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ABSTRACT  

 The long-standing problem of plasma diffusion across a magnetic field (B-
field) is reviewed, with emphasis on low-temperature linear devices of finite 
length with the magnetic field aligned along an axis of symmetry.  In these 
partially ionized plasmas, cross-field transport is dominated by ion-neutral 
collisions and can be treated simply with fluid equations.  Nonetheless, electron 
confinement is complicated by sheath effects at the endplates, and these must be 
accounted for to get agreement with experiment.  

I.  Classical diffusion  

 After almost one century of developments in plasma research, the diffusion of plasma 
across a magnetic field still remains a fundamental problem of interest in many applications.  In 
the low-temperature plasmas typically used in the industry, like magnetrons or helicons, cross-
field diffusion determines the transport phenomena and the properties of the discharge.  In the 
high-temperature magnetically-confined plasmas used for thermonuclear fusion, the cross-field 
diffusion regulates the fluxes from the hot core to the colder scrape-off layer at the edge, and 
consequently the fluxes to the plasma facing components, critical for the design of the machine.  
Interestingly, the same problem is of concern in both low-temperature and high-temperature 
plasmas, but for different reasons.  Being of such large interest, the topic has attracted 
considerable attention all along the history of plasma physics.  The literature available is so 
extensive that this review will be necessarily limited in scope.  It is the aim of the present paper 
to review the major advancements on both theory and experiment, focusing attention on cross-
field diffusion in partially ionized plasmas of finite length.  

In fully ionized plasmas, “classical” diffusion arises from electron-ion Coulomb 
collisions with an arbitrary cut-off.  In this case, diffusion is so slow that other effects, such as 
“Bohm diffusion”, arise from instabilities.  Theories rarely agree with measured loss rates until 
nonlinear saturation of instabilities and the final turbulent state are accounted for.  In fusion 
research, diffusion in toroidal devices is further complicated by the magnetic geometry, which 
spawns banana orbits and magnetic islands.  Progress in understanding cross-field diffusion was 
made possible by the construction of linear machines with uniform B-fields.  Such devices 
include, for instance, weakly ionized plasmas such as helicon discharges, and fully ionized Q-
machines, with low electron temperatures KTe of about 3 eV, and 0.21 eV, respectively.  The 
price one pays for such simple B-fields is that there are sheaths on the endplates, and these have 
to be treated properly, as is done in the paper. 

II.  Partially ionized plasmas, fluid perspective 
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 Cross-field diffusion in cold-plasma theory follows the equation of motion of ions in 
steady state1,2,3:   

 ( ) ( iMn Zen p Mn v⋅ = × − −v v E + v B) v∇ ∇ , (1) 

where M is the ion mass, v the ion fluid velocity, n the plasma density, pi the ion pressure nKTi,  
ν the ions’ collision frequency, which is dominated by charge-exchange collisions with neutrals, 
and the other symbols are obvious.  For simplicity, we have omitted the off-diagonal elements of 
the stress tensor, which contain the viscosity.  A similar equation describes the electron fluid, but 
we shall find that electrons rarely follow that equation; rather, they tend to fall into a Maxwellian 
distribution and obey the Boltzmann relation. The anomalous mechanism of electron scattering 
and the surprising Maxwellization of the electron distribution in bounded domains have been 
observed even at very low collisionalities4 and interpreted as plasma-boundary oscillations5, non-
local effect of electron kinetics6, or convective ion-acoustic instabilities7 near the discharge 
boundary.  The nonlinear convection term ⋅∇v v will play an important rôle later but can be 
neglected for now.  In the direction of B, or if B = 0, we can define the usual diffusion and 
mobility coefficients by solving for v with Z = 1:    

   

 ( )1 e KT n
en KT n

Mnv Mv Mv n
= − = −v E E

∇∇ . (2) 

The coefficient of E is the ion mobility μi, and the coefficient of ∇n/n is the ion diffusion 
coefficient Di.  Similar definitions obtain for electrons, with μe positive.   
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Ambipolar diffusion occurs when both species have the same flux nvi,e: 

 i i e en D n n D nμ μ− = − −E E∇ ∇ . (4) 

