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ABSTRACT 

 Partially ionized plasmas, often driven by radiofrequency power, are 
commonly used in semiconductor manufacturing.  Their equilibrium distributions 
of density, temperature, and even distribution functions, have been modeled by 
PIC simulations, but only one case at a time, and with disregard for the sheath 
boundary conditions.  Analytic theory fails to predict the observed density profiles 
n(r), especially in the presence of a dc magnetic field B.  To gain insight into the 
physics, we adopt a simple 1-D model: a cylinder of intermediate length bounded 
by sheaths on the endplates.  We find that a short-circuit effect allows the 
electrons to follow the Boltzmann relation even across B.  This assumption leads 
to a simple nonlinear equation for the ion drift velocity, whose solution gives 
density profiles that are quite generally peaked on axis and naturally match to the 
Debye sheath on the sidewalls.  A code EQM is developed to solve this equation 
together with those for neutral depletion and local ionization balance.  The 
solutions agree with experiment and throw light on the classic problems of 
anomalous skin depth and cross-field diffusion.  Energy balance requires knowing 
the energy deposition.  For this we use the HELIC code for helicon discharges.  
Iteration of EQM with HELIC yields not only all the radial profiles but also the 
absolute values of density and electron temperature. 

 

 The problem of anomalous skin depth was pointed out by Weibel1, who proposed that 
thermal motions of electrons generated in the skin layer of an rf plasma can take them into the 
interior to produce ionization there.  Data showing a center-peaked density profile n(r) in a 
cylindrical Inductively Coupled Plasma (ICP) with an antenna wound on the perimeter are 
shown in Fig. 1.  Density extends well beyond the rf field.  Following Weibel, numerous papers 
using kinetic theory in plane geometry ensued; some were listed in a previous PRL2.  A stronger 
effect utilizing cylindrical geometry and the nonlinear Lorentz force was shown to agree better 
with experiment2.  By using a 1-D model involving a cylinder with endplates, we find that the 
anomaly can be explained simply by equilibrium conditions.  When there is a dc B-field, 
anomalous electron transport across B has been a vexing problem in fully ionized fusion plasmas.  
In partially ionized gases, even the very earliest experiments on helicon discharges3 at B ≥ 0.075 
T showed axially peaked n(r), though we now know4 that the rf energy deposition is mainly at 
the edge at those fields.  Central to our theory are the sheath boundary conditions at the endplates, 
to be explained later, which permit an explanation of cross-field transport that is not available for 
fusion plasmas. 

      Guided by experiment, we reduce the problem to its essentials by assuming a cylindrical 
discharge of radius a and length L short enough that we can neglect gradients in the z (axial) 
direction.  The coaxial B-field is such that electron and ion gyroradii rL are << a and >> a, 
respectively.  The steady-state ion fluid equation of motion is    
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Fig. 1. Radial profiles2 of n, KTe, and rf Bz in an ICP with antenna elements only on the periphery, as shown.  The 
density is peaked well outside the classical skin depth, though the electron temperature KTe peaks in the skin.  

 ( ) ( ) i ioM n Mn en en KT n Mnφ ν∇ ⋅ + ⋅∇ = − ∇ + × − ∇ −v v v v v B v . (1) 

Here M is the ion mass, n the plasma density, v the ion fluid velocity, φ the plasma potential, and 
νio the ion-neutral charge-exchange collision frequency.  We consider a one-dimensional 
equilibrium in which the θ and z gradients are ignored.  We assume  rLi >> a so that the v × B 
term can be ignored, and similarly the Ti term if Ti << Te.  The v ⋅ ∇v term is from transforming 
from particle to fluid velocities5, and the ∇ ⋅(nv) term accounts for ionization, which injects slow 
ions6.  It will be convenient to define the ionization and collision probabilities Pi and Pc as:  

 ( ) ( ), ( ) ( ) /i ion c cx io nP r v r P r v r nσ σ ν≡ < > ≡ < > = , (2) 

where nn is the density of neutrals.  Pc varies with Te(r), and Pi with the ion drift v(r).  The ion 
equation of continuity is  
 ( ) ( )n in nn P r∇ ⋅ =v , (3) 

which can be used in the first term of Eq.(1).  With the usual normalizations 
½/ and ( / )e s ee KT c KT Mη φ≡ − ≡ , the radial component of Eq. (1) with v ≡ vr becomes 

 2 ( )s n c i
dv d

v c n P P v
dr dr

η= − + . (4) 

