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ABSTRACT 

 Partially ionized gas discharges used in industry are often driven by 
radiofrequency (rf) power applied at the periphery of a cylinder.  It is found that 
the plasma density n is usually flat or peaked on axis even if the skin depth of the 
rf field is thin compared with the chamber radius a.  Previous attempts at 
explaining this did not account for the finite length of the discharge and the 
boundary conditions at the endplates.  A simple 1D model is used to focus on the 
basic mechanism: the short-circuit effect.  It is found that a strong electric field 
(E-field) scaled to electron temperature Te, drives the ions inward.  The resulting 
density profile is peaked on axis and has a shape independent of pressure or 
discharge radius.  This “universal” profile is not affected by a dc magnetic field 
(B-field) as long as the ion Larmor radius is larger than a.   

 

I.  Introduction 

 The motivation for this work was the observation that n(r) is peaked on axis in both 
magnetized (helicon) and unmagnetized (ICP, Inductively Coupled Plasma) discharges even 
though the rf power is applied to a thin layer at the cylindrical periphery.  In ICPs, the rf skin 
depth is typically 3 cm, much shorter than a typical a of 10 cm.  In helicons, most of the rf power 
is absorbed by excitation of the Trivelpiece-Gould (TG) mode in a layer of typical thickness 
≤5mm, and yet n almost never has a hollow profile.  Most theory on gas discharges do not tackle 
the problem of equilibrium profiles; rather, they are about distribution functions and collision 
cross sections, which are peripheral to the problem of central peaking though they may have 
small effects on the details.  This paper is a short version of our complete paper1, published 
earlier, which contains the appropriate references   

 A previous attempt2 had been made to solve this problem.  The orbit of an electron in a 
cylinder with rf applied only at the circumference was traced through many rf cycles with the 
nonlinear radial Lorentz force L e= −F v B ×  included.  It was found that indeed the density was 

peaked on axis, partly because electron orbits crossed there, and partly because electrons were 
slow when they reached the center.  However, this was in the usual theoretical infinite cylinder. 

 Our approach here is to strip the problem of all unnecessary details, taking a cylindrical 
discharge tube and neglecting azimuthal variations.  The usual infinite cylinder would not be 
realistic, so we assume a tube length that is short enough that we can neglect variations in the 
axial direction z, but long enough that ions can cross the B-field by collisions.  A tube of such 
intermediate aspect ratio is shown in Fig. 1 
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 When there is a B-field, the electrons will be confined to move mainly along the field lines, but 
we shall see that this is not a necessary assumption.  We do assume that the B-field is weak enough that 
the ion Larmor radius is much larger than a.  The ion orbits will be curved, but this curvature can be 
neglected if we assume azimuthal symmetry and reduce to a one-dimensional problem in radius r.   

 Now, there is a problem of boundary conditions.  The radial boundary has to be non-conducting, 
since the antenna is located outside.  The endplates can be metal or dielectric; it will not matter.  The 
electrons will travel rapidly to the endplates, and a sheath will form to prevent them from leaving the 
discharge faster than the ions, thus preserving quasineutrality.  The sheath thickness and potential drop 
(“sheath drop”) can vary with r.  This variation causes a phenomenon called the “short-circuit effect”3, 
which requires explanation. 

 
Fig. 1.  An assumed discharge geometry. 

II.  The short-circuit effect 

 Figure 2a shows the sheath conditions at one endplate.  Assume that ionization occurs more 
strongly near the radial boundary, so that n is higher in magnetic tube (1) than in tube (2), which is closer 
to the axis.  Assume a strong B-field so that electrons move only along B, bouncing between the end-plate 
sheaths.  Electrons in each small tube will fall into a Maxwellian distribution with a temperature Te; but 
there is no communication between tubes, so Te can be different in each tube.  The ion flux to the endplate 
will be ncs, since ions will enter the sheath with the Bohm velocity, which is equal to the acoustic speed cs.  
For equal ion and electron fluxes, the sheath drop must satisfy 
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where φp is the (positive) plasma potential relative to the endplate, and the brackets are the electron 
thermal speed on the left and cs on the right.  The sheath drop φp is independent of density, and normally 
would be the same in tubes (1) and (2).  However, as the ions drift from (1) to (2) due to the density 
gradient, the density in (2) is increased, and the sheath drop there must increase, trapping more electrons 
to keep the plasma neutral.  Thus, electrons seem to have moved with the diffusing ions, but their density 
was adjusted only by a small adjustment of their losses through the sheath.   This short-circuit mechanism 
takes only a few nanoseconds, the time for electrons to move along B.  Once the electrons are able to 
“move” across B, they will fall into a thermal distribution following the Boltzmann relation: 
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Fig. 2.  Illustration of the short-circuit effect.  Magnetic tube (1) has higher density than tube (2). The sheath 
thickness has been greatly exaggerated.  (a) During short-circuiting; (b) During approach to equilibrium.  
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Here KTe can vary with r, since the short circuit effect does not actually move electrons across B, 
and each magnetic tube can retain its original Te.  With Eq. (2) satisfied everywhere, φ is high 
were n is high, and we have the situation in Fig. 2b.  There is now a radial electric field Er, scaled to Te, 