In order for this to happen, there must be an electric field E given by 

 i e

i e

D D n

nμ μ
−=
+

E
∇

.
 (5) 

When this E-field is inserted into Eq. (4), the common ambipolar diffusion coefficient Da is 
found to be 

 i e e i
a

i e

D D
D

μ μ
μ μ

+≡
+

. (6) 

 This result applies only to diffusion along B, or when B = 0.  For diffusion across B, we 
must use the perpendicular components of Eq. (1).  Again with the nonlinear term neglected, 
these are, for either species, 
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where ± stands for the sign of the charge, and where we have introduced the cyclotron frequency 
ωc ≡ eB/m, defined as positive for either species.  It is customary now to replace ν with its 
reciprocal 1/τ to obtain the familiar factor ωcτ, whose size tells whether collisions destroy the 
cyclotron orbits or not.  Simultaneous solution of Eqs. (7) for vx and vy yields 
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 (8) 

The first two terms of each equation show that the mobility and diffusion coefficients for 
transport perpendicular to B are reduced by the magnetic field: 

 
2 2 2 2
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. (9) 

Electrons normally have large ωc′s and diffuse slowly across B.  The last two terms of each 
equation (8) are the E × B and diamagnetic drifts, vE and vD, reduced by a collisional factor.   
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Thus, the cross-field velocity for either species can be written succinctly as 
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 Many classic papers have been written on variations and applications of these results.  
For instance, there are books by Delcroix8, Rozhansky and Tsendin9, Shkarofsky et al.10, and 
others.  Robson et al.11 have discussed collision cross sections.  Fruchtman12 has extended such 
fluid theories to ambipolar and non-ambipolar diffusion in both linear and nonlinear regimes.  
Most theories assume infinite, one-dimensional half-spaces or infinite cylinders, neither of which 
exists in reality.  In a long cylinder uniformly ionized at the edge by, say, radiofrequency (RF) 
antennas, one would expect that, in a strong B-field, the plasma density would be peaked at the 
edge because the electrons diffuse so slowly.  However, this is rarely observed because finite 
plasmas have boundaries, and collisionless sheaths are needed there to equalize ion and electron 
losses and maintain quasineutrality of the plasma. 

 Particularly important are the sheaths on the surfaces (“endplates”) which intersect the 
field lines of the B-field.  Electrons can escape along B in nanoseconds unless they are repelled 
by the Coulomb barrier of a sheath.  Ions enter the sheath at the Bohm speed13, which is equal to 

the acoustic velocity 1/2( / )s ec KT M= , where M is the ion mass.  Electrons enter with their one-

dimensional thermal velocity 1/2(2 / )th ev KT mπ= and are repelled by a factor / eeV KTe , where V is 
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the (negative) sheath drop.  Equating electron and ion fluxes to the endplates yields a sheath drop 
of −TeV[½ln(M/2πm)] ≈ −4.7TeV in argon (with Ti << Te), where TeV is KTe in electron-volts.  
Thus, if KTe is about 3eV in a gas discharge, there is a sheath drop of about 15eV at the 
endplates.  A similar calculation could be made for losses to the side boundary of a cylinder, but 
it would be inaccurate because electrons can oscillate at immeasurably high frequency, and the 
cylinder may not be exactly aligned along B.  At the endplates, however, an interesting 
mechanism called the Simon14 “short-circuit” effect occurs.   

 To illustrate this effect, consider a cylinder of radius a and length 2L such that the ion 
flux at KTi to the endplates is slow and can be neglected.  Let the ionization source be localized 
at the radial edge.  We wish to show that the density peak is nonetheless located on axis.  Figure 
1 shows one end of the discharge and the sheath conditions there.  Initially, density n is higher in 
magnetic tube 1 near the edge.  The sheath there must be thicker to repel more electrons, and that  
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Fig. 1.  Initial sheath conditions at an endplate. 

generates an inward-pointing E-field which drives ions inwards.  By adjustments of the sheath 
drop, the electron density can follow the ion density without actually moving across B.  This 
allows electrons to be Maxwellian and follow the Boltzmann relation everywhere, but at the 
local temperature.  The short-circuit effect cannot equalize KTe across B-lines.  Ultimately, the 
plasma is quasineutral and peaks on axis, even though ionization is at the edge15.  By the 
Boltzmann relation, the plasma potential must also peak on axis, corresponding to an outward-
pointing E-field, which drives the loss of ions to the edge.  Thus, “classical diffusion” in infinite 
cylinders is not easy to achieve because of the sheath effects at endplates. 