Eq. (3) can be written  

 
v (ln ) v

( )n i
d d n

v n P r
dr dr r

+ + = . (5) 

 We wish to show next that the electrons are Maxwellian even in a strong dc B-field.  In a 
long plasma, electrons can be Maxwellian along each field line, but their densities can vary 
independently across field lines at low pressures when cross-field diffusion is slow.  However, in 
discharges of finite length set by endplates which are not too far apart, adjustment of the endplate 
sheaths can cause the electron density to behave as if the electrons had moved across B.  This 
Simon short-circuit effect7 is shown in Fig. 2.  Suppose ionization is high on the outside of the 
plasma and low on the inside.  Consider two magnetic tubes, No. 1 with high density near the 
wall, and No. 2 with low density near the center.  In tube 1, almost all electrons traveling toward 
the endplate are reflected by the sheath field, and the sheath drop adjusts so that the electron flux 
is equal to the ion flux to keep that tube quasineutral.  In tube 2, the density is lower, so the ion  
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Fig. 2.  Illustration of the short-circuit effect. 

flux to the endplate is smaller.  The sheath then has to be thicker, with a larger sheath drop, to 
repel more electrons.  Since more electrons are lost in tube 1 than in tube 2, electrons have 
effectively moved from 1 to 2 though they actually moved only along B.  This transient state 
lasts only a few nanoseconds, the time for electrons to travel a distance ~L.  The net result is that 
as the ions diffuse inwards from 1 to 2, the electron density can follow them.  Once the electrons 
have this mechanism to change their densities across B, they will assume the most probable 
distribution, the Maxwellian.  If the endplates are conductors, electrons can travel across field 
lines inside the endplate.  However, the sheath conditions are unchanged unless the endplates can 
emit electrons.  Thus we make the basic assumption that electrons follow the Boltzmann relation 
everywhere:  

 During the approach to equilibrium, on a much longer msec timescale, the Boltzmann 
relation Eq. (6), now valid even across B, requires φ to be high in 1 and low in 2, creating an 
inward electric field E (Fig. 2), scaled to Te, that drives the ions toward the axis.  This is the 
basic mechanism for creating a central density peak during approach to equilibrium, even when 
ionization is at the edge.  Note that the sheath thicknesses shown would give an E-field in the 
opposite direction, but this is only in the transient state of ignorable duration.  This short-circuit 
effect leads to remarkable results on discharge equilibrium profiles. 

 
/

0 0
(ln )

,ee KT d n d

dr dr
n n e n eφ η η− = −= = . (6) 

 The variables η and n can be eliminated from Eqs.(4) to (6), which can be combined to 
yield 

 
2 2

2 2 2 ( ) 0i
s

n i n c
s s

P
cdv v v

n P n P
dr rc v c

 
+  

 
+ − − =

−
. (7) 

The ions’ velocity gradient dv/dr naturally goes to infinity at the Bohm sheath condition v = cs, 
thus matching to the Debye sheath at r ≅ a.  We can now introduce dimensionless variables u ≡ 
v/cs, k ≡ 1+(Pc / Pi), and ( / )n i sn P c rρ ≡  to reduce Eq. (7) to a simple ordinary differential 

equation: 

 2
2

1
1

1

du u
ku

d uρ ρ
 = + − −  

. (8) 
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Fig. 3. Solution of Eq. (8) and associated equations for KTe = 3 eV.  These profiles do not change with tube radius a 

or pressure p but change with Te, which affects the value of k. 

 Solution of Eq. (8) for constant k yields self-similar profiles for all discharges, 
magnetized or not, which satisfy our assumptions.  If ρ is rescaled so that v = cs at r/a =1, the 
profiles, shown in Fig. 3, are independent of the quantities nn, Pi, and cs in the definition of ρ as 
long as k constant.  When Te varies, the ratio Pc/Pi, and hence k, changes, and the profiles change 
somewhat; but the density profile is always centrally peaked, as shown in Fig. 3.  

 Note that the ion velocity is known at each radius, so that the variation of Pc(r) is taken 
into account up to the sheath edge.  No presheath needs to be assumed.  Up to now, nn and Te 
have been given arbitrary constant values, but they are related by ionization balance.  It is well 
known that, for ion creation to balance loss by diffusion, nn and Te must have an inverse 
relationship8.  The local balance at each radius can be shown to give  

 ( )1
( )n i e

d
rnv n P T

nr dr
= . (9) 

If we solve Eqs. (7) and (9) simultaneously for a given discharge radius a, only one value of Te at 
each pressure gives v = cs at a.  Repeating this for different pressures yields nn − Te curves for 
each value of a, with Pc(r) evaluated with the local value of v.  However, the true Te depends on 
energy balance, which will be discussed later.   

