycles 
have been observed at each AR.   From this one can deduce a boundary between the stable region 
and the unstable region with limit cycles.  This is shown in Fig. 34, in which the boundary is fit 
with an exponential function. 

 

a
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e f
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Fig. 32.  Variation of sidewall ions ( ), collector ions ( ), and total trench ions ( ) with iteration number. 
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Fig. 33. Ion distributions, ion orbits, and sidewall ions for the three states in a 3-limit cycle, for AR = 5, Vc =  −18V. 
 

Table 4:  Limit cycle cases 

AR Vc 

7 
−15.5 
−18 

 
5 

−15.5 
−18 
−22 

 
3 

−15.5 
−18 
−22 
−26 

  
Fig. 34.  Limiting cases for iteration convergence, showing a relation between AR and Vc for the boundary between 

stable and unstable regions. 

 The obvious reason for non-convergence is that the computation is too coarse, and we 
have made several tests to show that this is a persistent effect.  First, we quadrupled the number 
of injected ions.  This simply quadrupled the number of ions collected in each bin and did not 
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change their distribution or the potentials.  This was expected, since our formulation uses only 
the ratio of ne to ni and not the absolute charge.  The ion count is only slightly affected by the 
closer spacing of the orbits.  Second, we doubled the size of the sidewall bins, reducing the 
number from 14 to 7.  Figure 35 shows that the sidewall distribution is not changed, and that 
limit cycles still occur.  However, the smaller bin size leads to faster approach to the oscillating 
behavior. 
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Fig. 35.  Effect of bin size on sidewall ion distribution.  AR = 5, Vc = −18V. 

 Third, we smoothed the ion sidewall distribution algebraically before computing the 
potential distribution, using the formula 

 1 1
1 3 1
5 5 5j j j jN N N N− −< >= + + . (15) 

This is equivalent to introducing a surface conductivity along the sidewalls, which is as much as 
can be done since this conductivity is unknown and probably not constant.  The limit cycles still 
persist, though it takes more iterations to reach them.  There is a small change in the number of 
sidewall ions, but they are all near the trench corner.  A change in the weighting factors in Eq. 
(15) does not remove the limit cycles. 

 The lack of convergence can be traced to ion shading at the trench entrance.  Typically, 
the strong fields there deflect the ions so that they land on only a few bins at the far end of the 
trench.  When the aspect ratio is small, the charges there can affect the E-fields to, say, repel ions 
from the sidewall so that fewer will land on the crucial bins.  This in turn diminishes the 
repulsive force and allows more ions to land there in the next iteration.  Limit cycles of small 
amplitude will always occur as long as the bins have finite width, but they can be made 
negligibly small by greatly increasing the number of sidewall bins and also decreasing the 
electromagnetic mesh size near the corners.  When limit cycles occurred in the present work, we 
simply took the average of the repeating states, without any effect on our general conclusions.  
Since this work was first reported5,6, limit cycles have also been encountered in a much larger 
computation7; there, convergence was artificially obtained by averaging over previous iterations. 

V.  SUMMARY AND CONCLUSIONS 
 By reducing the problem to a simple dimensionless form, universal curves were obtained 
for ion trajectories in etched trenches, self-consistently with the sidewall potentials.  Reflection 
of ions from the walls was ignored.  Results depend on only two parameters: the aspect ratio AR, 
and the potential Vc at the trench bottom.  Principal findings are as follows: 
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1.  Electric fields external to the trench cause the ions to enter the trench at an angle.  This causes 
an ion shading effect which protects the top part of the trench, and sometimes all of it, from ion 
bombardment. 

2.  Ion orbits are determined mainly by the strong fields at the corners of the entrance; they then 
coast through the trench with little additional deflection. 

3.  In spite of the strong fields at the entrance, ion orbits are nearly straight and vertical.  So few 
ions strike the sidewall that they cannot cause deformations of the trench profile. 

4.  The small ion flux to the walls is very sensitive to the exact shape of the photoresist at the top.  
This will change in an unpredictable way during the etching process. 

5.  Contrary to intuition, a deep trench with large AR will have no ions striking the wall. 

 These observations differ from commonly held conceptions of how the ion flux behaves 
in reactive ion etching.  By examining the variation with AR, one can get an idea of the changes 
in ion behavior as the etch progresses.  By varying Vc, one can gauge the changes during an rf 
cycle.  The conclusions above are not affected by the convergence difficulties in the iteration 
process.  Finally, the scale invariance of the problem permits a scaled-up experiment, at very low 
density, in which the computational results can be checked.  An attempt at such an experiment is 
described elsewhere4. 
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