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An improved method used to determine the absorption and scattering characteristics of a weakly
absorbing substance containing bubbles is suggested. The identification procedure is based on a combi-
nation of directional-hemispherical measurements and predictions of Mie-scattering theory including
approximate relations for a medium with polydisperse bubbles. A modified two-flux approximation is
suggested for the calculation of directional-hemispherical transmittance and reflectance of a refracting
and scattering medium. The complete identification procedure gives not only the spectral radiative
properties but also the volume fraction of bubbles and the characteristics of possible impurity of the
medium. This procedure is used to obtain new data on near-infrared properties of fused-quartz samples
containing bubbles. © 2005 Optical Society of America
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1. Introduction

In many natural phenomena, materials processing,
and manufacturing situations, the presence of bub-
bles affects the thermophysical and radiative proper-
ties of the two-phase system and hence the transport
phenomena. It is well known that radiation scatter-
ing by bubbles in the visible and infrared spectral
ranges affects the optical properties of semitranspar-
ent substances. One can remember the influence of
bubbles on scattering of light in the ocean,1 the role of
vapor bubbles in high-temperature radiative heating
of boiling water,2 and the glass melting process in
industrial furnaces where bubbles are generated by
chemical reactions.3 Similar structures with numer-
ous bubbles or hollow microspheres in a semitrans-
parent host medium are considered as advanced
thermal insulation materials4,5; many aerated foods
containing gas bubbles represent the height of culi-

nary art.6 Following the recent works by Pilon and
Viskanta7 and Baillis et al.,8 the present paper fo-
cuses mainly on glass industry applications. At the
same time, some methodological and physical results
may be interesting in the other previously mentioned
fields.

During the past decade, absorption and scattering
of infrared radiation in semitransparent disperse me-
dia have been intensively studied because of the im-
portance of thermal radiation in many engineering
applications. The most popular way to experimen-
tally determine the radiative properties of such me-
dia is a formal identification procedure consisting of
solving an inverse problem.9 This technique is based
usually on the radiation transfer theory. The coeffi-
cients of the radiation transfer equation (RTE)10 are
determined from the measurements of directional-
hemispherical and�or bidirectional transmittance
and reflectance of semitransparent samples.

Theoretical predictions of the radiative properties of
materials containing numerous separate particles or fi-
bers are usually based on Mie theory or similar solutions
for particles of different shape and structure.11 In some
cases, solving the inverse problem for the RTE is inap-
propriate because the radiation transfer theory is not
valid such as for relatively dense disperse systems. At the
same time, one can use the radiation diffusion approxi-
mation, which is treated not as a simplification of the
RTE but as a phenomenological approach.12,13 Similar
methods (Kubelka–Munk theory and its modifications,
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four-flux model) are employed traditionally to study the
optical properties of paints and scattering coatings.14–17

It is known that simultaneous identification of sev-
eral parameters including characteristics of anisotro-
pic scattering by use of an inverse procedure for the
RTE may lead to unreliable results due to the insuf-
ficient accuracy of the measurements and to the spe-
cific nature of the ill-posed inverse problem. To avoid
such a problem, one can simplify the radiation trans-
fer model or, if possible, use a procedure combining
experimental measurements with theoretical predic-
tions of some radiative properties. Both approaches
decrease the number of parameters to be identified,
but the latter seems preferable as it gives more de-
tailed information about the medium properties and
structure.

Two types of transmittance and reflectance measure-
ment can be used to provide the data for the identifi-
cation process, namely, directional-hemispherical or
directional–directional (bidirectional) measurements.18

Both measurement methods with normal incidence show
advantages and drawbacks. Directional-hemispherical
measurements are easily and rapidly acquired, but they
enable only the identification of the extinction coefficient
and albedo while the scattering (phase) function is as-
sumed to be known. The bidirectional measurements
contain much more information but are difficult to use for
identification of the scattering function in the case of
highly forward-scattering media. Usually, one can find
only an additional parameter: the asymmetry factor of
scattering.8

For the disperse systems considered in the present
paper, a combination of a traditional identification
procedure and theoretical predictions can be used.
Spherical bubbles in a weakly absorbing medium are
ideal objects for the application of Mie theory. Recent
calculations by Dombrovsky2 for the most interesting
range of parameters showed that scattering proper-
ties of polydisperse bubbles do not depend on radia-
tion absorption whereas the absorption is insensitive
to the size distribution of bubbles. These results are

used to suggest an improved identification procedure
for the directional-hemispherical measurements.