 If one assumes that the electrons are Maxwellian everywhere, a consequence is that the 
plasma density profile n(r) has a “universal” shape independent of the pressure p and discharge 
radius a.  Eq. (1) in its full form is16: 

 ( ) ( ) 0io iM n Mn en Mn en KT nν∇ ⋅ + ⋅∇ − + = × − ∇ ≈v v v v E v v B  (12) 

The first term represents drag due to injection of slow ions by ionization, νio is the frequency of 
ion-neutral charge-exchange collisions, and the terms on the right can be neglected.  The ion 
temperature is small; and the ( )×v B term, which describes ion Larmor orbiting, is small if the 
ion Larmor radius at the electron temperature is much larger than a.  Te is used here because ions 
are accelerated by electric fields scaled to Te.  Defining the ionization and collision probabilities 
as  

 ( ) ( ), ( ) ( ) /i ion c cx io nP r v r P r v r nσ σ ν≡ < > ≡ < > = , (13) 

where nn is the density of neutrals, we can combine Eq. (12) with the equation of continuity 



 5
 ( ) ( )n in nn P r∇ ⋅ =v . (14) 

to obtain 

 ( ) 0n i cM e Mn P P⋅∇ − + + =v v E v . (15) 

Ions will move slowly along ˆBz because electron conductivity prevents any large Ez from arising.  
Thus, we need consider only the r component of Eq. (15).  With the usual definitions 

 ½, / , ( / )e s ee KT c KT Mφ η φ= −∇ ≡ − ≡E , (16) 

the radial components of Eqs. (15) and (14) become 

 2 ( )s n c i
dv d

v c n P P v
dr dr

η= − +  (17) 

 
(ln )

( )n i
dv d n v

v n P r
dr dr r

+ + = , (18) 

where we have dropped the subscript from vr.  The local electron Boltzmann relation, given by  

 
/

0 0
(ln )

,ee KT d n d
n n e n e

dr dr
φ η η−= = = − , (19) 

can be inserted into Eq. (18) to obtain 

 ( )n i
dv d v

v n P r
dr dr r

η− + = . (20) 

Finally, dη/dr can be inserted from Eq. (17) to obtain, after a few steps, 

 
2 2

2 2 2
( ) ( )s

n i n i c
s s

cdv v v
n P r n P P

dr rc v c

 
= − + + + −  

. (21) 

Note that dv/dr becomes infinite when v approaches cs, leading to a natural transition to the thin, 
collisionless Debye sheath.  The nature of Eq. (21) becomes clear if we introduce the 
dimensionless quantities 

 / , ( / ) , and ( ) 1 ( ) / ( )s n i s c iu v c n P c r k r P r P rρ≡ ≡ ≡ + , (22) 

obtaining 

 2
2

1
1

1

du u
ku

d uρ ρ
 = + − −  

. (23) 

Solution of this equation will yield the radial profiles of n, v, and φ.  The properties of the plasma 
are contained in k(r), and these properties are only the ratio Pc/Pi.  Eq. (23) has been solved in 
Ref. 16 together with equations for neutral depletion and input-output balance in each radial shell.  
Here we show results for uniform Te and nn.  Figure 2 shows u(ρ) for three values of k.  The 
slope becomes infinite at different values ρa, which should be identified with the sheath edge at r 
= a.  Rescaling ρ to the same r/a, one obtains the plot of u vs. r/a in Fig. 3, together with 
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corresponding profiles of n/n0 and η.  Since Pc and Pi, and hence k, are independent of nn, these 
profiles are independent of pressure and of the numerical value of a.  They are “universal” in that 
sense, but they will vary if KTe changes.   
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        Fig. 2.  Solution of Eq. (23) for three values of k.           Fig. 3. Renormalized profiles of n, v, and φ. 

