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Classical theories of gas discharges have concentrated on the microscopic properties of 

collisions and diffusion coefficients, but few have considered the macroscopic observables 

such as the density and temperature profiles.  Since practical devices cannot be 

approximated by infinite cylinders, we consider finite cylinders with endplates.  There, the 

short-circuit effect permits electrons to be Maxwellian even in the presence of a DC magnetic 

field.  For uniform electron temperature Te and pressure p, the radial density profile is found 

to have a “universal” shape independent of p.  A code EQM is developed to solve for radial 

profiles when all quantities vary with r and includes ionization balance and neutral depletion.  

The profile Te(r) depends on the type of discharge and is found for helicon discharges by 

iterating with the code HELIC.  Resulting n(r) profiles are flat or peaked on axis, as found in 

experiment, even when ionization is localized to the edge.   

KEYWORDS:  Gas discharges, anomalous skin depth, equilibrium profiles, sheath 

boundaries, short-circuit effect, helicon discharges 

 

 

1.  Introduction and ion motion 

 
Partially ionized plasmas, known as gas discharges, have been studied for many 

decades but have taken on widespread interest now that they are used in the production of 
semiconductor circuits.  The literature on gas discharge theory is extensive.  Most 
theorists [1,2], treat microscopic quantities such as cross sections and diffusion 
coefficients, since positive columns were the main source of early experimental data.  A 
few recent papers [3] consider also the macroscopic quantities such as the steady-state 
density profile.  The difficulty is that the particular geometry of the plasma container 
(henceforth called “tube”) affects the results.  Here we sidestep the issue by adopting a 
simple model which retains only the essential features of a discharge while omitting 
effects which do not change the general nature of the solution.  A cylinder reduces the 
problem to one dimension, but there are no infinite cylinders.  We therefore assume the 
finite-length cylinder shown in Fig. 1.  The boundary conditions at the ends entail sheath 
theory.  
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Fig. 1.  The assumed tube geometry. 

 
The cylinder has radius a and length L, and there is a uniform DC magnetic field 
(B-field), in the z direction.  The B-field has intermediate strength such that the ion 
Larmor radius at electron temperature Te is much larger than a, and the electron Larmor 
radius much smaller than a.  We can then neglect the curvature of the ion orbits and the 
diffusion of electrons across B.  We also assume Ti << Te so that Ti can be neglected.  
The ion fluid equation is given by [4] 

 ( ) ( ) 0io iM n Mn en Mn en KT n         v v v v E v v B . (1) 

The terms on the right-hand side will be neglected, as explained above.  The first term 
on the left side represents ion drag due to ionization, since ions are born near zero 
velocity.  Though this term will be replaced by the equation of continuity, it is shown 
here because it conveniently avoids the task of keeping track of how ions born at each 
radius are accelerated by the radial electric field (E-field).  The ionization and 
charge-exchange collision probabilities are  

 ( ) ( ), ( ) ( ) /i ion c cx io nP r v r P r v r n         . (2) 

The equation of continuity can be written 

 ( ) ( )n in nn P r v , (3) 

where nn is the density of neutrals.  Eq. (1) now becomes 

 ( ) 0n i cM e Mn P P    v v E v , (4) 

or, in one dimension, the ion equation of motion is 

 2 ( )s n c i

dv d
v c n P P v

dr dr


   , (5) 

where we have dropped the subscript on vr and have used the usual definitions 

 ½, / , and ( / )e s ee KT c KT M      E . (6) 

The radial component of Eq. (3) is our ion equation of continuity: 

 
(ln )

( )n i

dv d n v
v n P r

dr dr r
   . (7) 

■■■

015053-2JPS Conf. Proc. , 015053 (2014)1



II.  Electron motion 

 In our experiments on helicon waves, we always find that the electron 
distribution is Mawellian [Eq. (8)], even in a strong B-field.  If the density is peaked 
on axis, as it most often is, and if the plasma is ionized near the edge, how do the 
electrons get across B to the center?  They do this by the Simon short-circuit effect [5].  
Since real plasmas have finite length, they have endplates, and there are sheaths on the 
endplates.  This is shown in Fig. 2, where ionization occurs near the edge.  Electrons 
cross B very slowly, but those that follow the ions can be confined longer by thicker 
sheaths at the ends.  The electrons seem to cross the field with the ions, but they are 
actually confined by varying sheath drops as they bounce back and forth between 
endplates in nanoseconds.        

 
/

0 0
ee KT

n n e n e
   . (8) 

In Eq. (8) the temperature Te can vary with r as electrons are created at different radii, 
by different RF field strengths, for instance. 
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 Fig. 2.  The short-circuit effect. 

 

 III.  A “universal” profile 

 The derivative of Eq. (8) can be written 

 
(ln )d n d

dr dr


  . (10) 

Inserting this into Eq. (7) gives 

 ( )n i

dv d v
v n P r

dr dr r


   . (11) 

With d/dr solved from Eq. (5), this can be written 
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2

2
( ) ( )n i c n i

s

dv v v dv
n P P n P r

dr r drc

 
     

 
. (12) 

Solving for dv/dr, we obtain the following ordinary, first-order differential equation for 

the ion fluid velocity v:  

 
2 2

2 2 2
( )s

n i n i c

s s

cdv v v
n P n P P

dr rc v c

 
     

  
. (13) 

Note that dv/dr diverges as v approaches cs, giving us a natural transition to the Debye 
sheath at r  a.  Numerical solutions of Eq. (13) can account for all quantities varying 
with r.   

