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 Radiofrequency discharges used in industry often have centrally peaked 
plasma density profiles n(r) although ionization is localized at the edge, even in 
the presence of a dc magnetic field.  This can be explained with a simple 
cylindrical model in one dimension as long as the short-circuit effect at the 
endplates causes a Maxwellian electron distribution.  Surprisingly, a universal 
profile can be obtained which is self-similar for all discharges with uniform 
electron temperature Te and neutral density nn.  When all collisions and 
ionizations are radially accounted for, the ion drift velocity toward the wall 
reaches the Bohm velocity at a radius which can be identified with the sheath 
edge, thus obviating a pre-sheath calculation.  For non-uniform Te and nn, the 
profiles change slightly but are always peaked on axis.  For helicon discharges, 
iteration with the HELIC code for antenna-wave coupling yields profiles 
consistent with both energy deposition and diffusion profiles.  Calculated density 
is in absolute-value agreement with experiment. 

 

I.  Introduction 
 Studies of gas discharges began with the work of such pioneers as J.J. Thomson1 and 
Irving Langmuir2.  Later, Chapman and Cowling3 worked out a detailed mathematical theory on 
local properties such as distribution functions, diffusion, viscosity, and thermal conduction in 
partially ionized plasmas.  Biberman et al.4 added ionization, recombination, and radiative 
transport.  The book by Delcroix5 covers these local properties, including cross sections, and 
goes on to the macroscopic behavior of discharge plasmas, including ambipolar diffusion.  
Delcroix’s next book6 repeats the general principles of collisions and transport but goes on to 
define an “intermediate regime” in which electrons are Maxwellian but ions are not.  This is a 
precursor to the “presheath”.  Up to this point, the research, except for Langmuir’s, was purely 
mathematical, with no consideration of actual experiments, of which there were few at that time.  
Franklin’s book7 was finally written from an experimental viewpoint, with reference to the 
positive column and its behavior under magnetic fields and time variation.  He considered the 
conditions at the wall, where the plasma density should be finite instead of zero; and concluded 
that there must be both a sheath and a presheath.  In these early years there were no treatments of 
an entire discharge, giving, for instance, its density profile and its boundary conditions at the 
walls.  However, the scene had been set by solutions for collisionless plasmas confined between 
infinite plane plates8,9.  Whether the ionization is uniform or proportional to the electron density, 
an analytical solution can be obtained for the plasma potential φ as a function of the distance 
from the midplane.  This “plasma solution” for the quasineutral region developed an infinite 
slope at the famous point where eφ /KTe = − 0.854, and then became double-valued.  That was 
obviously where the solution had to be stopped and matched to the Debye sheath, a much thinner 
region which is not quasineutral.   
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     The sheath boundary conditions of a plasma, particularly as applied to the surface of a 
probe, have been studied extensively.  The function of the Debye sheath is to form a potential 
barrier to repel electrons so that they will escape to the wall no faster than the ions.  Thus, the 
wall has to be negative relative to the plasma, and the potential in the sheath has to curve 
downwards from its edge to the wall. It was shown by Bohm10 and explained by Chen11 that this 
requires the ions to enter the sheath with a drift velocity at least as large as the acoustic velocity.  
This is known as the Bohm criterion.  It requires a mechanism for accelerating the ions in the 
quasineutral region and turning their distribution into a mono-directional one.  This is the electric 
field in a presheath, a region much thicker than the Debye sheath but usually thinner than the 
plasma radius.  A review article by Riemann12 explains sheaths and presheaths in great detail.  
Both ionization and collisions permit the buildup of an electric field in the presheath, which, 
therefore, has the scale of the collision and ionization scalelengths.  In the spirit of boundary 
layer analysis, the plasma, presheath, and sheath are assumed to have greatly differing 
scalelengths, and they are matched to one another at points which have been subject to great 
debate.  The theory presented here avoids this problem by a more exact treatment. 

 The science of partially ionized plasmas advanced rapidly with the rise of the computer 
age, since plasmas are needed for the etching and plasma enhanced chemical vapor deposition of 
semiconductor chips.  Most plasma tools are powered by radiofrequency (rf) generators.  
Capacitatively Coupled Plasmas (CCPs) are planar and are outside the purview of this paper, 
which assumes cylindrical symmetry.   Inductively Coupled Plasmas (ICPs), usually cylindrical, 
may or may not have a dc magnetic field (B-field).  Descriptions of these plasma sources can be 
found in textbooks13,14.  Among ICPs with a B-field, the most interesting is the helicon 
discharge.  Helicon discharges are known to produce high plasma densities for such purposes as 
plasma processing and spacecraft propulsion.  These plasma sources are unique because they 
depend on the physical properties of plasma waves, particularly the helicon wave, which is the 
“whistler” wave of space physics but confined inside a cylinder.  It is now believed that the 
helicon wave mode-couples at the boundary to an electron cyclotron wave, called the 
Trivelpiece-Gould (TG) mode15; and it is the TG wave that absorbs the rf energy efficiently.  The 
reason is that the TG mode has a slow group velocity radially inwards, losing its energy to 
electrons by collisional absorption and by nonlinear processes16.  Several computer codes, to be 
named later, have been devised to calculate the wave and absorption properties of coupled 
helicon-TG waves.  However, these codes do not treat the equilibrium state of the entire 
discharge.  In this paper, we write a code EQM to describe a discharge in general and then iterate 
it with a helicon code to apply it specifically to helicon discharges. 

 Our motivation comes from experimental data that contradict the theories described 
above.  For instance, in the case of an ICP with no B-field, we have observed anomalous skin 
effect.  Figure 1 shows an ICP with an antenna wound around the circumference.  In Fig. 2 it is 
seen that the classical skin depth of 3 cm is such that very little rf power can reach the axis.  
Nonetheless, the plasma density is peaked on axis, although the electron temperature KTe dos 
show a peak near the antenna.  In the case of a helicon discharge with a strong B-field, it is 
known that the TG mode will deposit most of the rf energy near the boundary.  Nonetheless, 
almost all helicon data have shown density peaks on axis, as illustrated by the early data of Fig. 3 
by R. W. Boswell17.  To explain such data in the spirit of interaction between theory and 
experiment, we have tried to make a simple model which neglects effects that are too small to be 
distinguishable in experiment but retains the essential elements of most actual experiments.   

 In the modern era, the equilibrium state of low-pressure gas discharges has been studied 
by Godyak18, Lieberman and Lichtenberg19, Sternberg et al.20 and Fruchtman et al.21,22.  The 
latter two papers tackled the equilibrium problem of rf discharges with dc B-fields starting with 
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essentially the same governing equations that we use here.  
However, these very long papers cover the general case in great 
mathematical detail and do not use the short-circuit effect that 
is essential to this paper.  Without that effect, they could not 
explain the universality of centrally peaked density profiles.  
Our approach yielded a surprising result:  the equilibrium 
profiles of all discharges of normal length have similar shapes, 
independent of magnetic field.  Thus, our result applies not 
only to helicon discharges but also to discharges without B-
fields, including those of the pioneers named above. 
 

 

Fig. 3.  Radial density profiles at three B-fields in a 10-cm diam helicon 
discharge in 1.5 mTorr of argon, driven by 600W of rf at 8 MHz.  Figure 
from Boswell, Ref. 17. 

 

II.  Basic equations and assumptions 
 We consider a plasma in an infinite circular cylinder of radius a in which all quantities 
depend only on the coordinate r.  There is a uniform, coaxial magnetic field ˆBz .  We can neglect 
the effect of B on the ions for the following reason.  Ions are accelerated by electric fields which 
are generated by electrons and are scaled to their temperatures.  If KTe is of order 3 eV and B of 
order 100G, the ion Larmor diameter of a 2-eV argon ion, say, is ≈26 cm, and few ions can make 
a complete orbit within the discharge.  Their orbits may be curved, but ion motion in the θ 
direction cannot change the ions’ radial positions.  Also, the ions cannot gain energy from a dc 
magnetic field because the Lorentz force is perpendicular to their velocity.  Hence, the ions can 
be considered unmagnetized.  At much larger B-fields, the ion orbits may be smaller than a, but 
radial electric fields Er can only cause the ions to drift in the ignorable direction θ.  There are no 
azimuthal E-fields in steady state, there being no dc current in the z direction.  Hence, we can 
ignore the effect of B on ion motions even at 1000G.  Radial ion motion is controlled by Er and 

Fig. 1. An ICP by PlasmaTherm® with 
an m = 0 antenna on the circumference 
of the chamber. 