2. Theoretical Description of Radiative Properties of a
Weakly Absorbing Medium with Bubbles

The bubbles in an absorbing and refracting medium
are not exactly the same objects as those considered
in classical Mie theory,19,20 which deals with homo-
geneous spherical particles in vacuum. A composite
medium with bubbles consists of two different sub-
stances: a refracting and absorbing matrix and the
gas phase inside the bubbles. We will assume that
bubbles are randomly placed and there is no regular
structure or bubble clusters. In the case of relatively
small bubble concentration, the later assumptions
enable one to consider the bubbles as independent
scatterers.9,11

The spectral absorption coefficient and the trans-
port scattering coefficient of the polydisperse medium
of spherical bubbles of radius a with size distribution
F(a) can be calculated as follows2,11:

Fig. 1. Effect of the absorbing and refracting medium inside a
bubble on its efficiency factor of absorption for n0 � 1.4: a, �i

� 10�4; b, �i � 10�3; 1, ni � 1.1; 2, ni � 1.2.

Fig. 2. Effect of refracting medium inside a bubble on its trans-
port efficiency factor of scattering: a, n0 � 1.4; b, n0 � 1.5; 1, ni

� 1; 2, ni � 1.2; 3, ni � 1.3.

Fig. 3. Normalized size distribution of bubbles in the fused-
quartz sample.
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where �0 is the absorption index of the matrix, f� is
the volume concentration of bubbles, Qa and Qs

tr

� Qs�1 � �� � are the efficiency factor of absorption and
the transport efficiency factor of scattering, Qs is the
efficiency factor of scattering, �� is the asymmetry
factor of scattering,11 and the parameter a30 can be
computed from the following definition of aij:

aij ��
0

	

aiF�a�da��
0

	

ajF�a�da. (3)

The spectral transport extinction coefficient is de-
fined as ��

tr � �� � 
�
tr. The choice of the so-called

transport (or reduced) characteristics of scattering
and extinction is based on successful use of the trans-
port approximation for the scattering (phase) func-

tion in many problems of radiation transfer in
disperse systems.11,21 If necessary, one can use a
more detailed description of scattering by using the
scattering function ���� defined as

����
� � 0.75
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where ����� is the scattering function of a single bub-
ble, � � cos � is the director cosine with � the angle of
scattering, and 
� is the usual scattering coefficient
defined as


� � 0.75
f�

a30
�

0

	

Qsa
2F�a�da. (5)

Note that the asymmetry factor of scattering of poly-
disperse bubbles is defined as �� p � 1 � 
s

tr�
s.
The general scattering problem for particles in a

refracting and absorbing medium is considerably
more complicated than the classic Mie problem. In
several papers, which have considered spherical par-
ticles in an absorbing medium,22–27 two different
kinds of optical characteristics of particles have been
analyzed: inherent properties calculated near the
particle surface (in the near field) and the so-called
apparent properties calculated at large distances
from the particle (in the far field). Yang et al.26

showed that the apparent properties (and corre-
sponding efficiency factors of absorption and scatter-
ing) should be used by calculating the coefficients of
the RTE. This conclusion confirms the common prac-
tice in radiation transfer calculations in disperse
systems.11

The Mie solution for a single spherical particle in vac-
uum is well known and can be found elsewhere.11,19,20

The independent parameters of this solution (aside from
the scattering angle) are the diffraction parameter x
� 2�a�� and the complex index of refraction of the

Fig. 4. Directional-hemispherical transmittance and reflectance
for two samples of fused quartz containing bubbles: 1, z0 � 5 mm; 2,
z0 � 10 mm.

Fig. 5. Comparison of different experimental data for the absorp-
tion index of fused quartz: 1, Beder et al.34; 2, Touloukian and
DeWitt35; 3, Khashan and Nassif 36; 4, present paper.
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particle substance m � n � i�. Yang et al.26 showed
that the same relations can also be used when the
matrix is refracting and absorbing. For an arbitrary
value of the complex refractive index of the continu-
ous phase m0 � n0 � i�0, it is sufficient to replace the
diffraction parameter x by the complex parameter
m0x and the complex index of refraction m by the
corresponding relative value m�m0. The apparent ef-
ficiency factors of absorption and scattering of the
particles are obtained by multiplying the resulting
values by exp��2�0x��|m0|

