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Abstract
The long-standing problem of plasma diffusion across a magnetic field (B-field) is reviewed,
with emphasis on low-temperature linear devices of finite length with the magnetic field
aligned along an axis of symmetry. In these partially ionized plasmas, cross-field transport is
dominated by ion–neutral collisions and can be treated simply with fluid equations.
Nonetheless, electron confinement is complicated by sheath effects at the endplates, and these
must be accounted for to get agreement with experiment.
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1. Classical diffusion

After almost a century of developments in plasma research,
the diffusion of plasma across a magnetic field still remains
a fundamental problem of interest in many applications. In
the low-temperature plasmas typically used in the industry,
like magnetrons or helicons, cross-field diffusion determines
the transport phenomena and the properties of the discharge.
In the high-temperature magnetically confined plasmas used
for thermonuclear fusion, the cross-field diffusion regulates
the fluxes from the hot core to the colder scrape-off layer
at the edge, and consequently the fluxes to the plasma
facing components, critical for the design of the machine.
Interestingly, the same problem is of concern in both low-
temperature and high-temperature plasmas, but for different
reasons. Being of such wide interest, the topic has attracted
considerable attention throughout the history of plasma
physics. The literature available is so extensive that this review
will be necessarily limited in scope. It is the aim of the
present paper to review the major advancements in both theory
and experiment, focusing attention on cross-field diffusion in
partially ionized plasmas of finite length.

∗ This article is part of the special issue ‘Transport in B-fields in low-
temperature plasmas’, published in Plasma Sources Sci. Technol. vol 23,
issue 4 (http://iopscience.iop.org/0963-0252/23/4).

In fully ionized plasmas, ‘classical’ diffusion arises from
electron–ion Coulomb collisions with an arbitrary cut-off.
In this case, diffusion is so slow that other effects, such as
‘Bohm diffusion’, arise from instabilities. Theories rarely
agree with measured loss rates until nonlinear saturation of
instabilities and the final turbulent state are accounted for.
In fusion research, diffusion in toroidal devices is further
complicated by the magnetic geometry, which spawns banana
orbits and magnetic islands. Progress in understanding cross-
field diffusion was made possible by the construction of linear
machines with uniform B-fields. Such devices include, for
instance, weakly ionized plasmas such as helicon discharges,
and fully ionized Q-machines, with low electron temperatures
KTe of about 3 eV and 0.21 eV, respectively. The price one
pays for such simple B-fields is that there are sheaths on the
endplates, and these have to be treated properly, as is done in
the paper.

2. Fluid theories on partially ionized plasmas

Cross-field diffusion in cold-plasma theory follows the
equation of motion of ions in steady state [1–3]:

Mn(v · ∇)v = Zen(E + v × B) − ∇pi − Mnvv, (1)
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where M is the ion mass, v the ion fluid velocity, n the plasma
density, pi the ion pressure nKTi, and ν the ions’ collision
frequency, which is dominated by charge-exchange collisions
with neutrals; the other symbols are obvious. For simplicity,
we have omitted the off-diagonal elements of the stress tensor,
which contain the viscosity. A similar equation describes the
electron fluid, but we shall find that electrons rarely follow that
equation; rather, they tend to fall into a Maxwellian distribution
and obey the Boltzmann relation. The anomalous mechanism
of electron scattering and the surprising Maxwellization of
the electron distribution in bounded domains have been
observed even at very low collisionalities [4] and interpreted as
plasma-boundary oscillations [5], non-local effects of electron
kinetics [6], or convective ion-acoustic instabilities [7] near the
discharge boundary. The nonlinear convection term v ·∇v will
play an important role later but can be neglected for now. In the
direction of B, or if B = 0, we can define the usual diffusion
and mobility coefficients by solving for v with Z = 1:

v = 1

Mnv
(enE − KT ∇n) = e

Mv
E − KT

Mv

∇n

n
. (2)

The coefficient of E is the ion mobility µi, and the coefficient
of ∇n/n is the ion diffusion coefficient Di. Similar definitions
obtain for electrons, with µe positive.