Fig. 2. Radial profiles of plasma density, electron temperature, 
and RF field in the machine in Fig. 1   Data were taken by J.D. 
Evans in our laboratory in 1998 under contract with 
PlasmaTherm. 
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charge-exchange collisions with neutrals.  At 3 eV, argon ions have a mean free path of order 14 
cm at 1 mTorr and  0.7 cm at 20 mTorr, and therefore neither the collisionless nor the highly 
collisional limit is applicable, and collisions have to be treated explicitly.  The equation of 
motion describing the ion fluid in equilibrium is21,23 

 ( ) ( ) 0io iM n Mn en Mn en KT nν∇ ⋅ + ⋅∇ − + = × − ∇ ≈v v v v E v v B .  (1) 

Here M is the ion mass, n the quasineutral plasma density, v the ion fluid velocity, and νio the 
charge-exchange collision frequency, whose evaluation is given in the Appendix.  The first term 
in Eq. (1) accounts for drag due to ionization, which injects slow ions into the fluid.  The 
nonlinear ⋅∇v v term converts Newton’s law from a frame moving with the ions to one that is 
stationary in the laboratory frame.  Its physical meaning is explained by Chen24.  The two terms 
on the right-hand side will be neglected, the ×v B term for the reason stated above, and the Ti 
term because Ti is usually <<Te.  The ions will be accelerated by E, which scales with Te.   

 It will be convenient to define the ionization and collision probabilities Pc and Pi as 
follows:  
 ( ) ( ), ( ) ( ) /i ion c cx io nP r v r P r v r nσ σ ν≡ < > ≡ < > = , (2) 

where nn is the density of neutral atoms.  The ion equation of continuity can then be written 

 ( ) ( )n in nn P r∇ ⋅ =v . (3) 

Using Eqs. (2) and (3) in Eq. (1) and neglecting the right-hand side, we now have 
 
 ( ) 0n i cM e Mn P P⋅∇ − + + =v v E v  (4) 

We now neglect variations in φ and z, reducing the problem to one dimension in r, and suppress 
the subscript r so that v ≡ vr.  With the usual definitions 

 ½, / , and ( / )e s ee KT c KT Mφ η φ= −∇ ≡ − ≡E , (5) 

the radial component of Eq. (4) becomes 

 2 ( )s n c i
dv dv c n P P v
dr dr

η= − + . (6)   

This is the ions’ equation of motion.  Their equation of continuity, Eq. (3), can be written  

 (ln ) ( )n i
dv d n vv n P r
dr dr r

+ + = . (7) 

 We next consider the electron fluid.  Its equation of motion is 

 ( ) ( )e eo eimn en KT n mn ν ν⋅∇ = − + × − ∇ − +v v E v B v . (8) 

where the collision frequencies are with neutrals and ions.   Since the electrons are magnetized, 
classical diffusion theory13,25 would predict that their rate of diffusion across B would be slower 
than that of the unmagnetized ions.  This would give rise to a plasma potential that is more 
negative at the center than at the edge.  In experiment, the opposite is usually observed: the 
potential peaks at the center just as does the density, in rough agreement with Boltzmann’s 
relation (Eq. (9). 
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0 0
ee KTn n e n eφ η−= = . (9) 

The discrepancy can be resolved if the discharges are not infinitely long, and electrons can reach 
the ends of the chamber well before they can reach the periphery.  In this case the Simon short-
circuit effect26 must be taken into account.  Though this effect has been known for a long time, 
its application to modern devices has not been well understood.  The short-circuit effect will be 
fully discussed in Section IV. For the time being, we explore the consequences of Eq. (9)’s 
validity throughout the whole plasma. 

III.  A “universal” density profile 
 The derivative of Eq. (9) is  

 (ln )d n d
dr dr

η= − . (10) 

Inserting this into Eq. (7) gives 

 ( )n i
dv d vv n P r
dr dr r

η− + = . (11) 

Eq. (6) can be written as 

 2( )n i c s
d dvv n P P v c
dr dr
η −⎡ ⎤= + +⎢ ⎥⎣ ⎦

. (12) 

Finally, substituting this into Eq. (11) yields an ordinary differential equation (ODE) for v:   

 
2

2 ( ) ( )n i c n i
s

dv v v dv n P P n P r
dr r drc

⎡ ⎤+ − + + =⎢ ⎥⎣ ⎦
, (13) 

or 

 
2 2

2 2 2( ) ( )s
n i n i c

s s

cdv v vn P r n P P
dr rc v c

⎡ ⎤
= − + + +⎢ ⎥− ⎣ ⎦

. (14) 

  The “plasma solution” given by this equation clearly diverges when v → cs.  The Bohm 
criterion for sheath formation12 is satisfied at the radius ra where this occurs, and that radius can 
be identified as the discharge tube radius a if the sheath thickness is negligible.  The value of ra 
apparently depends on the physical quantities nn, cs, Pc, and Pi, but it will turn out that the 
dependence is very weak.  Normalizing v to cs by 

/ su v c≡ ,      (15) 

we can write Eq. (14) as 

 2
2

1 ( ) 1 (1 / )
1

n
i c i

s

ndu u P r u P P
dr r cu

⎧ ⎫⎡ ⎤= − + + +⎨ ⎬⎣ ⎦− ⎩ ⎭
. (16) 

For clarity, we now define  

 ( ) 1 ( ) / ( )c ik r P r P r≡ + , (17) 
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so that Eq. (16) becomes 

 2
2

1 (1 )
1

n
i

s

ndu u P ku
dr r cu

⎡ ⎤
= − + +⎢ ⎥− ⎣ ⎦

. (18) 

Since /n i sn P c  has dimensions of (length)-1, we can now introduce a dimensionless independent 
variable ρ defined by  

 ( / )n i sn P c rρ ≡ ,  (19) 
obtaining 

 2
2

1 1
1

du uku
d uρ ρ

⎡ ⎤= + −⎢ ⎥− ⎣ ⎦
. (20) 

In these units, the solution for u, which will also yield the density and potential profiles, depends 
only on the parameter k in the nonlinear term.  Let us first see what the profiles look like when 
k(r) is constant.  

III. Solutions for constant nn and KTe 
 In this case k is independent of r.  Eq. (20) is a nonlinear ODE which can be solved 
numerically.  Using a variable-step Runge-Kutta method, we obtain a unique solution for each k, 
starting with u = 0 at ρ ≅ 0.  Three such solutions are shown in Fig. 4, each with a radius ρa 
where v = cs.  Since the sheath edge must be located at this point, the curves can be renormalized 
to fit a discharge tube of radius a by setting r /a equal to ρ /ρa.  From the solution for v(r), Eqs. 
(12) and (10) can be used to find η(r) and n(r)/n0.  After a rescaling Fig. 4, Fig. 5 shows the 
radial profiles of v/cs, n/n0, and −η(r) for one k-value corresponding to particular values of KTe 
and neutral pressure p0.      
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     Fig. 4.                          Fig. 5.  

Fig. 4.  Solutions of Eq. (20) for three different values of k.  In each case the sheath edge ρa occurs at a different 
value of ρ.  