2. In the present paper, as
in recent calculations of radiative properties of hollow
glass microspheres in an absorbing polymer matrix,28

we use slightly modified computer codes from Appen-
dix 3 of the monograph by Dombrovsky.11

One of the first theoretical analyses of radiative
properties of glass with bubbles has been performed
by Fedorov and Viskanta.29 They considered large
gas bubbles (compared with the wavelength of radi-
ation) and used approximate analytical relations for
absorption and extinction efficiency factors derived
by van de Hulst19 for the anomalous diffraction re-
gime. The scattering characteristics including the
scattering function of bubbles were assumed to be the
same as the corresponding characteristics of glass
particles. The same approximation was used in the
calculations performed by Pilon and Viskanta.7

More recently, Dombrovsky2 calculated the effi-
ciency factor of absorption Qa and the transport effi-
ciency factor of scattering Qs

tr for spherical gas
bubbles �m � 1� embedded in an absorbing and re-
fracting medium (|m0| � 1) using Mie theory. The
calculations were performed in the range of index of
refraction 1.2 � n0 � 1.5 for two values of the ab-
sorption index: �0 � 10�4 and 10�3. It was shown that
the efficiency factors of large bubbles can be approx-
imated by the following simple asymptotic relations
for x �� 1 and 2 �0x �� 1:

Qa � �8�0x�3, Qs
tr � 0.9�n0 � 1�. (6)

Equations (6) overestimate the absolute values of
Qa and Qs

tr by less than 5% in the range 20 � x

�� 1� �2�0�. The resulting approximate expressions
for the absorption coefficient and transport scattering
coefficients are as follows2:

�� � �1 � f����
0, 
�

tr � 0.675�n0 � 1��f��a32�, (7)

where ��
0 � 4��0�� is the absorption coefficient of the

matrix. It is important that absorption does not de-
pend on the bubbles’ size distribution and scattering
does not depend on the matrix absorption index.
The only parameter related to the bubbles that af-
fects the transport scattering coefficient of the me-
dium is the ratio of the volume fraction of bubbles to
their average radius: f��a32. Note that the asymmetry
factor of scattering is the same for all large bubbles
and �� p � �� where �� is approximated as follows:

�� � 1 � 0.45�n0 � 1�. (8)

To analyze the effects of possible impurities in the
material containing bubbles we also consider the case
of an absorbing and refracting substance present in-
side the bubbles. We assume that this substance has
a comparably large absorption index �i �� �0 because
it is the only case for which a considerable effect on
the absorption coefficient of the medium containing
bubbles can be observed. Some results of calcu-
lations of relative efficiency factors for the simple case
of homogeneous particles (when a substance with
mi � ni � i�i fills all the bubble volume) are shown in
Figs. 1 and 2. We limit our consideration to cases
when ni � n0, �i �� 1, 2 �ix �� 1 and plot the ratios of
the efficiency factors to the following values:

Qa
i � 0.9�3 ni�n0 � 1��ix,

Qs
tr(i) � 0.9�n0�ni � 1�. (9)

The latter approximation of Qs
tr is not as exact for

ni � 1 as for ni � 1 but it can be used as a first-order
approximation. The small-matrix absorption coeffi-
cient has no effect on the applicability of the approx-
imate Eqs. (9). In addition, the value of Qs

tr is
insensitive to the weak absorption of the particle sub-
stance.11 The approximate expression of Qa

i in gen-
eral form is applicable for arbitrary values of �ix and
can be written as follows30:

Qa
i � 1 � exp�0.9�3 ni�n0 � 1��ix�. (10)

In cases when 2 �ix �� 1, the resulting approxi-
mate relations for the absorption and transport scat-
tering coefficients of a weakly absorbing media with
bubbles can be expressed as

�� � �1 � f� � f�
i���

0 � 0.675f�
i�3 ni�n0 � 1���

i�2,


�
tr � 0.675�n0�ni � 1��f��a32�, (11)