Di ≡ KTi/Mvi, µi ≡ e/Mvi

De ≡ KTe/Mve, µe ≡ e/Mve.
(3)

Ambipolar diffusion occurs when both species have the same
flux nvi,e:

µinE − Di∇n = −µenE − De∇n. (4)

In order for this to happen, there must be an electric field E

given by

E = Di − De

µi + µe

∇n

n
. (5)

When this E-field is inserted into equation (4), the common
ambipolar diffusion coefficient Da is found to be

Da = µiDe + µeDi

µi + µe
. (6)

This result applies only to diffusion along B, or when
B = 0. For diffusion across B, we must use the perpendicular
components of equation (1). Again with the nonlinear term
neglected, these are, for either species,

vx =±eEx

mν
− KT

mν

1

n

∂n

∂x
± eB

mν
vy =±µEx − D

n

∂n

∂x
± ωc

ν
vy

vy =±eEy

mν
− KT

mν

1

n

∂n

∂y
∓ eB

mν
vx =±µEy − D

n

∂n

∂y
∓ ωc

ν
vx,

(7)

where ± stands for the sign of the charge, and where we have
introduced the cyclotron frequency ωc ≡ eB/m, defined as
positive for either species. It is customary now to replace ν

with its reciprocal 1/τ to obtain the familiar factor ωcτ , whose

size reveals whether collisions destroy the cyclotron orbits or
not. Simultaneous solution of equations (7) for vx and vy yields

vy(1 + ω2
cτ

2)=±µEy − D

n

∂n

∂y
− ω2

cτ
2 Ex

B
±ω2

cτ
2 KT

eB

1

n

∂n
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vx(1 + ω2
cτ

2)=±µEx − D

n

∂n

∂x
− ω2

cτ
2 Ey

B
∓ω2

cτ
2 KT

eB

1

n

∂n

∂y
.

(8)

The first two terms of each equation show that the mobility
and diffusion coefficients for transport perpendicular to B are
reduced by the magnetic field:

µ⊥ = µ

1 + ω2
cτ

2
, D⊥ = D

1 + ω2
cτ

2
. (9)

Electrons normally have large ωc’s and diffuse slowly across
B. The last two terms of each equation (8) are the E × B and
diamagnetic drifts, vE and vD , reduced by a collisional factor.

vE = E × B

B2
, vD = ±B × ∇p

enB2
. (10)

Thus, the cross-field velocity for either species can be written
succinctly as

v⊥ = ±µ⊥E − D⊥
∇n

n
+

vE + vD

1 + (v2/ω2
c )

. (11)

Many classic papers have been written on variations and
applications of these results. For instance, there are books
by Delcroix [8], Rozhansky and Tsendin [9], Shkarofsky
et al [10], and others. Robson et al [11] have discussed
collision cross sections. Fruchtman [12] has extended such
fluid theories to ambipolar and non-ambipolar diffusion in both
linear and nonlinear regimes. Most theories assume infinite,
one-dimensional half-spaces or infinite cylinders, neither of
which exists in reality. In a long cylinder uniformly ionized
at the edge by, say, radiofrequency (RF) antennas, one would
expect that, in a strong B-field, the plasma density would be
peaked at the edge because the electrons diffuse so slowly.
However, this is rarely observed because finite plasmas have
boundaries, and collisionless sheaths are needed there to
equalize ion and electron losses and maintain quasineutrality
of the plasma.

Particularly important are the sheaths on the surfaces
(‘endplates’) which intersect the field lines of the B-field.
Electrons can escape along B in nanoseconds unless they
are repelled by the Coulomb barrier of a sheath. Ions enter
the sheath at the Bohm speed [13], which is equal to the
acoustic velocity cs = (KTe/M)1/2, where M is the ion
mass. Electrons enter with their one-dimensional thermal
velocity vth = (2KTe/πm)1/2 and are repelled by a factor
eeV/KTe , where V is the (negative) sheath drop. Equating
electron and ion fluxes to the endplates yields a sheath drop of
−TeV[1/2ln(M/2πm)] ≈ −4.7TeV in argon (with Ti � Te),
where TeV is KTe in electron-volts. Thus, if KTe is about
3 eV in a gas discharge, there is a sheath drop of about 15 eV
at the endplates. A similar calculation could be made for
losses to the side boundary of a cylinder, but it would be
inaccurate because electrons can oscillate at immeasurably
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Figure 1. Initial sheath conditions at an endplate.

high frequency, and the cylinder may not be exactly aligned
along B. At the endplates, however, an interesting mechanism
called the Simon [14] ‘short-circuit’ effect occurs.