 The result is that classical diffusion in discharges of reasonable length is quite different 
from that in an infinite cylinder.  The density, and hence potential, has to be peaked on axis in 
order to drive the ions out radially.  They cannot be driven toward the axis in steady-state 
equilibrium because there is no fast way to escape from there.   

 Experimentally, the unexpected central peaking of density in edge-ionized plasmas was 
reported by Evans and Chen17.  This was explained by the time-averaged Lorentz force on the 
electrons in the RF field, which caused the electron trajectories to cross through the central 
region, building up their density there and attracting the ions with the resulting E-field.  That 
mechanism was for an infinite cylinder and would be changed by the presence of endplates. 

III. Fully ionized plasmas, fluid perspective 

 Maintaining a fully ionized plasma in equilibrium normally requires a fusion confinement 
device in the form of a torus or magnetic mirror.  In these machines, unavoidable instabilities 
enhance diffusion well above the classical rate based on ion-electron collisions.  The diffusion 
rates, originally calculated by L. Spitzer18, have been summarized by D. Book and published by 
J.D. Huba19.  In thermal plasmas with temperatures Ti and Te and no beams, the classical 
diffusion coefficient for drifts across B is given by19  

 4 210 ln ( ) / me iD Zn KT KT B−
⊥ ≈ Λ + Ω − , (24) 

where lnΛ is the Coulomb logarithm, a weakly varying number of the order of 10.  Note that D⊥ 
decreases as 1/B2, in contrast with Bohm diffusion, which goes at the rate 

 
1

16
e

B
KT

D
eB

= ’ (25) 

which decreases more slowly with B and could be several orders of magnitude larger.  In early 
experiments plasma losses occurred at the faster Bohm rate than the classical rate.  Spitzer once 
tracked down David Bohm in Brazil and asked him how the factor 1/16 was derived.  Bohm did 
not remember!     
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 Though classical diffusion in fully ionized plasmas has not been achieved in fusion 
research, it has been observed in two experimental inventions: Q-machines20 and machines with 
levitated internal conductors, such as octopoles21,22.  Multipole machines, which have internal 
ring conductors either levitated magnetically or supported by thin wires, can produce minimum-
B volumes where |B| increases in all directions.  Plasmas created there are stable and can diffuse 
classically.  Q-machines produce plasma by thermal injection.  Electrons are emitted from 
tungsten “cathodes” heated to 2400K at the ends of uniform B-field lines.  Atoms of sodium or 
potassium are injected toward the cathodes, where they are ionized upon contact, since their 
ionization potentials are smaller than the work function of the tungsten.  Thus, a thermal plasma 
at 2400K is formed without any applied electric fields.  Nonetheless, spontaneous oscillations 
were observed23 which caused enhanced diffusion24, as explained below.  By applying magnetic 
shear with a current through a 1-cm diam aluminum tube strung through holes in the hot 
cathodes, Chen and Mosher25 quenched the oscillations and brought the diffusion down to within 
a factor 2 of classical. 

IV. Fully ionized plasmas, kinetic perspective 

 Fluid models of cross-field transport, as those described above, are convenient for rapid 
but approximate descriptions of macroscopic behavior.  However, plasmas exhibit features that 
cannot entirely be taken into account within the fluid framework.  For example, there are cases 
where the electron distribution function can be driven far from a Maxwellian state.  In these 
cases, a kinetic approach is required. 