Fig. 5.  Rescaled solution of Eq. (20) for 15 mTorr of argon and KTe = 3 eV, yielding v/cs (black), n/n0 (blue), and 
eV/KTe (red, right scale).  The latter two are related by the Boltzmann relation.  The abscissa is normalized so 
that the sheath edge occurs at r = a.  The curve retains the same shape for any value of a. 
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   The nature of Eq. (20) is revealed when the parameters nn, cs, or Pi in Eq. (19) are 
varied.  The values of ρa change when k changes, but nn and cs do not appear in k, so the curves 
in Fig. 5 are unaffected by a change in nn, for instance.  This is shown in Fig. 6.  The profiles for 
three different pressures are identical when plotted against r/a.  The solutions of Eq. (20) depend 
only on the ratio of Pc to Pi.  The curves like those of Fig. 5 are “universal” in the sense that they 
are independent of the values of a, nn, and n0.  These renormalized curves change only when the 
nonlinear term ku2 changes.  In Fig. 7, Pc is fixed but Te is changed, greatly altering the ionization 
term Pi and hence k.    
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          Fig. 6               Fig. 7 

Fig. 6.  Universal density curves for KTe = 3eV argon discharges at various pressures. 
Fig. 7.  Density curves for 15−mTorr argon discharges at various KTe for fixed nn. 

 
 Note that our basic assumptions have removed the magnetic field from the equations.  
Hence, the results up to now apply to all low-pressure discharges of reasonable length with or 
without dc B-fields.  Although solutions of Eq. (20) have recovered the centrally peaked density 
profiles usually observed, such as those in Figs. 2 and 3, they cannot be seriously compared with 
experiment because, for instance, the values of nn and KTe cannot be chosen independently, their 
radial variations have not been taken into account, and the z-dependences have been neglected.  
The ion fluid equation used here gives a single, averaged value of v at each radius when in fact 
the ions have a distribution depending on where they were created.  We have included the 
ionization-drag term to account for this roughly.  Intricate kinetic-theory calculations of the ion 
distribution function, as done by our pioneers3,5, have masked the essential physics.  In addition, 
detailed comparison with experiment requires treatment of ionization balance, neutral depletion, 
and energy balance.  Except for z variations, these effects are the subjects of subsequent sections.  
The papers by Sternberg et al.20 and Fruchtman et al.21,22 use the same ion fluid equations but do 
not assume the Boltzmann relation.  In covering a wider range of parameters and dimensions, 
those efforts required such extensive algebra that physical insights were not obvious.  Their 
results differ from ours because diffusion across magnetic fields was assumed to be classical 
instead of being controlled by the short-circuit effect. 

 The independence of pressure in Fig. 6 has not been seen by other authors.  For instance, 
Lieberman and Lichtenberg19, while using the Boltzmann relation, quote a result by Godyak27 
that the center-to-edge density ratio should vary approximately with nn

½.  This was the result of 
numerous approximations needed to obtain analytic formulas.  Furthermore, the ion fluid 
equation was not used, so the nonlinear ku2 term in Eq.(20), which contains the plasma 
parameters, was not obtained at all.  Our result that the profiles do not depend on nn and a are 
caused by a physical cancellation that could not have been found with algebraic approximations.  
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In our work, the presheath is treated as a part of the plasma, and the plasma solution is matched 
to the Debye sheath not at a particular value of the potential η, but at a particular value of the ion 
velocity.  As a consequence, if the neutral density is changed, it takes the same number of 
collisions for the ion velocity to reach cs, and the density profile is unchanged.  For example, for 
the conditions of intermediate collisionality that we are considering, if nn is decreased, the mean 
free path is longer, and dn/dr is smaller.  The Boltzmann relation then predicts a lower Er.  The 
ions accelerate more slowly and travel farther to reach cs.  But the changes in v and Er depend on 
collisions, and the same profile of v is obtained when plotted against r/a.  This is not exact, but it 
does give insight into the physics. 

  The profile of Te(r), and hence of Pi(r), cannot be calculated until energy balance is 
calculated in Sec. VIII, but Pc(r) can be evaluated accurately because the solution of Eq. (20) 
gives v(r) at each radius.  Thus, the collision frequency νio is not nn<σv>cx averaged over a 
Maxwellian ion distribution at a temperature Ti as given by Eq. (2), but is fixed by the known 
velocity at each radius: 
 (E ) ( )io n cx iv n v rσ= , (21) 

where v(r) is given by the curve in Fig. 5, and the ion energy is Ei = ½Mv2.  The charge-
exchange cross section as a function of Ei is given in the Appendix.  Since the ions are 
accelerated radially by the electric field Er, which scales with Te, Ei(r) and νio are functions of Te 
and not Ti except in a vanishingly small region near the axis.  It is a much weaker function of Te 
than νion, so the “universal” profiles of Fig. 5 will not be greatly changed by this exact evaluation 
of Pc(r).  With use of Eq. (21) for nnPc(r), the ratio Pc(r)/Pi(r) depends only on Te, and the 
function k(r) = Pc(r)/Pi(r) will vary in a predictable way as v(r) changes, taking into account the 
variation of νio as the ions are accelerated radially.  Though small, this variation of Pc(r) can 
easily be included in future computations, including those in which nn and Te are not constant. 

 To summarize this section: (A) That such “universal” radial profiles, valid for any 
pressure or discharge diameter, can be obtained is a direct consequence of the use of the short-
circuit effect to make the electron Boltzmann relation valid across the magnetic field.  (B) Since 
the magnetic field did not enter into the calculations so far, these results are valid for any 
cylindrical discharge when end losses can be neglected.   (C) Eq. (20) naturally defines the 
sheath edge since /du dρ → ∞  when 1, su v c= = .  Assumption of a pre-sheath is not needed 
since all collisions and ionizations are evaluated locally at every radius up to the sheath edge.  

IV.  The short-circuit effect 
 One end of a finite-length discharge in a magnetic field is shown in Fig. 8.  Electrons are 
strongly magnetized, so they bounce back and forth between endplates, traversing the length in 
nanoseconds.  Their diffusion to the sidewall is slow, and they are lost mainly to the endplates.  
Ions, on the other hand, are not magnetized, so they diffuse both radially to the sidewall and 
axially to the endplates.  To keep the plasma quasineutral, the much more mobile electrons must 
reach the endplates with a flux equal to the ion flux.  This is accomplished by Debye sheaths at 
the endplates that form Coulomb barriers allowing only a small portion of the electron flux to 
leak through to the endplate. 

 Specifically, the ion flux at the sheath edge is nscs, and the electron flux is nsvthe, where 
the electron thermal velocity in one direction is vthe = √(KTe/2πm), and the density ns at the 
sheath edge is ≈0.5n.  In each tube of magnetic lines, of which two are shown in Fig. 8, the 
electrons can move freely, so they are locally Maxwellian.  So far, there is no communication 
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between tubes, so the plasma potential φp relative to the endplate is arbitrary in each tube.  The 
sheath reduces the electron flux by exp(−eφp /KTe).  Equal fluxes then require  

1/2

ln
2

p

e

e M
KT m
φ

π
⎛ ⎞= ⎜ ⎟
⎝ ⎠

.     (22) 

This is the well known condition for the floating potential of a probe and does not involve the 
density at all.  The plasma is always positive relative to the endplate, but each tube can have an 
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Fig. 8.  Sheath configuration (a) during the short-circuit effect, and (b) during the approach to equilibrium. 

arbitrary density and potential, independent of its neighbors.  This is, of course unreal, since 
tubes can communicate with one another through ion motions.  The ions can move radially, and 
the short-circuit effect allows the electrons to follow them across B in the following way.  
Consider the two tubes labeled 1 and 2 in Fig. 8a.  Suppose ionization is higher near the wall 
than near the axis.  Then tube 1 will have higher density, and the sheath drop will adjust itself so 
that the electron and ion fluxes to the endplate are equal.  Initially, tube 2 will have lower 
density, with equal numbers of ions and electrons created, so the sheath drop is the same as in 
tube 1 and given by Eq. (22).  However, ions diffusing inward due to their density gradient will 
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upset this balance; there will be more ions than electrons in tube 2.  The sheath drop in tube 2 
must be larger than in tube 1 to confine more electrons and raise their density.  This is 
represented pictorially in Fig. 8a by a larger sheath thickness (greatly exaggerated).  Though both 
fluxes are smaller in tube 2, the sheath thickness there has to be larger to equalize the fluxes.  
Thus, it appears as if electrons have moved from tube 1 to tube 2 to follow the ions, but in 
actuality electrons were “moved” only by a small adjustment of the sheath drops.  As long as the 
electrons have a mechanism to follow the ions, keeping the plasma quasineutral, the Boltzmann 
relation will be followed even across B.  The re-establishment of neutrality by sheath adjustment 
occurs in a nanosecond or so.  After that, Fig. 8a is no longer valid.  During the next tens of 
milliseconds the discharge moves toward equilibrium and the sheath changes to that in Fig. 8b.  
The difference in time scales means that the situation in Fig. 8a is so transitory that it is never 
seen.  Electrons just seem to follow the ions across field lines with no problem. 