Table 1. Directional-Hemispherical Characteristics for n0 � 1.4

�tr

Td�h�%�
Rd�h�%�

�tr � 0.2 �tr � 1

MDP0 CDOM MDP0 CDOM

0.2 78.0
5.1

78.0
5.1

35.9
4.5

35.9
4.5

0.4 78.8
5.9

78.8
5.9

37.7
6.6

37.7
6.4

0.6 80.0
7.1

80.0
7.1

40.7
10.0

40.6
9.6

0.8 82.1
9.2

82.0
9.2

46.6
16.8

46.6
16.0
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where f� is the total volume fraction of bubbles, f�
i is

the volume fraction of bubbles filled by an absorbing
substance, and ��

i � 4��i�� is the absorption coeffi-
cient of the filling substance. One can see that the
absorption coefficient does not depend on the size
distribution of the bubbles but it is important to know
the volume fractions of bubbles filled by an absorbing
substance. In contrast with the absorption coefficient,
the transport scattering coefficient is directly propor-
tional to the total concentration of bubbles and in-
versely proportional to their average radius. Note
that the scattering function does not depend on the
volume fraction f�. The details of the bubble size dis-
tribution affect neither the absorption nor the scat-
tering characteristics of the medium.

3. Experimental Data on Volume Fraction and Size
Distribution of Bubbles in Fused Quartz

The above analysis showed that size distribution of
bubbles is not important but we have to know the
total volume fraction of bubbles f�, the average radius
a32, as well as the volume fraction f�

i of possible bub-
bles filled by an absorbing substance. Note that one
can use the volume-averaged values of f�, f�

i, and a32
without accounting for their spatial variation be-
cause of the small optical thickness of the samples.

The total volume fraction f� can be evaluated di-
rectly by measuring the sample density, but one can

also use an indirect evaluation of the same value by
calculating the surface concentration fs of bubbles. It
is clear that the concentration of bubbles on the sam-
ple surfaces (they are looked at as defects of the sur-
face) is proportional to f�. For a large number of
bubbles, the average surface concentration of bubbles
fs for an arbitrary cut of the sample does not depend
on the possible order in the spatial distribution of the
bubbles. For this reason, we can consider the simplest
cubic structure. For samples with uniform volume
distribution of polydisperse bubbles, one can write

f� � �4��3�a30�d3, (12)

where d is the distance between neighboring bubbles
(step of the cubic structure). When we cut the sample
by planes, which are parallel to one of the sides of the
cubic structure, the probability that a bubble is lo-
cated on the sample surface is p � 2a10�d, and the
value of the average surface concentration of bubbles
is determined by

fs � 2a10�d3, (13)

Comparison of Eqs. (12) and (13) gives the following
relation between the volume fraction and the average
surface concentration of bubbles:

f� � �2��3�fs a32a21. (14)

We consider two samples of different thickness:
z0 � 5 and 10 mm. The size distribution of bubbles
for the thin sample was determined by analyzing
high-resolution digital photographs taken with a
Sony DSC F-828 camera. The resulting normalized
distribution function based on measurements of N
� 212 bubbles is shown in Fig. 3. Simple calculations
give the following values of the average radii of bub-
bles: a21 � 0.56 mm and a32 � 0.64 mm. Note that
previous measurements reported by Baillis et al.8
gave slightly greater values (a21 � 0.70 mm, a32
� 0.75 mm) mainly because the significant contribu-
tion of small bubbles was ignored. In the case of thin
samples, image analysis also enables the direct de-
termination of the volume fraction:

f� � �4��3�Na30��z0S�, (15)

where S is the sample surface area. The results of the
different methods are as follows: f� � �4.6 � 1.1�%
from density measurements, f� � 3.2% from measure-
ments of surface defects, and f� � �4.3 � 0.2�% from
photographs. The simplest method in which surface
defects are used underestimates the volume fraction
of bubbles because of the disappearance of small de-
fects after the surfaces of the samples are polished.
Both of the other methods give approximately the
same results. In the analysis of experimental data for
infrared properties of fused-quartz samples contain-
ing bubbles, we will use the approximate value of

Fig. 6. Effect of the scattering function on the directional-
hemispherical transmittance and reflectance. CDOM calculations
for n0 � 1.4: a, transport approximation; b, Henyey–Greenstein
approximation; 1, �tr

0 � 0.2; 2, �tr
0 � 0.5; 3, �tr

0 � 1.
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a32 � 0.64 mm and the range of volume fraction f�

� 3.5–5%.
The two maxima observed in the bubble size dis-

tribution shown in Fig. 3 can be interpreted as a
result of strong compression of bubbles of average
size before solidification of the quartz melt. The sur-
face tension of the melt leads to a significant increase
in gas pressure inside the collapsing bubbles.3,7 Thus
one cannot exclude the possibility that the smallest
bubbles contain a condensed substance that absorbs
radiation in the near infrared. We will consider this
hypothesis by analyzing the experimental results for
the spectral absorption coefficient of fused-quartz
samples containing bubbles.