 The full kinetic behavior of N particles (both charged and neutrals) immersed in a 
magnetic field is formally described by Liouville’s theorem of the time evolution of the phase-
space distribution function.  The Liouville theorem can opportunely be rewritten (Bogolyubov26, 
Born and Green27, Kirkwood28,29, Yvon30) as a hierarchy of integro-differential equations relating 
the k-particle distribution function fk to the k+1 particle distribution function fk+1:  

 ( )1k k k kD f C f +=  (26) 

for k = 1, 2, …, N-2, where the derivative operator Dk of order k in the phase-space (t,r,v) and the 
collision operator Ck of order k are 
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Here the volume V is the phase-space volume where the number of particles is evaluated, and the 
acceleration ai,j of i relative to j is obtained from the solution of the Maxwell-Lorentz set of 
equations.  Even if the BBGKY hierarchy does not have any more information than Liouville’s 
theorem, it is much more useful.  It allows the chain to be cut off at some stage, and to make 
clear the error which occurs in the cut-off.  Typical truncations of the hierarchy are at the order 
zero, giving the Vlasov equation, 

 000
0 =∇⋅+∇⋅+

∂
∂

ff
t

f
vr av  (29) 

 or at the first order, giving the Boltzmann equation:  
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∂
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The Chapman-Enskog method31 and Grad’s moment method32 are two powerful analytical tools 
to find solutions of the Boltzmann equation.  The first is based on the expansion of the 
distribution function in terms of associated Laguerre polynomials33.  The latter expands the 
distribution function in series of tensorial Hermite polynomials.  In the Boltzmann model, only 
two-body interactions are included for the evaluation of the collision integral )( 21 fC .  The 
termination of the chain at such low order is however critical. When the distribution function is 
not too far from a state of statistical equilibrium (Maxwellian state), the error committed in the 
truncation of the chain is of order gk, where k is the order of truncation, and g ∝ (n/Te

3)1/2 is the 
inverse of the classical plasma parameter.  The parameter g is proportional to the ratio of the 
average interaction energy between particles to their average kinetic energy.  When g is 
increased, the distribution function departs from a Maxwellian, and kinetic effects become 
gradually more relevant.  At high g’s (g >> 1) the truncation of the hierarchy at the first order 
(Boltzmann equation) loses its validity, and higher orders of the hierarchy are required.  

 
V. Partially ionized plasmas, kinetic perspective 

 The Boltzmann kinetic equation allows evaluating both electron and ion cross-field 
transport rates in a weakly ionized plasma with considerable high fidelity.  Druyvesteyn34 first 
derived the electron velocity distribution function in a uniform electric field for the simple case 
of impacts with velocity-independent cross sections; c.f. Smirnov 35 .  In weakly ionized 
conditions, electron-neutral collisions are by far the most frequent collision event: νeo >> νei.  In 
these conditions, the density of electrons is much smaller than the density of their parent gas, so 
that the electron-electron collision frequency can be neglected with respect to the electron-
neutral collision frequency: νee << νeo.  

Druyvesteyn’s result can be generalized to the case of crossed electric and magnetic 
fields by solving the stationary and spatially uniform Boltzmann problem for the case E = Ex x̂  
and B0 = Bz ẑ .  Expanding the distribution function into three terms (spherical contribution, 
electric field contribution, and E × B drift),  

 )()()()( 210 vfvvfvvfvf yx ++=  (31) 

and expressing the collision integral as  

 0 1 2( ) ( ) eo x eo yC f C f v f v fν ν= − − , (32) 

where the collision integral C(f0) for elastic collisions of electrons with the background neutral 
gas at temperature To is obtained by solving the Fokker-Planck equation, we have 
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Substituting Eqs. (31), (32), and (33) into the Vlasov equation (29), the following solution is 
found for the electron velocity distribution function: 
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where the normalization constant a0 is a function of the density.  When the magnetic field is zero 
( 0→ceω ), the solution (34)-(36) returns the classical Druyvesteyn distribution in absence of 

magnetic field, with f2(v)=0.  Integrating Eqs. (34)-(36) over the spherically symmetric part f0(v) 
of the distribution function, the drift velocity of electrons in direction perpendicular to the B-
field can be derived:   
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Eqs. (37) and (38) are the solution of electrons cross-field diffusion in weakly ionized conditions.  
The two components x and y are both in the direction perpendicular to the magnetic field, with x 
being along the electric field and y along the E × B direction.  The limiting case of Eqs. (37) and 
(38) for strong magnetic fields ωce→ ∞ gives: 

 cexyeyexe meEuuu ω/, ,,, −=<< .    (39) 