 Now that the electrons obey the Boltzmann relation, the plasma potential is high where 
the density is high.  Thus, the sheath drop must be higher in tube 1 than in tube 2, as seen in Fig. 
8b.  This creates a radial electric field E pointing inward (opposite to that in the transitory stage), 
driving the ions toward the center.  Since E is scaled to Te, the ions can move much faster than 
diffusion at temperature Ti.  As the ions flow inward from an outside source, they will 
accumulate in the center if axial losses are small.  The density gradient will flatten out and then 
reverse.  This is the intermediate stage of approach to equilibrium.  After reaching equilibrium, 
the density has to be flat or peaked on axis in order for the Boltzmann relation to generate the 
appropriate E-field to drive the ions outward toward the sidewall.  The equilibrium situation can 
be represented by Fig. 8b if tubes 1 and 2 are interchanged, so that the higher-density tube is 
nearer the center.  The density has to be peaked on axis because otherwise the ions will be driven 
inward and have nowhere to go.  The ions cannot escape axially fast enough because Ez has to be 
small.  This is a consequence of the Boltzmann relation when the scalelength of n(z) is of the 
order of the plasma length.  The cylinder, of course, cannot be very short and fat in this model.  
Note that the short-circuit effect cannot change Te on different magnetic tubes, so Te can vary 
radially.  The Boltzmann relation is followed on each tube with the local Te.  This is taken fully 
into account in our computations for non-uniform Te(r). 

 The sheath conditions described above assume insulating endplates.  If the endplates are 
conducting, electrons can cross field lines inside the conductor.  However, this mechanism 
cannot inject electrons into tubes where more electrons are needed unless the endplates are hot 
enough to emit electrons.  The only way to maintain quasineutrality is to adjust the sheath 
voltages.  If this mechanism were not available, ions diffusing from high to low density would 
cause a space charge and an electric field that stops their diffusion.  Thus, hollow density profiles 
can occur only in discharges long enough to prevent the short-circuit effect.  Violation of normal 
ambipolar diffusion by the short-circuit effect has been detected by Kaganovich et al.28  Non-
Maxwellian electron distributions have been measured in low-density plasmas by Godyak et al.29  
These small deviations would have little effect on equilibrium profiles in denser plasmas.  
Theoretical predictions of non-Maxwellian electrons have been expressed by Allen30 and 
Zimmerman et al.31, but these concern current-carrying or flowing plasmas. 

 The following sections successively add realistic effects to the framework sketched 
above.  Ionization balance determines a relationship between Te and nn.   Neutral depletion 
determines how nn(r) varies with power.  To avoid the rescaling of r to ρ, the EQM code solves 
the dimensional equation (16) with all quantities varying with r except Te.  Energy balance yields 
Te(r) but requires details on how rf power is applied.  For that, we combine EQM with the 
HELIC code for helicon discharges.  The result yields not only all radial profiles but also the 
absolute magnitudes of density and temperature.  
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V.  Ionization balance 

 Equation (16) for the radial profiles allows nn and Te to vary with radius, but they 
cannot vary arbitrarily.  In equilibrium, the number of ions leaving each radial shell must be 
exactly balanced by the number created there by ionization.  Let nT(r) be the total number of ions 
in a shell of width dr at r.  The input of ions into the shell per unit length (with ne = ni = n) is 

( ) 2 ( ) ( ) ( )T
n ion e

dn r rdr n r n r v T
dt

π σ= ⋅ ⋅ < > .                                     (23) 

The loss of ions from the shell is 

 [ ]( ) 12 [ ( ) ( )] 2 ( ) ( )]Tdn r drdr n r v r rdr rn r v r
dt r dr

π π− = ∇ ⋅ = ⋅ . (24) 

Equating these gives 

 ( )1 ( )n i e
d rnv n P T

nr dr
= , (25) 

where n, nn, and v are functions or r found from the solution of Eq. (16). 

 We can now calculate the relation between temperature Te and pressure p0 when nn is 
uniform, with neutral depletion neglected.  This is found by simultaneously solving Eqs. (16) and 
(25) requiring that the Bohm sheath condition v = cs be met at r = a.  Let a = 2.5 cm and p0 = 10 
mTorr of argon.  Solutions of Eqs. (16) and (25) together for various values of KTe are shown in 
Fig. 9.  It is seen that only one value of Te gives v = cs at r = 2.5 cm when we use the dimensional 
Eq. (16).  Repeating this for various pressures gives the Te − po relationship for argon, as shown 
in Fig. 10.  Each radius a will have a different curve, since the surface-to-volume ratio varies as 
1/a.  These are for uniform pressure and negligible end losses.  The variation of Te with r is 
negligibly small because of the sensitivity of Pi to Te.  Figure 10 is a great improvement over 
previous calculations of the Te − po curve because it is derived from local ionization balance with 
known density gradients instead of ionization balance averaged over the whole plasma, as in 
previous work32,33.            
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Fig. 9.  Profiles of v(r) in a 2.5-cm radius, 10-mTorr argon discharge.  Only one value of Te gives the right position 
for the sheath edge. 
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Fig. 10.  Relation between Te and pressure in argon discharges of various radii.  The relation between nn and po is 

given by Eq. (29). 

 When the change of Te with p0 is taken into account, the profiles change as would be 
expected.  This is shown in Fig. 11 for three pressures.  The center-to-edge density ratio changes 
as normally predicted.  At 100 mTorr, the curve resembles the usual Bessel function solution 
obtained from diffusion theory.  At 3 mTorr, the curve resembles that for a collisionless plasma.  
The middle curve is the intermediate case which our equations can treat accurately. 
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Fig. 11.  Density profiles at three pressures, computed with the corresponding KTe given in Fig. 10 for a = 2.5 cm. 

VI.  Neutral depletion.   
 To treat neutral depletion, we need to develop an equation for nn(r).  Motion of the 
neutral gas can be treated with the diffusion equation if their mean free paths are short enough.  
The total collision cross section νnn between neutral argon atoms is given by Phelps et al.34 and 
varies only between 2 and 3 × 10-12 cm2 for KTn between 0.05 and 1.0 eV.  This is the likely 
range of neutral energies before and after a charge-exchange collision.  The corresponding mean 
free path varies from ~0.1 cm at 20 mTorr to ~1.5 cm at 1 mTorr.  The use of the diffusion 
equation is therefore justified unless the discharge tube is very small. 

 Except for very narrow tubes, the neutral flux Γ is given by  

 n n nn v D nΓ = = − ∇ , (26) 

where the diffusion coefficient D is defined by 

 /n nnD KT Mν= . (27) 

Neutrals are lost by ionization and are replenished by injection of gas from outside the plasma.   
With Eq. (26), the equation of continuity for neutrals can be written  

   2
n n n iD n D n n nP∇ ⋅Γ = − ∇ − ∇ ⋅∇ = − ,    (28) 

where Pi is the ionization probability defined by Eq. (2).  Eq. (28) is to be solved subject to a 
boundary condition which is the source term for the neutrals.   
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Fig.12.  Typical path of a neutral atom in a plasma discharge.  The positions of the inlet and outlet are arbitrary.  The 
free paths have been lengthened for clarity.  A baffle in the pump line is often used to limit the pumping speed at 
high pressures. 
 Since the neutrals are injected at locations that differ from machine to machine, we have 
to make a reasonable model that will apply to all machines.  Figure 12 illustrates the path of a 
typical neutral atom as it bounces against the tube walls and makes charge-exchange collisions 
with ions.  We make the basic approximation that the input flux Γ(a) is uniform in the azimuthal 
and axial directions regardless of the positions of the input tube and the pump line.  This 
preserves the one-dimensional nature of the problem.  Let p0 be the pressure in mTorr at the 
inlet.  This is related to the neutral density by 