To illustrate this effect, consider a cylinder of radius a and
length 2L such that the ion flux at KTi to the endplates is slow
and can be neglected. Let the ionization source be localized
at the radial edge. We wish to show that the density peak is
nonetheless located on axis. Figure 1 shows one end of the
discharge and the sheath conditions there. Initially, density n

is higher in magnetic tube 1 near the edge. The sheath there
must be thicker to repel more electrons, and that generates
an inward-pointing E-field which drives ions inward. By
adjustments of the sheath drop, the electron density can follow
the ion density without actually moving across B. This
allows electrons to be Maxwellian and follow the Boltzmann
relation everywhere, but at the local temperature. The short-
circuit effect cannot equalize KTe across B-lines. Ultimately,
the plasma is quasineutral and peaks on axis, even though
ionization is at the edge [15]. By the Boltzmann relation,
the plasma potential must also peak on axis, corresponding to
an outward-pointing E-field, which drives the loss of ions to
the edge. Thus, ‘classical diffusion’ in infinite cylinders is not
easy to achieve because of the sheath effects at endplates.

If one assumes that the electrons are Maxwellian
everywhere, a consequence is that the plasma density profile
n(r) has a ‘universal’ shape independent of the pressure p and
discharge radius a. Equation (1) in its full form is [16]:

Mv∇ · (nv) + Mnv · ∇v − enE + Mnνiov

= en(v × B) − KTi∇n ≈ 0. (12)

The first term represents drag due to injection of slow ions by
ionization, νio is the frequency of ion–neutral charge-exchange
collisions, and the terms on the right can be neglected. The ion
temperature is small; and the (v × B)term, which describes
ion Larmor orbiting, is small if the ion Larmor radius at the
electron temperature is much larger than a. Te is used here
because ions are accelerated by electric fields scaled to Te.
Defining the ionization and collision probabilities as

Pi(r) ≡ 〈σv〉ion(r), Pc(r) ≡ 〈σv〉cx(r) = νio/nn, (13)

where nn is the density of neutrals, we can combine
equation (12) with the equation of continuity

∇ · (nv) = nnnPi(r) (14)

to obtain

Mv · ∇v − eE + Mnn(Pi + Pc)v = 0. (15)

Ions will move slowly along Bẑ because electron conductivity
prevents any large Ez from arising. Thus, we need consider
only the r component of equation (15). With the usual
definitions

E = −∇φ, η ≡ −eφ/KTe, cs ≡ (KT/M)1/2, (16)

the radial components of equations (15) and (14) become

v
dv

dr
= c2

s
dη

dr
− nn(Pc + Pi)v (17)

dv

dr
+ v

d(ln n)

dr
+

v

r
= nnPi(r), (18)

where we have dropped the subscript from vr . The local
electron Boltzmann relation, given by

n = n0eeφKTe = n0e−η,
d(ln n)

dr
= −dη

dr
, (19)

can be inserted into equation (18) to obtain

dv

dr
+ v

dn

dr
+

v

r
= nnPi(r). (20)

Finally, dη/dr can be inserted from equation (17) to obtain,
after a few steps,

dv

dr
= c2

s

c2
s − v2

[
−v

r
+ nnPi(r) +

v2

c2
s

nn(Pi + Pc)

]
. (21)