driving the ions inward much faster than diffusion at temperature Ti.  When the ions begin to pile 
up at the center, φ is high there, and the E-field reverses to drive the ions outward.  In 
equilibrium, both n and φ peak on axis, and the outward E-field accelerates ions up to the Bohm 
velocity at the sheath edge.   

III.  The ion equation 

 The steady-state ion motion can be described sufficiently well by the cold-fluid equation4. 

 ( ) ( ) 0io iM n Mn en Mn en KT nν∇ ⋅ + ⋅∇ − + = × − ∇ ≈v v v v E v v B . (3) 

Here M is the ion mass, v the ion fluid velocity, and νio the charge-exchange collision frequency.  
The first term in Eq. (3) accounts for drag due to ionization, which injects slow ions into the fluid.   
The two terms on the right-hand side will be neglected, the ×v B term because we are neglecting 
ion curvature, and the Ti term because Ti is usually <<Te.  The ions will be accelerated by E, 
which scales with Te.  The ion equation of continuity is 

 ( ) ( )n in nn P r∇ ⋅ =v , (4) 

where nn is the density of neutrals, and Pi is the ionization probability.  Pi and the collision 
probability are defined by 

 ( ) ( ), ( ) ( ) /i ion c cx io nP r v r P r v r nσ σ ν≡ < > ≡ < > = . (5) 

Using Eqs. (4) and (5) in Eq. (3) yields  

 ( ) 0n i cM e Mn P P⋅∇ − + + =v v E v . (6) 

With the usual definitions 

 ½, / , and ( / )e s ee KT c KT Mφ η φ= −∇ ≡ − ≡E , (7) 

the radial component of Eq. (6) becomes 
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and the radial component of Eq. (4) is 
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The derivative of Eq. (2) can be written 
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With this, Eq. (9) simplifies to 

 ( )n i
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v n P r
dr dr r

η− + = . (11) 

The factor dη/dr can be eliminated by using Eq. (8), resulting in a simple first-order differential 
equation for the ion velocity v:  
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This equation has the desirable property that dv/dr approaches infinity as v reaches cs (the Bohm 
criterion), making a natural transition to the much thinner Debye sheath.  Solutions of this 
equation yields the equilibrium profile of v, from which the desired profiles of n and φ can be 
calculated.   

IV.  Properties of the equilibrium profile    

 All quantities in Eq. (13) can be functions of r which can be calculated with refinements 
outside the scope of this paper.  For instance, a neutral-depletion calculation yields nn (r).  The 
weak dependence of charge-exchange probability Pc on v can be included easily.  However, Te(r) 
depends on energy deposition of the particular discharge type, and we much assume Te to be 
constant here.  The ionization probability Pi varies exponentially with Te, so our results will be 
sensitive to the assumed Te.  The properties of Eq. (13) are more easily seen if we introduce 
dimensionless variables:  

 / , ( ) 1 ( ) / ( )s c iu v c k r P r P r≡ ≡ + . (14) 

Eq. (13) becomes 

 2
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We next rescale r to remove nn from this equation, defining 

 ( / )n i sn P c rρ ≡ , (16) 
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which yields 

 2
2

1
1

1

du u
ku

d uρ ρ
 = + − −  

. (17) 

The variable ρ contains some of the discharge parameters, and those that are left⎯namely, Pc/Pi 
⎯ are in the parameter k in the nonlinear term.  Note that the magnetic field B is irrelevant. 

V.  Solutions for constant nn and Te  

 If nn and Te are fixed, k is also constant.  Figure 3 shows solutions of Eq. (17) for three 
values of k.  Each value gives a curve that reaches v/cs =1 at a different radius ρ, called ρa.  
Neglecting the sheath thickness, we can identify ρa with the discharge radius a.  When we 
rescale ρ for each curve so that their ρa’s are the same, we find that the curves are self-similar 
and all become the same curve.  This is the curve v/cs in Fig. 4, plotted against r/a together with 
the corresponding profiles of n and φ.  We thus have a “universal” equilibrium profile 
independent of neutral density nn.  It is also independent of the size of the plasma.  A plot similar 
to Fig. 4 appears as Fig. 12 in Ref. (5). 
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 Since Pi varies strongly with Te, this “universal” n(r) profile does change when Te is 
changed.  This is shown in Fig. 5.   