 13 3
0 0 0, 3.3 10 cmnn N p N −= = × . (29) 

This follows from the ideal gas law for monatomic gases at 20 C (293 K or 0.025 eV).  The 
boundary condition is then  

 ( )1/ 2
0 0 0( ) / 2n th na n v N p KT MπΓ = = . (30) 

  Before the discharge is struck, there is a balance between the input and output of gas.  
The input is usually given in SCCM (standard cubic centimeters per minute), where 1 SCCM = 
4.17 × 1017 sec-1.  The pumping speed S is given in liters/sec, usually limited by the conductance 
of a baffle.  One l/sec at a pressure p0 is 103N0p0 = 3.3 × 1016 atoms/sec.  The neutral pressure is 
therefore 12.7 SCCM/S mTorr.  In the presence of plasma, however, the neutrals are heated and 
Tn may be different at the input and output.  After a charge exchange collision, the neutral 
acquires an ion energy or order of 1 eV.  After an ionization, the new ion has an energy above 
0.025 eV and travels to the wall, where it is neutralized and reenters the plasma as a neutral.  The 
mean free paths are short, so the neutrals are thermalized at a higher temperature.  Since the 
degree of ionization is usually less than 1%, we shall neglect the difference in Tn between the 
input and output.  The working hypothesis is that the fast neutrals and ions strike the wall and 
come back into the discharge as cool neutrals.  These neutrals are distributed uniformly by 
collisions.  The same flux leaves the boundary and enters the pump.  Therefore, these processes 
do not change the overall input and output rates, so the boundary condition of Eq. (30) is still 
valid.  Basically, the recycling of ions means that the plasma exists in a static neutral background 
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replenished with a slow flow of gas in and out of the chamber.  With neglect of variations in Tn, 
D is constant; and Eq. (28) becomes 

 2
n n iD n n nP∇ = , (31) 

which is to be solved with the boundary conditions (30) and / 0ndn dr = at r = 0.   

 The program EQM solves the three Eqs. (16), (25), and (31) simultaneously using a 4th 
order Runge-Kutta process to do the integrations.  Examples of neutral depletion are shown in 
Figs. 13 and 14.  If the plasma density is kept constant, Fig. 13 shows that neutral profiles are 
less affected at higher pressure.  The plasma profiles change slightly because of the slower 
diffusion at higher pressure.  Increasing the tube diameter to 10 cm has little effect on the relative 
profiles. 
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Fig. 13      Fig. 14   

Fig. 13.  Neutral pressure profiles (solid lines) for argon discharges in a 5-cm diam tube with initial pressures p0 = 1, 
5, and 10 mTorr at 400K.  The corresponding plasma density profiles peaked at 1012 cm-3 are shown by the dotted 
curves (color online). 
Fig. 14.  Neutral pressure profiles in the same tube with p0 = 1 mTorr and various peak plasma densities.  The 
corresponding Te profiles (dotted lines) are identified by the symbols (color online). 

 
 Figure 14 shows the dramatic effect of higher electron temperature at low pressure.  With 
higher ionization fraction, less than half the neutrals reach the axis.  The corresponding KTe 
profiles show the inverse relation between Te and nn predicted by Eqs. (16) and (25).  When nn 
falls to the order of the electron density, as in the n0 = 5 × 1012 cm-3 case, KTe has to rise to 
extraordinary values (in theory) to provide the requisite ionization at such low pressures.  These 
temperatures are, of course, unrealistic.  Argon’s inelastic threshold is around 12 eV, so that 
radiation losses limit KTe to below 5 eV or so.  The problem with these high Te′s is that we have 
not yet considered energy balance.  To do so requires more detail about the energy gain and loss 
processes for a specific discharge.  In the following section, we do this for helicon and ICP 
(Inductively Coupled Plasma) discharges which are treated by the HELIC program35. 

 Neutral depletion has been observed in experiment, for instance by Yun et al.36 and 
Aanesland et al.37 Fruchtman et al.38,39 have calculated neutral depletion in plane geometry 
invoking pressure balance with the plasma.  They showed that radial transport is enhanced with 
lower nn, and that non-monotonic density profiles can occur with axial diffusion, an effect 
neglected in this work. 
 
VII.  Helicons and HELIC 
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 In helicon discharges, the TG mode causes highly non-uniform ionization such that the 
power input P(r) has a large peak near the edge of the plasma.  This occurs because the TG mode 
deposits rf energy near the edge, raising Te there, thus exponentially increasing the ionization 
rate at the edge.  Nonetheless, measured density profiles are always peaked on axis.  How this 
happens can be seen from Eq. (9), the Boltzmann relation.  Initially, ionization produces a peak 
in density near r = a.  With Boltzmann electrons, the potential φ has to follow the density, so it 
also peaks near r = a, resulting in an inward electric field.  The ions are driven inward by E(r), 
and the electrons follow them via the short-circuit effect.  The density created near the boundary 
is pushed inwards by the electric field.  This process can be followed in time-dependent 
calculations.  In steady state, the only possible density profile is peaked at the center; a time-
independent profile peaked at the edge is not possible if there is a short-circuit effect. 

 Many computer codes have been developed for the wave and absorption properties of 
helicon waves.  Some are given here40,41,42,43,44,45, but these codes are not accessible for others to 
use.  To calculate Te(r) produced by the non-uniform energy deposition in helicon discharges, we 
therefore use the HELIC code written by Arnush35, which has a user-friendly interface devised 
by one of us (FC). This will allow determinations of the absolute values of density and 
temperature to compare with experiments.  The HELIC program was made for rapid 
experimental design.  To achieve this, the equilibrium density n0 and magnetic field B0 are 
assumed uniform along the axis z of a circular cylinder.  However, n0, KTe, and pressure p0 (but 
not B0) may vary with radius r in equilibrium.  The plasma radius a and the antenna radius b are 
to be specified, as well as a ground-plane radius c, whose value is unimportant as long as it is 
large.  The antenna can be any one of several popular types.  The cylinder can be infinite in 
length or bounded by endplates that can be insulating or conducting.  If it is bounded, the 
distance from the midplane of the antenna to one endplate, and the total length between endplates 
can be specified.  For a given gas, pressure, and rf frequency, HELIC then calculates the electric 
and magnetic fields, and the plasma current, of the coupled helicon-TG wave.  More importantly, 
it integrates them to obtain the radial and axial energy deposition profiles and the total plasma 
resistance.   

VIII.  Energy balance 
 Once the inputs have been specified, HELIC calculates P(r), which is the local power 
deposition at each radius, integrated over z.  It also yields P(z) integrated over radius, but we do 
not need this yet.  The total rf power Pin absorbed by the plasma is, by definition,  

 
0

( )
a

inP P r rdr= ∫ , (32) 

where P(r)rdr is the power deposited into each cylindrical shell, with the 2π incorporated in P(r).  
P(r) is calculated by integration over the local power deposition E*⋅J, where E and J are the rf 
electric field and current of the helicon wave.  Pin can also be calculated from the antenna 
loading.  If I0 is the peak antenna current and R is the load resistance that it “sees”, Pin is also 
given by  
 2

0½inP I R= . (33) 

R is the same as the plasma resistance Rp arising from electron collisions with ions and neutrals, 
including Landau damping.   HELIC calculates R in ohms, and Pin and P(r) are given for I0 = 1A.   
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 Note, however, that Pin differs from the power Prf from the power supply because of 
resistive losses Rc in the circuitry.  At low densities an Rc of 0.5Ω can be comparable to Rp.  The 
relation is46 

 p
in rf

p c

R
P P

R R
=

+
. (34) 

First let us calculate overall energy balance.  The power lost from the plasma, Pout, 
consists of three terms: Wi, We, and Wr, where Wi and We are the kinetic energies carried out by 
ions and electrons leaving the plasma, and Wr is the (mostly radiative) loss by electrons making 
inelastic collisions.  Each ion leaving the plasma carries out an energy consisting of ½KTe of 
Bohm energy entering the sheath plus a sheath drop of about 5.4KTe in argon33,47, so it carries out 
about 6KTe.  Wi has two terms, the first due to flow to the sidewall and the second due to flow to 
the endplates: 

0
( ) ( )2 2 ( ) ( )2 6

a
i s s eW n a c a aL n r c r rdr KTπ π

⎡ ⎤
= +⎢ ⎥
⎣ ⎦∫ .   (35) 

Here we had to choose a length L of the plasma.  If the plasma is nonuniform axially, L can be 
estimated from the power deposition profile P(z) mentioned above.  This can give an equivalent 
length if the plasma density varies in z.    