Note that dv/dr becomes infinite when v approaches cs,
leading to a natural transition to the thin, collisionless Debye
sheath. The nature of equation (21) becomes clear if we
introduce the dimensionless quantities

u ≡ v/cs, ρ ≡ (nnPi/cs)r, and k(r) ≡ 1 + Pc(r)/Pi(r),

(22)

obtaining
du

dρ
= 1

1 − u2

[
1 + ku2 − u

ρ

]
. (23)

Solution of this equation will yield the radial profiles of n,
v, and φ. The properties of the plasma are contained in k(r),
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Figure 2. Solution of equation (23) for three values of k.

and these properties are only the ratio Pc/Pi. Equation (23) has
been solved in equation (16) together with equations for neutral
depletion and input-output balance in each radial shell. Here
we show results for uniform Te and nn. Figure 2 shows u(ρ)

for three values of k. The slope becomes infinite at different
values ρa, which should be identified with the sheath edge at
r = a. Rescaling ρ to the same r/a, one obtains the plot of
u versus r/a in figure 3, together with corresponding profiles
of n/n0 and η. Since Pc and Pi, and hence k, are independent
of nn, these profiles are independent of pressure and of the
numerical value of a. They are ‘universal’ in that sense, but
they will vary if KTe changes.

The result is that classical diffusion in discharges of
reasonable length is quite different from that in an infinite
cylinder. The density, and hence potential, has to be peaked
on axis in order to drive the ions out radially. They cannot
be driven toward the axis in steady-state equilibrium because
there is no fast way to escape from there.

Experimentally, the unexpected central peaking of density
in edge-ionized plasmas was reported by Evans and Chen [17].
This was explained by the time-averaged Lorentz force on the
electrons in the RF field, which caused the electron trajectories
to cross through the central region, building up their density
there and attracting the ions with the resulting E-field. That
mechanism was for an infinite cylinder and would be changed
by the presence of endplates.

3. The heritage of anomalous diffusion

In most experimental plasma devices, cross-field diffusion is
observed to be non-classical, and the previous fluid theories
are applicable only in first approximation. There is currently
no general consensus on which theory to use to describe
electron cross-field transport. In low-temperature devices,
anomalous electron diffusion has been observed in a broad
variety of plasmas with a wide range of ionization fractions.
In high-temperature devices the additional complication of
ion transport has been much better addressed by dedicated
theoretical and experimental efforts. Nowadays the anomalous
corrections to the ion neoclassical transport have a much better
theoretical framework than the electron transport.
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Figure 3. Renormalized profiles of n, v, and φ.

Since electron anomalous diffusion was initially observed
in elongated low-temperature partially ionized plasma tubes,
we will now review the historical development and comment.
Hoh and Lehnert [45] did a famous series of measurements
using electropositive gases, confirmed also by Allen et al
[46], showing that the agreement between experiment and
classical diffusion theory was valid only up to a certain critical
magnetic field. At magnetic fields higher than the critical
value, a much higher diffusion was present. Above the
critical magnetic field, the discharge loses its axial symmetry,
and exhibits regular oscillations appearing as rotating helical
structures [47]. In Hoy and Lehnert’s experiment they
used tubes long enough (tube length greater than 50 times
tube diameter) that any short-circuit effect as described by
Simon [14] was suppressed. Hoh advanced the idea that
above the critical magnetic field, a wall sheath instability
might occur. Kadomtsev and Nedospasov [47] explained
the phenomenon from a different standpoint. They studied
harmonic perturbations of the form exp(imϕ + ikz − iωt)

in a diffusion model including fluid magnetized electrons.
Their dispersion relation led to the calculation of the correct
analytical value of the critical magnetic field, the correct
description of the onset of anomalous diffusion, and the
calculation of the frequency of oscillation of the unstable
mode. Their model was in successful agreement with the
measurements done by Hoh and Lehnert. The limitations of
using a hydromagnetic fluid model in low-density collisionless
plasmas were described later by Schmidt [48], who used a
‘self-consistent’ guiding-center model to describe the plasma
motion across the magnetic field. His approach gave more
detailed information on plasma behavior (e.g. the discussion
of a polarization layer), but no comparison with experiments
was given.