 To see the nature of this equation, we first normalize v to cs, 

 / su v c , (14) 

obtaining 

 2

2

1
1 (1 / )

1

n
i c i

s

ndu u
P u P P

dr r cu

 
         

. (15) 

We next define 

 ( ) 1 ( ) / ( )c ik r P r P r   (16) 

to obtain 

 2

2

1
(1 )

1

n
i

s

ndu u
P ku

dr r cu

 
    

  
. (17) 

The coefficient in the last term can be removed by normalizing the radius r to : 

 ( / )n i sn P c r  , (18) 

whence 

 2

2

1
1

1

du u
ku

d u 

 
   

  
. (19) 

Note that all the properties of the plasma are contained in k(r), and the only relevant 
property is the ratio Pc/Pi, which occurs only in the nonlinear term arising originally 
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from the v v term in Eq.(1).     

IV.  Solutions for uniform Te and pressure p (constant k) 

 Pressure is given here in mTorr, where 1 mTorr corresponds to nn = 3.3  10
13

 
cm

-3
.  Figure 3 shows solutions of Eq. (19) for three different values of k.  Each curve 

of u goes to infinity at a different radius a, which is to be identified with the sheath 
edge at r = a.  If we rescale  in each case so that a corresponds to r = a, all the curves 
become identical regardless of k, as shown in Fig. 4.  These profiles are universal in 
the sense that they do not depend on the size a of the plasma or the pressure p, since k is 
independent of nn. 
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Fig. 3.  Solutions of Eq. (19) for three values of k. 

     

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
r / a

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

n/n0

eV/KTe

v/cs

 

                 Fig. 4.  The “universal” profiles. 

 Temperature and pressure cannot be varied independently because of ionization 
balance.  Consider a cylindrical shell of width dr at r.  The total input of ions into the 
shell per unit length (with ne = ni = n) is 
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( )

2 ( ) ( ) ( )T
n ion e

dn r
rdr n r n r v T

dt
       (20) 

 

The total outflow from the shell is 

 
( ) 1

2 [ ( ) ( )] 2 [ ( ) ( )]Tdn r d
rdr n r v r rdr rn r v r

dt r dr
      . (21) 

Equating these gives 

  
1

( )n i e
d

rnv n P T
nr dr

 . (22) 

When this is solved with Eq. (17) for a dimensional discharge radius r, only one value 
of KTe will have u   at r  a.  This is shown in Fig. 5.  Repeating this for various 
pressures yields the familiar curves of Fig. 6 showing the inverse dependence of KTe on 
p for various a.  These curves account for local dependences, whereas previously only 
radial averages could be used.    
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Since Te varies with p, radial profiles are no longer independent of pressure.  Figure 7 
shows the density profiles at three pressures when the corresponding Tes are used.   

Fig. 5.  Profiles of u(r) in a 2.5-cm radius, 10-mTorr argon discharge.  
Only one value of Te gives the right position for the sheath edge. 

Fig. 6.  Relation between Te and pressure in argon 
discharges of various radii.   
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Fig. 7.  Density profiles at three pressures, computed with the corresponding KTe given in Fig. 5 for a = 
2.5 cm. 

 

V.  Further developments       

 So far, we have the mechanism for calculating equilibrium profiles for given 
functions Te(r) and nn(r), but these are not yet specified.  To obtain nn(r), neutral 
depletion was computed in our full paper [6] by using a simple model.  An example of 
the results is shown in Fig. 8 
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Fig. 8.  Neutral pressure profiles (solid lines) for argon discharges 
in a 5-cm diam tube with initial pressures p0 = 1, 5, and 10 mTorr at 
400K.  The corresponding plasma density profiles peaked at 1012 
cm-3 are shown by the dashed curves. 
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 To obtain Te(r) requires knowing the ionization mechanism and, therefore the 
type of discharge.  We have used the helicon discharge, since a code HELIC has been 
devised by Arnush [7] to describe these discharges in detail.  We have written a code 
EQM to solve the equations given in this paper.  This code provides equilibrium n(r) 
and nn(r) profiles as inputs to HELIC, and the latter then computes Te(r).  By iterating 
between EQM and HELIC, we can show that n(r) always peaks on axis, in agreement 
with experiment, even though power deposition Pr(r) is at the edge due to the 
Trivelpiece-Gould mode.  Physically, n(r) must peak at the center, since the Boltzmann 
relation then requires the potential to peak there, leading to an outward pointing E-field 
to drive the ion out radially.  Ion loss by axial diffusion at temperature Ti would be too 
slow.               

VI.  Summary 

 The old problem of “anomalous skin depth”, in which plasma densities peaking 
at the center can be created by RF energy applied only at the edge, has been solved.  
The endplates of finite-length plasmas are treated with sheath theory.  Automatic 
adjustments of the sheath drops during the approach to equilibrium create an inward 
E-field that drives ions into the center.  After equilibrium is reached, the plasma 
density is peaked at the center, or at least flat and not hollow, so that an outward E-field 
pushes the ions outward when radial losses dominate over axial ones. 
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Fig. 9.  Curves of n(r) (–—) and Pr(r) (- - -), 
obtained by iteration of EQM with HELIC, for a 
15-mTorr helicon discharge at 65G with 400W of 
RF at 13.56 MHz and an m = 0 antenna. 
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