Electrons leave mostly via the endplates, but the total flux has to equal the ion flux.  Each 
electron carries out an energy33,48 of about 2KTe ≈ Wi/3.  Thus the conductive losses in watts are 

 (4 / 3)eW Wattsi e iW W+ ≈ , (36) 

where Roman “e” is the electron charge in coulombs.   

The inelastic loss Wr can be found from the Ec curve calculated by Vahedi49.  Ec is the 
amount of energy expended by an average electron in making an ionization, taking into account 
the radiative losses in all the inelastic collisions made before the ionization.  This depends on the 
temperature.  The Vahedi curve (Fig. 15) can be fitted by the function 

 1.61(eV) 23exp(3.68 / )c eVE T= , (37) 

where TeV is Te in eV.  The loss dWr from each shell of unit length at radius r is then Ec times the 
local ionization rate: 

 2 ( ) ( )r n ion cdW rdr n r n r v Eπ σ= < > . (38) 
Defining 

 ( ) ( ) ( )e c e ion eF T E T v Tσ≡ < > , (39) 
We write this as 

 2 ( ) ( ) [ ( )]r n edW rdr n r n r F T rπ= . (40) 

 Once n(r), nn(r), and Te(r) have been determined by the EQM program, the total Wr in 
watts can be calculated by integration: 

 
0

e ( ) ( ) [ ( )]2
a

r n eW L n r n r F T r rdrπ= ∫  Watts, (41) 

where Roman “e” is again the electron charge in coulombs.  The total Pout is then 
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out i e rP W W W= + + ,     (42) 
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Fig. 15.  Energy required to make one ionization vs. electron temperature. 

which can be equated to Pin from Eq. (33) to yield the absolute value of plasma density n(r) for 
any given value of antenna current I0. 

 To evaluate local energy balance, we simplify the problem by neglecting the conductive 
losses, which are small compared with Wr for temperatures below ~4eV.  The input of energy to 
each cylindrical shell is given by the integrand of Eq. (32).  The loss of energy to each shell is 
given by the integrand of Eq. (41) (including eL).  Equating local Pin to local Pout determines the 
temperature profile Te(r).  That is, when the input P(r) is high, there will be more ionization 
there.  This requires a high loss rate, which is accomplished by an increased Te and, hence, a 
larger F(Te) in Eq. (41).  A nonuniform deposition of rf energy giving a nonuniform ionization 
profile is expressed via the electron temperature profile.   

IX.  Iterations of EQM with HELIC 
 The density, temperature, and neutral density profiles resulting from the highly 
nonuniform rf energy deposition of the combined helicon and TG waves can now be computed 
by iterating between the EQM and HELIC codes.  Initially, EQM is solved with uniform 
ionization, giving n(r), Te(r), and nn(r).  These profiles are fitted with a 6-degree polynomial to 
be entered into HELIC to obtain P(r).  Energy balance yields Te(r).  This profile, representing 
nonuniform ionization, is then entered into EQM to obtain new profiles of n, Te, and nn.  The 
process is repeated until it converges.  It normally takes only five or six iterations for 
convergence. 

 Before showing iterations, we first show that edge-peaked energy deposition profiles 
produce density profiles that are peaked at the center rather than at the edge.  Figure 16 shows 
three P(r) curves produced by HELIC under different conditions.  One is highly peaked at the 
edge; the second is less peaked; and the third has almost equal contributions from the TG and H 
modes.  The density profiles produced by EQM in these three cases are shown in Fig. 17.  Case 1 
has more density at large radii, but in all cases the density is peaked on axis.  This shows that 
hollow profiles are never produced when there is a short-circuit effect.  The P(r) profiles here are 
not yet consistent with the n(r) profiles, because the P(r) profiles were computed without 
knowing the exact n(r).  
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 We next show results in which the P(r) profiles from HELIC are completely consistent 
with the n(r) profiles from EQM, as obtained by iteration between the two programs.  Two cases  
representing low and high power for an m = 0 loop antenna are shown in Figs. 18−21.  With 
large TG-mode deposition at the edge, both cases have high Te and, hence, high ionization at the 
edge, giving rise to the flat density profiles at the center.  The 120-G, 1kW, 27.12 MHz case in 
Fig. 20 has larger TG deposition at the edge, giving a flatter density profile.  The higher density 
in that case also leads to higher neutral depletion: 0.8 mTorr compared with 0.4 mTorr in the 
lower power case.  Note that the dip in P(r) in Fig. 17 is reflected in the Te(r) profile in Fig. 21. 
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Fig. 18.  Curves of n(r) (⎯) and Pr(r) (- - -) 
(color online), obtained by iteration of EQM with 
HELIC, for a 15-mTorr helicon discharge at 65G 
with 400W of rf at 13.56 MHz and an m = 0 
antenna. 

Fig. 16.  Radial energy deposition profiles for 
three cases computed by HELIC with 
different magnitudes of the TG mode (color 
online).   The densities are 12.6, 5.0, and 1.6 × 
1011 cm-3 for Cases 1-3.  In all cases B is 65G, 
and tube radius is 2.5 cm.  

Fig. 17.  Density profiles computed by EQM 
for the P(r) profiles of Fig. 13.  The order of 
the curves follows the order of curves on the 
right side of Fig. 13 (color online). 

Fig. 19.  Radial profiles of KTe and neutral 
pressure p corresponding to the discharge in 
Fig. 18.  Note that p (right scale) has a 
suppressed zero. 
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In Figs. 22 and 23, we show a larger plasma 10 cm rather than 5 cm in diam, the pressure 
is lower at 5 mTorr, and the B-field is higher.  Neutral depletion is higher because of the lower 
pressure.  At the center of Fig. 23, Te varies inversely with the pressure according to ionization 
balance, but near the edge Te rises from the Trivelpiece-Gould heating there.  These two regions 
are better separated with the larger diameter.  Note that the short-circuit effect cannot transport 
electron temperature across B; the heat conductivity is still reduced by the magnetic field.  In 
Fig. 22, we see that the antenna produces much higher absorption on axis, and this results in a 
“triangular” density profile.  The triangularity occurs so often that it inspired one of us50 to 
conjecture that it is caused by nonlinear diffusion in combination with the short-circuit effect and 
a deposition profile like that in Fig. 22.  This conjecture is now confirmed in the present 
calculations, which include all nonlinearities.   
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  If we now change to a helical antenna, an m = 1 left-hand helix (which generates a right-
hand helical wave), and apply higher magnetic field and rf power, we obtain the curves in Figs. 
24 and 25.  Neutral depletion is high because of the low pressure and very high density.  In Fig. 
24, we see that the helical antenna produces a narrower absorption peak on axis than in Fig. 22, 
and this results in a flatter density profile.  This result was not expected.  Note that Te no longer 
reaches the unreasonable values in Fig. 14, now that energy balance has been imposed. 

Fig. 23.  Radial profiles of KTe and neutral 
pressure p corresponding to the discharge in 
Fig. 22.  Note that p (right scale) has a 
suppressed zero. 
 

Fig. 22.  Curves of n(r) (⎯) and Pr(r) (- - -) 
(color online), obtained by iteration of EQM 
with  HELIC, for a larger 5-mTorr helicon 
discharge at 250G with 400W of rf at 13.56 
MHz and an m = 0 antenna. 

Fig. 21.  Radial profiles of KTe and neutral 
pressure p corresponding to the discharge in 
Fig. 20.  Note that p (right scale) has a 
suppressed zero. 