Despite the success of the Hoh–Lehnert experiments
and of the Kadomtsev–Nedospasov theory, the measurements
were still controversial. Other authors [49, 50] reported
diffusion in agreement with classical rates (D ∼ 1/B2) in
shorter cylindrical discharges at high levels of ionization even
in strong magnetic fields. Classical rates were calculated
also for fully ionized plasmas. Maintaining a fully ionized
plasma in equilibrium normally requires a fusion confinement
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device in the form of a torus or magnetic mirror. In these
machines, unavoidable instabilities enhance diffusion well
above the classical rate based on ion–electron collisions. The
diffusion rates, originally calculated by Spitzer [18], have been
summarized by Book and published by Huba [19]. In thermal
plasmas with temperaturesTi andTe and no beams, the classical
diffusion coefficient for drifts across B is given by

D⊥ ≈ 10−4Zn ln �(KTe + KTi)/B
2 � m, (24)

where ln � is the Coulomb logarithm, a weakly varying
number of the order of 10. Note that D⊥ decreases as 1/B2,
in contrast with Bohm diffusion, which goes at the rate

DB = 1

16

KTe

eB
, (25)

which decreases more slowly with B and could be several
orders of magnitude larger. In early experiments plasma losses
occurred at a faster Bohm rate than the classical rate. Spitzer
once tracked down David Bohm in Brazil and asked him how
the factor 1/16 was derived. Bohm did not remember! The 1/B
‘Bohm diffusion’ was interpreted by Bryan Taylor [51] as the
maximum value which the transverse diffusion can ever attain.
At that time Taylor was investigating the correlation function
of the fluctuating electric field in a plasma [52] as a means
for the calculation of the mean force on a slowly moving test
charge, and ultimately obtain the transport coefficients. Taylor
applied his method to the problem of diffusion of ions across a
magnetic field [53]. He found that ion diffusion was driven by
three contributions, two of which arose from the mean force
on the ion, and the third one from the fluctuations. For the case
of different ion and electron temperatures, Ti �= Te, Taylor’s
method suggested results substantially different than that of
the classical Chapman–Enskog expansion.

Guest and Simon [54] extended the Kadomtsev–
Nedospasov model to the cases ofB-fields higher than a critical
threshold or of background pressures below a critical value.
According to their interpretation, in a magnetized plasma
column at low pressure the different azimuthal streams of
ions and electrons are the main driving force of the instability.
The difference in the streams generates an oscillating electric
field Eθ in the azimuthal direction that in turn increases
radial diffusion via the Eθ × B drift. The frequency of the
oscillating azimuthal Eθ field was approximately equal to
ωrot ≈ π/(4L)mi(1 + Te/Ti), where L is the discharge length
and µi is the average ion velocity to the end walls. Despite
the evident role of the plasma angular momentum, no explicit
calculation of this quantity was done. Further experiments
using cesium plasmas and comparison with calculations
supported the transition from classical to anomalous diffusion,
also confirming Bohm diffusion as the maximum limiting value
of the process.

Chen [55, 56] found that even the reflex arc works only
because of cross-field diffusion caused by the E×B instability.
In the reflex arc, the arc is in a dc magnetic field and the
cathodes (either cold or thermionic) are at each end. The anode
surrounds the plasma; as a consequence, the discharge current
can flow only across the B-field. A further important step in

understanding the instabilities in crossed electric and magnetic
fields was made by Simon [57] (Simon–Hoh instability).
Simon showed that when a strong electric field is applied across
the magnetic field in a non-uniform plasma, the discharge
becomes unstable. The instability occurs when the electric
field is in the same direction as the density gradient. In
the reflex arc this is the direction of the applied ionizing
potential, and only the instability allows the discharge current
to flow. A different, original approach to the problem of cross-
field diffusion was proposed by Kurşunoğlu [58], who used
stochastic theory to sample the Langevin equation and follow
the Brownian motion of charged particles across the field
lines. He derived expressions of both classical and ‘enhanced’
diffusion coefficients.