Eq. (39) shows that at strong magnetizations the main drift motion is along the E × B direction 
and is independent of the collision frequency.  A similar procedure can be extended also to 
weakly ionized ions36.  Dedicated treatments of ion-neutral collisions and of charge-exchange 
processes are necessary in this case. The equal mass of ions and neutrals involve significant 
momentum transfer among the two species.  Charge-exchange usually determines a significant 
deceleration of the ion fluid, causing the so-called charge-exchange drag.  The concurrent effect 
of charge-exchange deceleration and ionization (new ions generated at rest) can be seen at the 
macroscopic fluid level from the parameter k(r) in Eq. (22).  Kinetic calculations including 
finite-size effects37,38 show the possibility of controlling the discharge parameters by modifying 
the short-circuiting conditions at the plasma wall.  An extensive review giving experimental 
evidence of the relevance of the short-circuiting conditions is given by Zhilinskii and Tsendin39. 

  
VI. Anomalous diffusion 

In actual devices, the electron cross-field diffusion is non-classical.  Anomalous electron 
diffusion has been observed in a broad variety of plasmas with a wide range of ionization 
fractions.  Studies on anomalous diffusion are related to the instabilities occurring in a plasma. 

In normal conditions, any plasma with a density gradient, which includes any confined 
plasma, suffers from a universal instability discovered by Sagdeev40 and Chen41 called a resistive 
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drift wave instability.  A Langmuir probe inserted into a Q-machine would show a turbulent 
spectrum of electrostatic oscillations which caused anomalously rapid diffusion across B.  By 
applying a voltage on an aperture limiter, the instability could be brought near threshold so that it 
could be seen as a sine wave oscillation42.  In a cylinder, a drift wave propagates azimuthally in 
the electron diamagnetic drift direction and has a long wavelength in the direction of B.  Its 
azimuthal electric field causes an oscillating radial drift of both ions and electrons.  When the 
wave is growing, the radial drift is out of phase with the density perturbation, such that the drift 
is outward when the density is high and inward when the density is low.  Thus, there is a net 
transport of plasma toward the boundary.  In the nonlinear state, the plasma can be envisioned as 
escaping in “blobs”43, and these have been observed in fusion devices44.   

Anomalous diffusion was initially observed in elongated partially-ionized plasma tubes.  
Hoh and Lehnert45 did a famous series of measurements using electropositive gases, confirmed 
also by Allen et al.46, showing that the agreement between experiment and classical diffusion 
theory was valid only up to a certain critical magnetic field.  At magnetic fields higher than the 
critical value, a much higher diffusion was present.  Above the critical magnetic field, the 
discharge loses its axial symmetry, and exhibits regular oscillations appearing as rotating helical 
structures47.  In their experiment they used tubes long enough (length bigger than 50 times the 
diameter) so that any short-circuit effect as described by Simon14 was suppressed.  Hoh advanced 
the idea that above the critical magnetic field, a wall sheath instability might occur.  Kadomtsev 
and Nedospasov47 explained the phenomenon from a different standpoint.  They studied 
harmonic perturbations of the form exp(imφ + ikz − iωt) in a diffusion model including fluid 
magnetized electrons.  Their dispersion relation led to the calculation of the correct analytical 
value of the critical magnetic field, to the correct description of the onset of anomalous diffusion, 
and to the calculation of the frequency of oscillation of the unstable mode.  Their model was in 
successful agreement with the measurements done by Hoh and Lehnert. The limitations of using 
a hydromagnetic fluid model in low-density collisionless plasmas were described later by 
Schmidt48, who used a “self-consistent” guiding-center model to describe the plasma motion 
across the magnetic field.  His approach gave more detailed information on plasma behavior (e.g. 
the discussion of a polarization layer), but no comparison with experiments was given.  