Fig. 20.  Curves of n(r) (⎯) and Pr(r) (- - -) 
(color online), obtained by iteration of EQM with 
HELIC, for a 15-mTorr helicon discharge at 
120G with 1000W of rf at 27.12 MHz and an m = 
0 antenna. 
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 This high-power case was the original motivation for this work because of the occurrence 
of the Big Blue Mode (BBM).  Boswell51 first observed this mode, in which the plasma collapsed 
at high power to a narrow, bright central column with density approaching 1014 cm-3.  It was 
photographed by Blackwell52.  We believe this to be an extreme case of neutral depletion, in 
which the neutral density almost vanishes near the axis, requiring Te to rise to a very high value 
to maintain ionization balance.  There would be an ionization instability, and the plasma would 
have to contract to be consistent with the available rf power.  At those temperatures, argon would 
be multiply ionized.  Although an EQM-HELIC iteration should be able to predict the BBM, a 
Vahedi-type curve does not yet exist for the radiative losses, and the BBM is still an unfinished 
problem.   

X.  Comparison with experiments 
 Figure 26 shows density profiles obtainable with the ICP of Fig. 1.  These resemble the 
centrally peaked profiles in Fig. 17 for energy deposition at the edge.  Such results motivated 
studies of anomalous skin effect53,54, but we have shown here that simple equilibrium theory can 
account for most of the effect. 

                                                                     

 For smaller, intense discharges there are very few results reported for measurements in 
the antenna region because of the intense rf environment and high density there.  Measurements 
in the ejected plasma outside the discharge tube do not relate directly to the predictions of our 
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Fig. 25.  Radial profiles of KTe and neutral 
pressure p corresponding to the discharge in 
Fig. 24.  Note that p (right scale) has a 
suppressed zero. 
 

Fig. 24.  Curves of n(r) (⎯) and Pr(r) (- - -) 
(color online), obtained by iteration of EQM 
with  HELIC, for a larger 3-mTorr helicon 
discharge at 450G with 2000W of rf at 13.56 
MHz and a half-wavelength m = 1 helical 
antenna. 

Fig. 26. Radial profiles of plasma 
density in the machine in Fig. 1 at 
various rf powers.  Data were taken by 
J.D. Evans in our laboratory in 1998 
under contract with PlasmaTherm. 
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theory and computational programs.  However, a linear system was no longer available.  The 
examples given in Figs. 18-21 are computed for the discharge tube shown in Fig. 27 in a system 
designed with a probe inside the discharge.    The magnetic field was from a permanent magnet 
above the tube, as shown in Fig. 28, and could be varied by vertical separation.  The plasma is 
ejected from the tube downwards into an experimental chamber.  The B-field diverges and is 
non-uniform there, but it is quite uniform within the tube. Although it is far from a uniform 
cylinder, this device can provide qualitative checks of our theory.  HELIC is configured for this 
geometry by setting the distance between endplates in HELIC to a large number (200 cm), and 
placing the antenna within 4 cm of one endplate.  The fact that the magnetic field shape here is 
not the uniform one assumed in HELIC does not greatly affect the results because almost all the 
wave action and ionization is within the uniform-field region inside tube, where our theory 
applies.  Only a few measurements below the discharge will be shown here.  A complete paper 
on the experiment will be written later. 
 

5.1 cm
10 cm

5 cmANTENNA

       

PERMANENT 
MAGNET

GAS FEED

HEIGHT 
ADJUSTMENT

LANGMUIR PROBE

 
Fig. 27              Fig. 28 

Fig. 27.  Diagram of the quartz discharge tube with aluminum top plate.  The antenna shown is for 13.56 MHz.   

Fig. 28. Experimental setup with NdFeB permanent magnet and rf-compensated Langmuir probe.  The magnetic 
field can be adjusted by moving the magnet vertically.  Two magnets can be used to double the field.  The plasma is 
ejected into a large chamber below.  Inside the discharge, the magnetic field lines are vertical with a slight 
divergence. 

 It was not possible to measure radial profiles inside the discharge tube, but n(r) could be 
measured with a horizontal probe in the main chamber 6.8 cm below the tube.  This is shown in 
Fig. 29 for a magnet position that produces ~65G at the antenna.  Magnetic divergence and 
diffusion have spread n(r), but the central peaking as predicted by our theory is seen.  KTe, 
however, has edge peaks due to the TG mode.  The plasma potential Vs was calculated from the 
slope of ln(Ie) using n(r) from saturation ion current.  To check that the Boltzmann relation is 
obeyed, we can compare Vs(r) with that calculated from n(r) using Eq. (9) with the local Te.  This 
is shown by the solid line Vs(Maxw) in Fig. 29, which is somewhat flatter than the measured 
Vs(r) but has the right magnitude.  Figure 30 shows data with two magnets placed closer to the 
discharge, so that the B-field is both much higher and more divergent.  B(z) varies from 200 to 
360G inside the discharge.  At this large field, the TG mode is strongly localized to the edge, and 
n(r) no longer peaks at the center.  Our discharge is quite short, and it is possible for ions to be 
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driven inwards by a reverse E-field and to escape out the ends.  Thus, our 1-D theory does not 
hold in this case. 
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 Since the HELIC code yields the exact power in watts deposited in the plasma for a given 
power in the antenna, and the Vahedi curve gives the power lost in radiation, it is possible to 
calculate the absolute value of the density in the discharge tube for given rf power and pressure.  
Order-of-magnitude agreement would give credibility to the calculations.  There is a 
fundamental uncertainty in that the discharge does not have an exact length, as in the theory.  
However, HELIC also calculates P(z), the distribution of power deposition along the axis,  and 
from this we can estimate the effective length of the discharge, as shown in Fig. 31.  Figure 32 
shows the absolute values of density on axis as calculated with EQM-HELIC iteration and as 
measured.  The range of possible effective lengths is also shown.    
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Fig. 31.  Axial deposition profiles P(z) for the four points computed for L = 25 cm in Fig. 32.  The rectangles have 
the same area as that under the corresponding curve.  The inset shows the position of the discharge tube and antenna.  

Fig. 29.  Radial profiles of density ( ), KTe ( ), 
plasma potential ( ), and Boltzmann potential (⎯) 
measured 6.8 cm downstream from the source at 15 
mTorr with 400W of rf at 27.12 MHz and a B-field of 
~65G.  The error bars show the length of the 12.7 μm 
diam probe tip.  Relative density is good to 3%, but 
absolute density only to ±10% in probe area. 

Fig.30.  Data similar to those in Fig. 29 but 
with a double magnet set to produce 280G at 
the antenna. 
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Fig. 32.  Absolute agreement of plasma density between theory and experiment for various values of discharge 

length L consistent with the axial deposition profile P(z), shown in Fig. 31. 
 

XI.  Summary 
 A computational program EQM was devised to calculate equilibrium profiles of density, 
ion drift velocity, electron temperature, and neutral depletion in cylindrical discharges.  The 
major restrictions are that the electrons are Maxwellian and that only radial gradients are 
important.  If the Simon short-circuit effect at the endplates is effective, the Boltzmann relation 
can be followed even if there is a strong magnetic field.  Under such conditions, we find, 
surprisingly, that the solutions are self-similar, and the profiles follow a semi-universal law 
independent of pressure and discharge diameter.  The density profiles always peak on axis, even 
if the ionization is at the edge.  Furthermore, the radial ion velocity reaches the acoustic speed at 
a radius which can be defined as the sheath edge.  In this “plasma solution” all ionization and 
collision effects are accounted for in detail, so that there is no need to assume a pre-sheath.  
Implementing ionization balance at each radius gives the inverse relation between neutral 
pressure and electron temperature accurately without arbitrary averaging.   

 Accounting for energy balance in rf discharges requires additional information on 
antenna coupling.  For helicon sources, this is provided by the HELIC program.  By iterating 
EQM with HELIC to get consistent profiles, the density and other profiles can be calculated for a 
variety of conditions such as tube size, rf frequency, and magnetic field.  The method is powerful 
enough to yield absolute values of the density for given rf input.  Examples of such iterations are 
given.  “Hollow” density profiles do not occur in this steady-state theory, and we have never 
observed them.  However, they have been seen in experiments by others.  In those cases either 
the discharge was pulsed or other conditions prevented the short-circuit effect from being 
operative. 
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APPENDIX: Cross sections 

 

A.  Argon ionization cross section 
 The cross section for ionization of argon by electrons is well known.  We have fitted the 
ionization probability <σv> as a function of KTe with the following formula: 

 ( )0.91
ion exp 15.8 17.7 / eVv Tσ ⎡ ⎤< > = − −⎣ ⎦   cm3/sec. 