4. Directional-Hemispherical Measurements

The samples of fused quartz containing bubbles are
illuminated by a normally incident collimated beam.
The experimental setup consists of two main parts:
a Bio Rad FTS-60A Fourier-transform infrared
spectrometer and a gold-coated integrating sphere
CSTM-RSA-DI-40D, which collects hemispherically
the radiation crossing or is reflected by the sample
onto a detector placed on the wall of the sphere. The
incident beam is not parallel but is convergent with
an angle of 2.25°. The diameter of the sample area
subjected to a normally incident beam is �28 and
16 mm for transmittance and reflectance measure-
ments, respectively. Fused-quartz samples contain-
ing bubbles were prepared with special attention to
the quality of their surfaces as described by Baillis
et al.8

The transmittance and reflectance spectrum have
been acquired several times for different positions
and orientations of the samples. Because of noisy
transmittance and reflectance spectra, the data have
been smoothed by using the BOXCAR procedure
available in the Win-IR Pro software. The parame-
ters of smoothing were chosen to eliminate the nu-
merical noise but not to affect the physical behavior of
the spectra. The results of directional-hemispherical
measurements in the spectral range 2 � � � 4 �m
are presented in Fig. 4. Note that only the average
values are shown. The standard absolute deviation is
3–8% for transmittance and 8–15% for reflectance.
The analysis of the experimental results is based
mainly on the more reliable transmittance measure-
ments whereas the reflectance data are used only to
evaluate the volume fraction of bubbles.

Similar measurements were performed to deter-
mine the index of absorption �0 of fused-quartz sam-
ples without bubbles cut from the same piece as that
used for the samples containing bubbles. The absorp-
tion index was calculated from the transmittance
data. The three-term dispersion relation suggested
by Malitson31 for the index of refraction of fused
quartz is used instead of the measurements of reflec-
tance, which are too noisy. The standard absolute
deviation of transmittance from the average values
was less than 5%. Note that applicability of
Malitson’s dispersion relation has been confirmed in
more recent papers.32,33 One can see in Fig. 5 that the

values of the absorption index of fused quartz deter-
mined in the present study are in a good agreement
with published data.34–36

5. Inverse Problem Solution

Because of the small volume fraction of randomly
placed bubbles, the radiation transfer theory can be
used to calculate the reflection and transmission of
infrared radiation in glass with bubbles. Consider the
problem of radiation transfer in a plane-parallel slab
of an absorbing, refracting, and anisotropically scat-
tering medium. We will limit our consideration to
one-dimensional azimuthally symmetric problems
when the front surface of the slab is uniformly illu-
minated along the normal direction by randomly po-
larized radiation. In the case of a homogeneous
isotropic medium, the RTE and the associated bound-
ary conditions can be written as follows10:

�
�I�

��
� I� �

�

4��
�1

1

I���, ���	�
0

2�

��0�d��
d��,

(16)

I��0, �� � RI��0, ��� � �1 � R���1 � ��,

I���0, ��� � RI���0, �� for � � 0, (17)

where

I� � I���n0
2I�

e�, � � 
����, � � ��z, (18)

�0 � ��� � �1 � �2�1�2�1 � ��2�1�2 cos�� � ���. (19)

Here � � cos �, where the angle � is measured from
the normal directed into the medium; I�

e is the inci-
dent spectral radiation intensity, and R��� is the
Fresnel reflection coefficient.10,37 Note that the inte-
gral term on the right-hand side of the RTE does not
depend on the azimuthal angle � and one can set
� � 0 in Eq. (19).

The well-known difficulty in the numerical solution
of the RTE is related to the complex scattering func-
tions: One needs a very fine angular discretization to
take into account all the details of the angular de-
pendency of ��0�. Various approximations of scat-
tering functions are usually considered to simplify
the calculations.38,39 In the case of large particles,
which are characterized by the forward-scattering
peak, the simplest approach is the transport approx-
imation11:

��0� � 1 � �� � 2 �� ��1 � �0�, (20)

which enables one to reduce the problem into a form
similar to that valid for isotropic scattering media:
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�
�I�

��tr
� I� �

�tr

2 �
�1

1

I�d�, (21)

I��0, �� � RI��0, ��� � �1 � R���1 � ��,

I���tr
0, ��� � RI���tr

0, ��, � � 0, (22)

where �tr � 
�
tr���

tr, �tr � ��
trz, �tr

0 � ��
trz0. We will

compare results obtained from the complete calcula-
tions with those based on the transport approxima-
tion applied to our problem. But all the subsequent
relations are written for the problem stated in Eqs.
(21) and (22).