The subject of anomalous diffusion became so important
that an Anomalous Absorption Conference series was started
and has persisted for over four decades. At the end of the
last century Bohm’s anomalous transport was predominantly
interpreted as an upper limiting value of cross-field diffusion
[59], with low-frequency drift-wave fluctuations playing the
major role in enhancing classical diffusion [60]. At small
amplitudes of the fluctuating azimuthal E-field the diffusion
remains classical; when the amplitude of the oscillation is
increased, the diffusion gradually shifts to the anomalous 1/B
trend [61]. In fusion devices, electron drift instabilities can
be suppressed by such mechanisms as shear, minimum-B, and
short connection length. Similar instabilities can be driven by
other energy sources, such as ion temperature gradients.

Any plasma with a density gradient, which includes any
confined plasma, suffers from a universal instability discovered
by Sagdeev and Chen [41] called a resistive drift wave
instability. A Langmuir probe inserted into a Q-machine would
show a turbulent spectrum of electrostatic oscillations which
caused anomalously rapid diffusion across B. By applying a
voltage on an aperture limiter, the instability could be brought
near threshold so that it could be seen as a sine wave oscillation
[42]. In a cylinder, a drift wave propagates azimuthally in the
electron diamagnetic drift direction and has a long wavelength
in the direction of B. Its azimuthal electric field causes an
oscillating radial drift of both ions and electrons. When the
wave is growing, the radial drift is out of phase with the density
perturbation, such that the drift is outward when the density
is high and inward when the density is low. Thus, there is a
net transport of plasma toward the boundary. In the nonlinear
state, the plasma can be envisioned as escaping in ‘blobs’ [43],
and these have been observed in fusion devices [44].

The mechanism of resistive drift waves is illustrated in
figure 4, showing the edge region in one cross section of the
plasma. The density profile of an azimuthal perturbation, a
component of noise, is shown in the shaded plasma region.
When the Boltzmann relation is satisfied, the potential φ1 is
in sync with the density perturbation, as shown by the + and
− signs in column 1. The resulting electric field E1 causes
an E1 × B0 drift which is 90◦ out of phase with n1 and is
seemingly harmless. These drifts bring denser plasma in from
the plasma interior. However, the E1 ×B0 drifts are not equal
for ions and electrons because the finite-Larmor-radius effect
slows down the ions more than the electrons. Consider the
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Figure 4. The mechanism of resistive drift waves.

situation at the center of the diagram. Electrons are drifting
in faster, so a negative charge accumulates, shifting the φ1

distribution downward, as in column 2. Now the E1 × B0

drifts are shifted so that more plasma is brought in where the
density is already higher than normal, and vice versa, so the
perturbation grows.

To be unstable, such a perturbation must have long
wavelength along B0 so that electrons cannot short circuit the
E-field by moving along B0. There must be finite resistivity;
hence the name resistive drift. The n–φ phase shift can be
measured even if the unstable wave has reached a constant
amplitude due to damping or nonlinear saturation. It is an
important characteristic of instabilities and is often measured
with correlation techniques [20].

Though classical diffusion in fully ionized plasmas has
not been achieved in fusion research, it has been observed in
two experimental inventions: Q-machines [21] and machines
with levitated internal conductors, such as octopoles [22, 23].
Multipole machines, which have internal ring conductors
either levitated magnetically or supported by thin wires, can
produce minimum-B volumes where |B| increases in all
directions. Plasmas created there are stable and can diffuse
classically. Q-machines produce plasma by thermal injection.
Electrons are emitted from tungsten ‘cathodes’ heated to
2400 K at the ends of uniform B-field lines. Atoms of sodium
or potassium are injected toward the cathodes, where they
are ionized upon contact, since their ionization potentials are
smaller than the work function of the tungsten. Thus, a thermal
plasma at 2400 K is formed without any applied electric fields.
Nonetheless, spontaneous oscillations were observed [24]
which caused enhanced diffusion [25], as explained below. By
applying magnetic shear with a current through a 1 cm diameter
aluminum tube strung through holes in the hot cathodes, Chen
and Mosher [26] quenched the oscillations and brought the
diffusion down to within a factor 2 of classical.