B.  Argon charge exchange cross section 

 A critical cross section in our diffusion calculations is the Ar+-Ar resonant charge 
exchange cross section.  Since it is difficult to produce monoenergetic beams at energies of the 
order of 1 eV, the first data were from measurements of mobility, from which the cross section 
could be calculated.  For instance, M.A. Biondi and L.M. Chanin55 published this in 1954.  These 
data were smoothed and summarized by S. C. Brown56 and later improved by Sheldon57.  The 
following papers give direct measurements of this cross section58,59,60,61,62.  In this paper we used 
the data of Rapp and Francis58, which agree with those of Sheldon at 1 and 10 eV.  There was no 
agreement among the others.   

 The cross section can be parametrized by 

 2 14 0.14 1.07(cm ) 6.3 10 (A / )cx i ionizEσ − −= × Φ , 

where A is 40 and the ionization threshold Φioniz is 15.76 eV for argon.  Ei is the ion energy in 
eV, approximately equal to Ti. 

C.  Argon neutral-neutral cross section. 
 To calculate neutral depletion, we needed the collisional cross section between argon 
neutral atoms.   There is fortunately recent, accurate data on this by Phelps et al.63  It is explained 
in the paper that σt, rather than σv, is the proper cross section to use, and this does not vary much 
over the energy range of interest. 
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FIGURE CAPTIONS 

Fig. 1. An ICP by PlasmaTherm® with an m = 0 antenna on the circumference of the chamber. 

Fig. 2. Radial profiles of plasma density, electron temperature, and RF field in the machine in 
Fig. 1   Data were taken by J.D. Evans in our laboratory in 1998 under contract with 
PlasmaTherm. 

Fig. 3.  Radial density profiles at three B-fields in a 10-cm diam helicon discharge in 1.5 mTorr 
of argon, driven by 600W of rf at 8 MHz.  Figure from Boswell, Ref. 17. 

Fig. 4.  Solutions of Eq. (20) for three different values of k.  In each case the sheath edge �a 
occurs at a different value of �.  

Fig. 5.  Rescaled solution of Eq. (20) for 15 mTorr of argon and KTe = 3 eV, yielding v/cs 
(black), n/n0 (blue), and eV/KTe (red, right scale).  The latter two are related by the 
Boltzmann relation.  The abscissa is normalized so that the sheath edge occurs at r = a.  The 
curve retains the same shape for any value of a. 

Fig. 6.  Universal density curves for KTe = 3eV argon discharges at various pressures. 

Fig. 7.  Density curves for 15−mTorr argon discharges at various KTe for fixed nn 

Fig. 8.  Sheath configuration (a) during the short-circuit effect, and (b) during the approach to 
equilibrium. 

Fig. 9.  Profiles of v(r) in a 2.5-cm radius, 10-mTorr argon discharge.  Only one value of Te gives 
the right position for the sheath edge. 

Fig. 10.  Relation between Te and pressure in argon discharges of various radii.  The relation 
between nn and po is given by Eq. (29). 

Fig. 11.  Density profiles at three pressures, computed with the corresponding KTe given in Fig. 
10 for a = 2.5 cm. 

Fig.12.  Typical path of a neutral atom in a plasma discharge.  The positions of the inlet and 
outlet are arbitrary.  The free paths have been lengthened for clarity.  A baffle in the pump 
line is often used to limit the pumping speed at high pressures. 

Fig. 13.  Neutral pressure profiles (solid lines) for argon discharges in a 5-cm diam tube with 
initial pressures p0 = 1, 5, and 10 mTorr at 400K.  The corresponding plasma density profiles 
peaked at 1012 cm-3 are shown by the dotted curves (color online). 

Fig. 14.  Neutral pressure profiles in the same tube with p0 = 1 mTorr and various peak plasma 
densities.  The corresponding Te profiles (dotted lines) are identified by the symbols (color 
online). 

Fig. 15.  Energy required to make one ionization vs. electron temperature. 

Fig. 16.  Radial energy deposition profiles for three cases computed by HELIC with different 
magnitudes of the TG mode (color online).   The densities are 12.6, 5.0, and 1.6 × 1011 cm-3 
for Cases 1-3.  In all cases B is 65G, and tube radius is 2.5 cm.  

Fig. 17.  Density profiles computed by EQM for the P(r) profiles of Fig. 13.  The order of the 
curves follows the order of curves on the right side of Fig. 13 (color online). 

Fig. 18.  Curves of n(r) (⎯) and Pr(r) (- - -) (color online), obtained by iteration of EQM with 
HELIC, for a 15-mTorr helicon discharge at 65G with 400W of rf at 13.56 MHz and an m = 
0 antenna. 



 26
 

Fig. 19.  Radial profiles of KTe and neutral pressure p corresponding to the discharge in Fig. 18.  
Note that p (right scale) has a suppressed zero. 

Fig. 20.  Curves of n(r) (⎯) and Pr(r) (- - -) (color online), obtained by iteration of EQM with 
HELIC, for a 15-mTorr helicon discharge at 120G with 1000W of rf at 27.12 MHz and an m 
= 0 antenna. 

Fig. 21.  Radial profiles of KTe and neutral pressure p corresponding to the discharge in Fig. 20.  
Note that p (right scale) has a suppressed zero. 

Fig. 22.  Curves of n(r) (⎯) and Pr(r) (- - -) (color online), obtained by iteration of EQM with  
HELIC, for a larger 5-mTorr helicon discharge at 250G with 400W of rf at 13.56 MHz and 
an m = 0 antenna. 

Fig. 23.  Radial profiles of KTe and neutral pressure p corresponding to the discharge in Fig. 22.  
Note that p (right scale) has a suppressed zero. 

Fig. 24.  Curves of n(r) (⎯) and Pr(r) (- - -) (color online), obtained by iteration of EQM with  
HELIC, for a larger 3-mTorr helicon discharge at 450G with 2000W of rf at 13.56 MHz and 
a half-wavelength m = 1 helical antenna. 

Fig. 25.  Radial profiles of KTe and neutral pressure p corresponding to the discharge in Fig. 24.  
Note that p (right scale) has a suppressed zero. 

Fig. 26. Radial profiles of plasma density in the machine in Fig. 1 at various rf powers.  Data 
were taken by J.D. Evans in our laboratory in 1998 under contract with PlasmaTherm. 

Fig. 27.  Diagram of the quartz discharge tube with aluminum top plate.  The antenna shown is 
for 13.56 MHz. 

Fig. 28. Experimental setup with NdFeB permanent magnet and rf-compensated Langmuir 
probe.  The magnetic field can be adjusted by moving the magnet vertically.  Two magnets 
can be used to double the field.  The plasma is ejected into a large chamber below.  Inside the 
discharge, the magnetic field lines are vertical with a slight divergence. 

Fig. 29.  Radial profiles of density ( ), KTe ( ), plasma potential ( ), and Boltzmann potential 
(⎯) measured 6.8 cm downstream from the source at 15 mTorr with 400W of rf at 27.12 
MHz and a B-field of ~65G.  The error bars show the length of the 12.7 μm diam probe tip.  
Relative density is good to 3%, but absolute density only to ±10% in probe area. 

Fig.30.  Data similar to those in Fig. 29 but with a double magnet set to produce 280G at the 
antenna. 

Fig. 31.  Axial deposition profiles P(z) for the four points computed for L = 25 cm in Fig. 32.  
The rectangles have the same area as that under the corresponding curve.  The inset shows 
the position of the discharge tube and antenna.  

Fig. 32.  Absolute agreement of plasma density between theory and experiment for various 
values of discharge length L consistent with the axial deposition profile P(z), shown in Fig. 
31. 
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