The usual technique10,11 expresses the radiation inten-
sity I� as a sum of a diffusion component J� and a term
corresponding to the collimated external radiation:

I� � J� �
1 � R1

1 � R1C�exp���tr���1 � ��

� C exp��tr���1 � ���, (23)

where C � R1 exp��2�tr
0� and R1 � R�1� � �n0

� 1�2��n0 � 1�2. The mathematical problem state-
ment for the diffuse component can be stated as fol-
lows:

�
�J�

��tr
� J� �

�tr

2 ��
�1

1

J� d� �
1 � R1

1 � R1C

� �exp���tr� � C exp��tr���, (24)

J� �0, �� � R���J� �0, ���,

J���tr
0, ��� � R���J� ��tr

0, �� for � � 0. (25)

The directional-hemispherical reflectance and trans-
mittance can also be expressed as a function of the
diffuse component of the radiation intensity:

Rd�h � Rd�h
0 ��

0

1

�1 � R���� J� �0, ���� d�,

Td�h � Td�h
0 ��

0

1

�1 � R���� J� ��tr
0, ���d�, (26)

where the first terms are given by the well-known
equations10

Rd�h
0 �

R1 � �1 � R1�2C
1 � R1C

, Td�h
0 �

�1 � R1�2

1 � R1C
exp���tr

0�.

(27)

A. Alternative Models for Radiation Transfer

We consider two alternative models to calculate the
diffuse component of the radiation intensity: (1) the
numerical solution by using the discrete ordinates
method (DOM)10 and (2) the analytical solution based
on the modified two-flux approximation MDP0 (mod-
ified double spherical harmonics method, where sub-
script zero denotes the zero approximation of this
method), similar to that suggested by Dom-
brovsky40,41 for spherically symmetric problems in
nonscattering media. In the first case, two approxi-
mations of the scattering function are considered: the
transport approximation given by Eq. (20) and the
Henyey–Greenstein approximation10 expressed as

��0� � �1 � �� 2���1 � �� 2 � 2�� �0�3�2. (28)

The approximate MDP0 solution is given only for the
transport approximation. It will be shown that it is
sufficient for the correct calculation of the hemispher-
ical characteristics of optically thin samples consid-
ered in the present paper.

By use of the DOM, the Fresnel reflection may
cause the so-called ray effect associated with insuffi-
ciently fine angular discretization of the radiation
intensity field.42 Ray effects may be mitigated by re-
fining the angular discretization or by using the mod-
ifications of the DOM. In our case, an adequate
account of the angular dependence can be reached
thanks to the composite DOM (CDOM) in which the
integral over all directions is split into the integrals
over three subintervals �1 � � � ��c, ��c����c,
and �c � � � 1 defined using the critical angle.
Finally, each subinterval uses its own set of quadra-
ture points.43

The numerical procedure based on the DOM code is
general and can be applied to rather complicated
problems. But in our case, the angular dependencies
of the diffuse radiation component are expected to be
relatively simple. For this reason, we consider also an
alternative approach, which is a modification of the
well-known two-flux approximation. Taking into ac-
count the effect of total internal reflection occurring
at both interfaces of the slab, we suggest the following
approximation40,41:

J� ��tr, �� � 
�0

���tr�, � 1 � � � ��c

�0��tr�, � �c � � � �c with �c � �1 � 1�n0
2�1�2

�0
���tr�, �c � � � 1

. (29)
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Note that the case �c � 0 corresponds to the usual
two-flux model. The intermediate angle interval
��c � � � �c gives no contribution to the radiation
flux and the words two-flux are also applicable to the
modified approximation. It is clear that Eq. (28) is
just the same as in a CDOM of zero-order quadrature.