4. Cross-field electron kinetics

Fluid models of cross-field transport, as those described in
section 2, are convenient for rapid but approximate descriptions
of the macroscopic behavior. In low-temperature conditions,
ions are well described by fluid models, since their kinetic
behavior is negligible. However, electrons exhibit features
that cannot entirely be taken into account within the fluid
framework, and a kinetic treatment is sometimes required.
There are cases where the electron distribution function can
be driven far from a Maxwellian state.

A complete theoretical treatment of the electron cross-
field kinetics has never been fully developed, even if statistical
mechanics offers the proper framework for such analysis.
The full kinetic behavior of N free classical particles (both
charged and neutrals) immersed in a magnetic field is formally
described by Liouville’s theorem of the time evolution of
the phase-space distribution function. The Liouville theorem
can opportunely be rewritten (Bogolyubov [27], Born and
Green [28], Kirkwood [29, 30], Yvon [31] (BBGKY)) as
a hierarchy of integro-differential equations relating the
k-particle distribution function fk to the k + 1 particle
distribution function fk+1. Even if the BBGKY hierarchy does
not have any more information than Liouville’s theorem, it is
much more useful. It allows the chain to be cut off at some
stage, and to make clear the error which occurs in the cut-off.
Typical truncations of the hierarchy are at the order zero, giving
the Vlasov equation,

∂f0

∂t
+ v · ∇r f0 + a · ∇v f0 = 0 (26)

or at the first order, giving the Boltzmann equation:

∂f1

∂t
+ v · ∇r f1 + a · ∇v f1 = C1(f2). (27)

In the Boltzmann model, only two-body interactions (electron–
electron, electron–neutral, electron–ion, and so on) are
included for the evaluation of the collision integral C1(f2). The
termination of the chain at such low order is, however, critical,
since it introduces an error. When the distribution function is
not too far from a state of statistical equilibrium (Maxwellian
distribution), the error committed in the truncation of the
chain is of order gk , where k is the order of truncation, and
g ∝ (n/T 3

e )1/2 is the inverse of the classical plasma parameter.
The parameter g is proportional to the ratio of the average
interaction energy between particles to their average kinetic
energy. When g is increased, the distribution function departs
from a Maxwellian, and kinetic effects become gradually more
relevant. At high g’s (g � 1) the truncation of the hierarchy
at the first order (Boltzmann equation) loses its validity, and
higher orders of the hierarchy are necessarily required. Models
of electron kinetics are typically truncated at the first order of
the BBGKY, so that only a solution of the Boltzmann equation
is sought.

The solution of the electron Boltzmann equation can be
obtained using both analytical and numerical tools. The
Chapman–Enskog method [32] and Grad’s moment method
[33] are two powerful analytical methods to find approximate
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solutions of the Boltzmann equation. The first is based on the
expansion of the distribution function in terms of associated
Laguerre polynomials [34]. The latter expands the distribution
function in a series of tensorial Hermite polynomials. Both
methods involve series expansions, which must be truncated
at some order for practical calculations. The truncation of the
series introduces an additional error into the description of the
cross-field electron kinetics. Numerical methods for solution
of the electron Boltzmann equation are typically based on
one of the following techniques: (1) an implementation of the
Chapman–Enskog or Grad’s solution, with the series truncated
at some convenient order, (2) a discretization of the operators
of equation (27) using finite differences, finite-volumes, and
quadratures of the integral operator, or (3) a discretization of
the solution using finite elements.