 

Fig. 3.  Solutions of Eq. (17) for three different values of k.  Fig. 4.  Rescaled solution of Eq. (17) for 15 mTorr 
of argon and KTe = 3 eV. 
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Fig. 5.  Equilibrium n(r) profiles at various electron temperatures.  The curves are in the same order as the legend 

(color online). 

 The situation is not quite so simple because of ionization balance, which requires that the 
net loss of ions from each cylindrical shell δr be equal to the input from ionization.  The 
necessary equation is  

 ( )1
( )n i e

d
rnv n P T

nr dr
= . (18) 

This has to be solved simultaneously with the dimensional equation (13).  The result is that Te is 
not arbitrary but depends on the plasma size a.  As seen in Fig. 6, only one Te gives a v(r) profile 
that fits into a 5-cm diam tube.   
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Fig. 6.  Profiles of v(r) in a 2.5-cm radius, 10-mTorr argon discharge.  

 When neutral depletion is included, there are three differential equations, including Eqs. 
(13) and (18), to be be solved simultaneously.  One of us (DC) has written a code EQM which 
does this and yields equilibrium profiles for all discharges with aspect ratios fitting our original 
assumptions.  The examples given above are for uniform Te, but EQM handles arbitrary Te(r).  
This code is then coupled to the HELIC code6 to give exact results for helicon discharges, 
including the value of Te(r).  Details are given in Ref. 1. 

 

VI.  Discussion 

 By reducing the problem of equilibrium radial profiles of partially ionized gases to its 
basic elements, we have found that these profiles tend to have a universal shape regardless of the 
neutral pressure and discharge radius.  The key novel feature is the short-circuit effect at the 
endplates, which allows electrons to cross the B-field in a practical sense, though not actually.  
The electrons then follow the Boltzmann relation, resulting in an E-field that initially drives the 
ions inward even if they are created at the edge, and later drives the ions outward after a centrally 
peaked density profile has been set up.  It is found that the equilibrium profiles have an almost 
universal shape, independent of pressure and B-field.  The results apply to all discharges, 
magnetized or not, of the type shown in Fig. 1. 

 The physical reason for centrally peaked profiles derives from the fact that sheath 
adjustments at the endplates allow electrons to effectively move across B.  This allows electrons 
to follow the Boltzmann relation, even across B.  In that case, n(r) must peak on axis in order for 
φ(r) to peak there.  If φ(r) did not peak there, the associated E-field would drive ions inwards, 
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where they would have nowhere to go, since diffusion along B at the ion temperature is very 
slow.  There are situations where our assumptions are not valid and n(r) is not peaked on axis, 
and we have observed these7.   

 In Fig. 4 the density profile is seen to be independent of pressure, although the pressure 
does appear in the definition of ρ.  The physical reason for this is that v is required to reach cs at r 
= a, and the E-field provides a feedback mechanism.  If, for instance, n(r) is too steep at one r, 
the E-field there would be stronger than normal, and the ions would be accelerated to smooth out 
the n(r) profile.  This adjustment has to be made regardless of the pressure. 

 Although the short-circuit effect maintains overall neutrality of the plasma in the interior 
of the discharge, a problem arises with losses to the radial wall.  Since the ions are unmagnetized, 
they have the same flux radially as they have axially; but electrons cannot move radially to 
balance these large radial ion losses.  If the radial wall is a grounded conductor, an escaping ion 
can be neutralized by an electron from the wall and be re-injected as a neutral atom.  However, if 
the wall is insulating, the ions will charge it positively; and a magnetic sheath will build up to 
slow down their escape.  The radial ion flux has to be balanced by a radial electron flux, which 
can be generated only by cross-field diffusion of electrons via electron-ion and electron-neutral 
collisions.  Thus, there will be layer about an electron Larmor diameter thick in which the radial 
electron flux is generated.  In this layer ions and electrons are lost both axially and radially.  The 
sheath fields will modify the shape of the electron gyro-orbits.  The radial sheath cannot be 
treated with the fluid theory used in this paper is therefore outside the purview of this paper.  
Since we assumed small electron Larmor radii, this layer will be thin enough to be neglected in 
the equilibrium profiles calculated here.   
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