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 Electron acceleration to multi-GeV energies has been demonstrated 
using plasma wakefields in a tunnel-ionized plasma.  However, coherent 
wakefields for positron acceleration may require hollow plasmas pre-ionized 
by a laser beam.  The lifetime of such a plasma is determined by an unusual 
diffusion problem in which the diffusion rate varies by an order of magnitude 
inside the hole.  The problem is solved by numerical differentiation without 
using a PIC code. 

 

  

I.  Introduction 
 Energy doubling of the 42-GeV Stanford Linear Accelerator electron beam has been 
demonstrated by Blumenfeld et al.1 using the wakefield acceleration mechanism.2  The 
plasma is created by tunnel ionization3,4,5 of lithium vapor at the leading edge of the electron 
beam pulse ~10μm in diameter and  ~15μm long.  In the blow-out regime6, the beam density 
is larger than the plasma density, and the electric field of the beam expels the cold electrons, 
which all end up at approximately the same radius.  These electrons are drawn back in by the 
ions they left behind, and their oscillation forms a plasma wave on which electrons in the tail 
of the beam pulse surf to gain higher energy.  The same mechanism does not work as well for 
positron acceleration, since the beam now attracts cold electrons from a spread in radius, and 
a coherent wakefield is not formed.  A solution is to pre-form a hollow plasma by ionizing 
lithium vapor with an annular laser beam.  The positron beam then attracts cold electrons 
starting from a well defined radius, thus improving the chances of creating a coherent wake. 

 The time delay between the laser pulse and the positron pulse is determined by the 
diffusion of the annular plasma.  In classical diffusion of a cylindrical plasma, the initial fine 
structure decays rapidly until the lowest Bessel function mode remains, and this then decays 
at an exponential rate.7  If one assumes a cylindrical shell with absorbing boundaries at r1 and 
r2, a Bessel function solution can easily be found, and it would decay with a time constant of 
about 2 msec.  The current problem differs in two major respects.  First, the diffusion 
coefficient varies by an order of magnitude with density, and hence with radius.  Second, 
there is no absorbing boundary in the hole, and plasma fills the hole rapidly because of the 
strong gradients there.  Higher harmonics can be generated rather than damped.   

II. Experimental parameters 
 Single-photon ionization of oven-heated lithium vapor has been used as a plasma 
target for successful wakefield acceleration of 28-GeV positron beams.8,9  The 193-nm argon 
fluoride laser was focused into a 1.4-m long lithium oven with neutral density  nn = 2 × 1015 
cm-3.  In this paper, we assume that the laser beam is of order 500 μm in radius, and a beam 
block creates a hole of order 200 μm in radius.  The laser intensity is adjusted to give a 
maximum density n0 of order 2 × 1014 cm-3.  These parameters were chosen to match 
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experiments that have been attempted, but both the density and the size can be varied from 
those in this initial survey.   

 Near the density peak, diffusion is dominated by ion-ion collisions.  At low density, it 
is dominated by ion-neutral charge-exchange collisions.  Ions starting near the peak diffuse 
slowly because of frequent collisions with one another.  As they spread out, their density 
decreases so that the rate of expansion is slowed only by the less frequent ion-neutral 
collisions.  The situation is analogous to the bursting of a helium balloon.  Initially, the 
helium gas expands at a rate determined only by He-He collisions.  When the helium is 
mixed with air, it diffuses via He-air collisions.  In a plasma, once the ion diffusion rate is 
determined, electrons will create an ambipolar electric field to speed up the diffusion.   

 The ion-ion collision frequency is10 

 7 1/ 2 3 / 21.4 10ii
i iiA T nν λ− − −

⊥ = ×  sec-1, (1) 

where A is the atomic number, Ti the ion temperature in eV, n the plasma density in cm-3, and 
λii the appropriate Coulomb logarithm, given by 

 1/ 2 3 / 222.7 ln( / )ii in Tλ = − . (2) 

This frequency falls linearly with n.  The Li+-Li resonant charge exchange cross section σcx 
was given most conveniently by Lorentz et al.11, who fitted experimental points down to 14 
eV with the formula 

 2 2(Li) ( log ) cmcx eVa b Eσ = − , (3) 

where a = 19.3 × 10−8 and b = 3.5 × 10−8.  This formula was extrapolated to the lower 
energies of this problem.  The collision probability <σv>cx was computed by integrating over 
a Maxwellian ion distribution at Ti and is shown in Fig. 1a. 
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         (a)                         (b) 
Fig. 1. (a) Ion-neutral collision probability and (b) recombination coefficient vs. lithium ion temperature. 