The solution of the Boltzmann equation gives a first insight
into the cross-field electron kinetics. Druyvesteyn [35] first
derived the electron velocity distribution function in a uniform
electric field for the simple case of impacts with velocity-
independent cross sections; cf Smirnov [36]. Druyvesteyn’s
result can easily be generalized to the case of crossed electric
and magnetic fields by solving the stationary and spatially
uniform Boltzmann problem for the case E = Exx̂ and B0 =
Bzẑ. To simplify the calculation, we assume weakly ionized
conditions. Then, the density of electrons is much lower than
that of the neutral gas, and electron–neutral collisions are by
far the most frequent collision event: νeo � νei. The electron–
electron collision frequency can be neglected since these
only maintain the Maxwellian distribution. Expanding the
distribution function into three terms (spherical contribution,
electric field contribution, and E × B drift),

f (v) = f0(v) + vxf1(v) + vyf2(v) (28)

and expressing the collision integral as

C(f ) = C(f0) − νeovxf1 − νeovyf2, (29)

where the collision integral C(f0) for elastic collisions of
electrons with the background gas at temperature To is obtained
by solving the Fokker–Planck equation, we have

C(f0) = m

M

KTo

v2

∂

∂v

[
v3νeo

(
f0

KTo
+

1

mv

∂f0

∂v

)]
. (30)

Substituting equations (28), (29), and (30) into the Boltzmann
equation (30), the following solution is found for the electron
velocity distribution function:

f0(v) = ao exp

[
−

∫ v

0

mv

KTo + e2ME2
x/

(
3m2(ν2

eo + ω2
ce)

) dv

]
(31)

f1(v) = −
(

eExveo

ν2
eo + ω2

ce

)
1

mv

∂f0

∂v
(32)

f2(v) = −ωce

νeo
f1(v), (33)

where the normalization constant a0 is a function of the density.
When the magnetic field is zero (ωce → 0), the solution
(31)–(33) returns the classical Druyvesteyn distribution in the

absence of a magnetic field, with f2(v) = 0. Integrating
equations (31)–(33) over the spherically symmetric part f0(v)

of the distribution function, the drift velocity of electrons in
direction perpendicular to the B-field can be derived:

ue,x = eEx

3m

∫
1

v2

d

dv

(
νeov

3

ν2
eo + ω2

ce

)
f0(v) dv (34)

ue,y = −eExωce

3m

∫
1

v2

d

dv

(
v3

ν2
eo + ω2

ce

)
dv. (35)

Equations (34) and (35) are an approximate solution of the
electrons’ cross-field kinetics in weakly ionized conditions.
The two components x and y are both in the direction
perpendicular to the magnetic field, with x being along the
electric field and y along the E×B direction. The limiting case
of equations (34) and (35) for strong magnetic fields ωce → ∞
gives:

ue,x � ue,y, ue,y = −eEx/mωce. (36)

Equation (36) shows that at strong magnetizations the main
drift motion is along the E × B direction and is independent
of the collision frequency. A similar procedure can be extended
also to weakly ionized ions [37], adding dedicated treatments
of ion–neutral collisions and of charge-exchange processes.
The equal mass of ions and neutrals involves significant
momentum transfer among the two species. Charge-exchange
usually determines a significant deceleration of the ion fluid,
causing the so-called charge-exchange drag. The concurrent
effect of charge-exchange deceleration and ionization (new
ions generated at rest) can be seen at a macroscopic fluid level
from the parameter k(r) in equation (22). Kinetic calculations
including finite-size effects [38, 39] show the possibility of
controlling the discharge parameters by modifying the short-
circuiting conditions at the plasma wall. An extensive review
giving experimental evidence of the relevance of the short-
circuiting conditions for electron kinetics is given by Zhilinskii
and Tsendin [40].

5. Summary

In discharges in which the B-field intersects endplates, the
sheaths on the endplates will self-adjust to equalize ion and
electron fluxes on each field line. The appearance that electrons
have crossed the B-field to follow the faster cross-field motion
of the ions is called the Simon short-circuit effect. In very
long discharges or those with closed magnetic surfaces, the
azimuthal E × B drifts of the electrons and ions are not equal
because of finite Larmor radius effects. In the presence of the
necessary pressure gradient in a confined plasma, a drift-wave
instability can then arise with an azimuthal wavelength. The
wave causes an oscillating radial drift of the plasma such that
the drift is outward when the density is high and inward when
the density is low, leading to enhanced plasma losses to the
wall. This loss rate is proportional to the phase shift between
the ñ and φ̃ oscillations of the drift wave.
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développement des fonctions continues en séries Math.
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