 We now consider neutral depletion.  If their mean free paths are sufficiently short,  
neutrals with temperature Tn and self-collision frequency νnn diffuse at the rate 

n n nn v D n= − ∇ with the coefficient /n nnD KT Mν= .  Since they are lost at the ionization rate, 

their equation of continuity for constant Tn is 

 2
n n iD n n nP∇ = . (10) 

The boundary conditions are (0) 0nn∇ = and ( )1/2
0 0( ) / 2n n nn v a N p KT Mπ= , where p0 is the 

input pressure in mTorr and 13 3
0 3.3 10 cmN −= × .  We have devised a code EQM which solves 

Eqs. (7), (9), and (10) simultaneously using a fourth-order Runge-Kutta process for the 
integrations.  Note that Eq. (7) is dimensional.  Figure 4 gives an example of the plasma and 
density profiles for n0 = 1012 cm-3, and Fig. 5 shows these at higher densities with extreme 
neutral depletion.  We see that Te rises to unreasonably high values as nn drops.  This is because 
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radiative losses have not yet been taken into account.  To do this requires detailed knowledge of 
the energy input mechanism in a specific discharge.   
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 For this, we have chosen the helicon discharge, for which the energy deposition profile 
can be computed with the HELIC code of Arnush4.  The HELIC code can calculate the rf power 
deposition profile Prf(r) for a cylindrical discharge with endplates, uniform B-field, constant n(z) 
and nn(z), and arbitrary profiles n(r), Te(r), and nn (r).  Various types of antennas can be assumed, 
and the absolute power into the plasma is specified by the antenna current.  The energy lost by 
radiation before each ionization has been given as a function of Te by Vahedi9.  There is also a 
small loss due to particle fluxes to the walls and endplates.  At high B-fields, energy deposition 
is peaked close to the wall by the Trivelpiece-Gould mode4.   Energy balance is obtained by 
equating the rf energy input at each radius to the energy lost in ionization and radiation at that 
radius.  This yields the absolute value of Te(r) and n(r).  The Boltzmann relation is now 
evaluated using the local Te.  The complete solution is obtained by iterating between the EQM 
and HELIC codes.  Initially, EQM is solved with uniform ionization, giving n(r), Te(r), and nn(r).  
These profiles are fitted with a 6-degree polynomial to be entered into HELIC to obtain Prf(r).  
Energy balance yields Te(r).  This profile, representing nonuniform ionization, is then entered 
into EQM to obtain new profiles of n, Te, and nn.  The process is repeated until it converges.  It 
normally takes only five or six iterations for convergence.  An example of such a solution is 
shown in Figs. 6 and 7. 
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Fig. 4.  Plasma density (solid) and neutral 
pressure profiles (dashed) for argon 
discharges in a 5-cm diam tube with n0 = 1012 
cm-3 and initial pressures p0 = 1, 5, and 10 
mTorr at 400K.   

Fig. 5.  Neutral pressure profiles in the same 
tube with p0 = 1 mTorr and various peak 
plasma densities.  The corresponding Te 
profiles (dotted lines) are identified by the 
symbols.  



 7

              

  
 In summary, the short-circuit effect allows electrons to “move” across B-fields to follow 
the Boltzmann relation everywhere.  In that case, simple equilibrium considerations explain the 
central peaking of density profiles observed in experiment without the need for complicated 
theories of anomalous skin depth or anomalous electron transport.  In equilibrium, ions are 
driven radially outward by the E-field associated with the peaked density profiles.  In units that 
depend weakly on plasma parameters, a universal density profile depending only on Te is 
obtained which takes collisions into account exactly and matches to the Debye sheath without the 
need for a presheath assumption.  Iteration with a helicon code yields absolute-value radial 
profiles of plasma density and electron temperature, including neutral depletion. 
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Fig. 7.  Radial profiles of KTe and neutral 
pressure p corresponding to the discharge in 
Fig. 6.  Note that p (right scale) has a 
suppressed zero. 

 

Fig. 6.  Curves of n(r) (⎯) and Prf(r) (- - -) 
(color online), obtained by iteration of EQM with 
HELIC, for a 15-mTorr helicon discharge at 
120G with 1000W of rf at 27.12 MHz and an m = 
0 antenna. 