 The ions are heated by electrons and cooled by the neutrals.  Since the photon energy 
of the 193-nm laser is 6.45 eV and the lithium ionization energy is 5.39 eV, electrons are 
created with approximately 1 eV of average energy, corresponding to (3/2)Te.  Thus, Te ≈ 
0.67 eV.  The neutral gas has the oven temperature of 750° C (≈1000° K), so that the ion start 
with the temperature T0 ≈ 0.088 eV.  The equilibration time between ions and electrons is10   
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 8 3/ 23.25 10 /eq eV eit AT nλ= × . (4) 

For Te =0.67 eV and n ≈ 2 × 1014 cm-3, this gives teq = 2.4 μsec, which is much longer than 
the 50-nsec timescales we shall find.  Hence, Ti remains at ≈ 0.09 eV, at which <σv>cx ≈ 1.3 
× 10-8 cm3/sec.  Thus the ion-neutral collision frequency is 

 8 11.3 10 secio nnν − −= ×  (5) 

 The measured radiative recombination coefficient α for hydrogen-like atoms has been 
given by Curry12 (Fig. 1b) for Te up to 3000°K and densities up to 1015 cm-3.  Extrapolating 
to 0.67 eV (7700°K) yields α ≈ 2.3 × 10-12 cm3/sec at n = 2 × 1014 cm-3.  This turns out to be 
at most a 1% effect, but it is trivial to include it. 

III. Computations 
 Diffusion of a cylindrically symmetric plasma is given by  

 
2

2
2

1( )a
n n nD n n
t r rr

α
⎛ ⎞∂ ∂ ∂

= + −⎜ ⎟⎜ ⎟∂ ∂∂⎝ ⎠
, (6) 

where Da is the ambipolar diffusion coefficient7  

 (1 / )a i e iD D T T= +  (7) 
and  
 /i i totD KT Mν= . (8) 

Here Da depends on n but not explicitly on r.  The total collision frequency νtot is the sum of 
the ion-ion  part [Eq.(1)] and the ion-neutral part [Eq.(5)].  For A = 3, Te = 0.67 eV, and Ti = 
0.09 eV, we have 

 8 61.3 10 8.3 10tot nn nν − −= × + ×  sec-1
. (9) 

At 10% ionization, the ion-ion term is larger by a factor 64.  This causes Da to increase from 
140 to 1300 cm2/sec as n drops from 2 × 1014 cm-3 at the peak to 2 × 1013 cm-3 in the hole and 
outside edge.  Diffusion is an order of magnitude faster in the hole and foot of the density 
distribution. 

 The density initial density profile can be modeled with two three-parameter functions, 
one for r ≤ r0, and one for r ≥ r0, where r0 is the radius of the beam block: 

 0
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Here f is the fractional density at the center of the hole, and w is the half-width of the laser 
beam.  These functions are chosen to join smoothly at r = r0.  The kth derivative of Eq. (10) 
vanishes for k ≤ t, and the kth derivative of Eq.(11) vanishes for k ≤ u.  Figure 2 illustrates 
density profiles obtainable by adjusting the six free parameters.   
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Fig. 2.  Hollow density profiles obtainable by varying the parameters f, s, t, u, v, and w for r0 = 200 μm 

 
 Eq. (6) is solved by numerical differentiation using Stirling’s rule.  However, the 
procedure is not completely straightforward.  Where the density is low, at the bottom of the 
trough and on the outside, the diffusion is extremely fast, and time steps have to be small in 
order to avoid unphysical peaks and oscillations in the density there.  On the other hand, 
repeated double differentiations generate noise which cannot be smoothed without losing the 
shape of the curve.  Thus, only two or three small time steps can be computed at a time.  This 
problem was solved by fitting the last smooth curve to the analytic formulas of Eqs. (10) and 
(11) with different values of the parameters.  When the nonlinearity introduced by D(n) 
became too large,  the fitting was done with a commercial curve-fitting program13 which 
uses, for instance, 20th order Tchebyshev polynomials.  The procedure is repeated many 
times. 

IV. Results 

 Figure 3 shows the evolution of a hollow profile characterized by r0 = 200 μm, f = 
0.1, s = 8, t = 20, u = 3.5, v = 8, w = 300, and n0 = 2 × 1014 cm-3 in Eqs. (10) and (11).  This 
profile has a large hole at a very low density, only 10% of the maximum.  The center density 
fills in slowly because of the small gradients near the axis, changing noticeably only after 
about 10 nsec.  Figure 4 shows the outer region in more detail.  The profiles can overlap at 
late times because the curvature can change non-monotonically in nonlinear diffusion.  In 
any case, the outside region is not of interest, and we focus on the density in the hole.  
Figures 5 and 6 compare the diffusion of two initial profiles differing in the slope of the 
density inside the hole.  When the hole is not as sharply defined (Fig. 6) the larger gradients 
cause faster diffusion, and the center density changes noticeably after only about 2 nsec.  We 
conclude that there is a 1- 10 nsec window in which the positron bunches can be fired to 
generate wakefields, depending on the sharpness of the edge of the density hole.  
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Fig. 3.  Decay of an annular plasma with a deep, wide hole.  The order of the curves is obvious (color online). 
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Fig. 4.  Detail of the outside part of Fig. 3 (color online). 
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Fig. 5.  Detail of the inner region of Fig. 3 (color online). 
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Fig. 6.  Diffusion of a profile with r0 = 200 μm, f = 0.05, s = 3, t = 6, and n0 = 2 × 1014 cm-3. 

 We are indebted to Chan Joshi for suggesting this problem, which turned out to be 
both interesting and non-trivial. 
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