Despite the success of the Hoh-Lehnert experiments and of the Kadomtsev-Nedospasov 
theory, the measurements were still controversial.  Other authors49,50 reported diffusion in 
agreement with classical rates (D ~ 1/B2) in shorter cylindrical discharges at high levels of 
ionization even in strong magnetic fields.  The 1/B “Bohm diffusion” was interpreted by Bryan 
Taylor51 as the maximum value which the transverse diffusion can ever attain.  At that time 
Taylor was investigating the correlation function of the fluctuating electric field in a plasma52 as 
a means for the calculation of the mean force on a slowly moving test charge, and ultimately 
obtain the transport coefficients.  Taylor applied his method to the problem of diffusion of ions 
across a magnetic field53.  He found that ion diffusion was driven by three contributions, two of 
which arose from the mean force on the ion, and the third one from the fluctuations.  For the case 
of different ion and electron temperatures, Ti ≠ Te, Taylor’s method suggested results 
substantially different than that of the classical Chapman-Enskog expansion.  Guest and Simon54 

extended the Kadomtsev-Nedospasov model to the cases of B-fields higher than a critical 
threshold or of background pressures below a critical value.  According to their interpretation, in 
a magnetized plasma column at low pressure the different azimuthal streams of ions and 
electrons are the main driving force of the instability.  The difference in the streams generates an 
oscillating electric field Eθ in the azimuthal direction that in turn increases radial diffusion via 
the Eθ × B drift.  The frequency of the oscillating azimuthal Eθ field was approximately equal to 
ωrot  ≈ π/(4L) ui (1 + Te/Ti), where L is the discharge length and ui is the average ion velocity to 
the end walls.  Despite the evident role of the plasma angular momentum, no explicit calculation 
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of this quantity was done.  Further experiments using cesium plasmas and comparison with 
calculations supported the transition from classical to anomalous diffusion, also confirming 
Bohm diffusion as the maximum limiting value of the process.  

Chen55,56 found that even the reflex arc works only because of cross-field diffusion 
caused by the E × B instability.  In the reflex arc, the arc is in a DC magnetic field and the 
cathodes (either cold or thermionic) are at each end.  The anode is surrounds the plasma; as a 
consequence, the discharge current can flow only across the B-field.  A further important step in 
understanding the instabilities in crossed electric and magnetic fields was made by A. Simon57 

(Simon-Hoh instability).  Simon showed that when a strong electric field is applied across the 
magnetic field in a non-uniform plasma, the discharge becomes unstable.  The instability occurs 
when the electric field is in the same direction as the density gradient.  In the reflex arc this is the 
direction of the applied ionizing potential, and only the instability allows the discharge current to 
flow.  A different, original approach to the problem of cross-field diffusion was proposed by 
Kurşunoğlu58, who used stochastic theory to sample the Langevin equation and follow the 
Brownian motion of charged particles across the field lines.  He derived expressions of both 
classical and “enhanced” diffusion coefficients.   

The subject of anomalous diffusion became so important that an Anomalous Absorption 
Conference series was started and has persisted for over four decades.  At the end of the century 
Bohm’s anomalous transport was predominantly interpreted as an upper limiting value of cross-
field diffusion59, with low-frequency drift-wave fluctuations playing the major role in enhancing 
classical diffusion60.  At small amplitudes of the fluctuating azimuthal E-field the diffusion 
remains classical; when the amplitude of the oscillation is increased, the diffusion gradually 
shifts to the anomalous 1/B trend61.  In fusion devices, electron drift instabilities can be 
suppressed by such mechanisms as shear, minimum-B, and short connection length.  Similar 
instabilities can be driven by other energy sources, such as ion temperature gradients.  

 
VII.  Summary 

 In discharges in which the B-field intersects endplates, the sheaths on the endplates will 
self-adjust to equalize ion and electron fluxes on each field line.  The appearance that electrons 
have crossed the B-field to follow the faster cross-field motion of the ions is called the Simon 
short-circuit effect.  In very long discharges or those with closed magnetic surfaces, the 
azimuthal E × B drifts of the electrons and ions are not equal because of finite Larmor radius 
effects.  In the presence of the necessary pressure gradient in a confined plasma, a drift-wave 
instability can then arise with an azimuthal wavelength.  The wave causes an oscillating radial 
drift of the plasma such that the drift is outward when the density is high and inwards when the 
density is low, leading to enhanced plasma losses to the wall.  This loss rate can be verified by 
measuring the phase shift between the n and φ oscillations of the drift wave. 
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