Integrating Eq. (24) separately over the above
three intervals and after simple transformations, one
can obtain the following boundary-value problem for
the function g0 � �0

� � �0
�:

�g0� � �2g0 � �2��exp���tr� � C exp��tr��,

�1 � �c�g0��0� � 2� g0�0�,

�1 � �c�g0���tr
0� � �2� g0��tr

0�, (30)

where

�2 �
4

�1 � �c�2

1 � �tr

1 � �tr�c
,

� � �1 � R1���1 � R1�,

� �
�tr

1 � �tr

1 � R1

1 � R1C
. (31)

Thus the approximate equations for the directional-
hemispherical reflectance and transmittance of the
medium simplify as follows:

Rd�h � Rd�h
0 � ��1 � �c

2�g0�0��2,

Td�h � Td�h
0 � ��1 � �c

2�g0��tr
0��2. (32)

The boundary-value problem formulated in Eqs. (30)
can be solved analytically. The resulting expressions
for Rd�h and Td�h can be written as

Rd�h � Rd�h
0 � D�1 � B�� � C��2,

Td�h � Td�h
0 � D��1 � R1�exp���tr

0�
� A����2, (33)

where

D � ��1 � �c
2���2���2 � 1�, (34)

A �
��1 � �2R1���s � c�exp���tr

0� � ��2 � �1C�
�1 � �2�s � 2�c

,

B �
��1 � �2R1�exp���tr

0� � ��2 � �1C���s � c�
�1 � �2�s � 2�c

,

�1 � 1 � 2�� , �2 � 1 � 2�� , � � 2����,

�� � ���1 � �c�, s � sinh���tr
0�, c � cosh���tr

0�.

A comparison between the analytical solution
given by Eqs. (33) and (34) in MDP0 and the numer-
ical results obtained using the high-order CDOM for
the transport approximation of the scattering func-
tion is given in Table 1. We limit our consideration
to the range of albedo and optical thickness typical
of the present problem. One can see that the modified
two-flux approximation gives rather accurate predic-
tions. The error of this approximation is less than
0.3% for the hemispherical transmittance and 5% for
the hemispherical reflectance.

The effect of the scattering function on the hemi-
spherical characteristics is illustrated by the CDOM
calculations shown in Fig. 6. The error of the trans-
port approximation increases with optical thickness
but it is insignificant in the range of weak extinction,
which is the most important for the problem under
consideration in this paper. Good agreement between
calculations by use of the Henyey–Greenstein and
the transport approximation shows that a separate
determination of the scattering coefficient and of the
asymmetry factor using hemispherical measure-
ments is practically impossible. Fortunately, one does
not need these data in the usual radiation heat trans-
fer calculations.11,21

The above analysis showed that the modified two-
flux approximation (and the corresponding analytical
solution) can be used to analyze the experimental
data for the directional-hemispherical transmittance
and reflectance of fused-quartz samples containing
bubbles.

B. Identification Procedure and Results of Calculations

It was shown previously that the scattering charac-
teristics of a weakly absorbing medium containing
bubbles do not depend on the absorption character-
istics of the continuous or dispersed phases [see Eqs.
(7)]. This is important because small impurities in
either phase can affect the absorption coefficient in
the semitransparency region of the spectrum, and
one cannot be sure of the theoretical predictions
based on the absorption properties of the medium
components. For this reason, it is suggested that only
the predictions be used for the scattering character-
istics but not for the absorption in the identification
procedure.

Let us assume that the scattering characteristics of
the heterogeneous medium can be determined from
the approximate relations suggested above. Three
values of the volume fraction of bubbles are consid-
ered: f� � 3.5%, 4%, and 4.5% and a fixed value of
a32 � 0.64 �m. It is also assumed that f�

i � 0. The
choice of f� is based on the estimates that give the best
curve fit for the measured reflectance spectra. The
averaged experimental values of the directional-
hemispherical transmittance at each wavelength are
considered to be exact. The spectral dependency of
Td�h��� is used to determine the transport albedo and
the absorption coefficient of the heterogeneous me-
dium. It should be noted that this procedure does not
require us to solve the ill-posed inverse problem as in
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the case of several unknown optical parameters.8 All
the calculations are performed using the analytical
solution of the MDP0 approximation.

Comparison between the calculated reflectance
and the experimental measurements shown in Fig. 7.
enables the evaluation of the bubble volume fraction:
It is of the order of 4% for both samples. Note that it
is difficult to curve fit Rd�h��� by choosing the value of
f�. But one should have in mind that the experimental
error associated with the reflectance measurements
is much greater than that for the transmittance.
Therefore the reflectance measurements were used to
evaluate only the volume fraction of bubbles f�. It is
important that this value be in good agreement
with independent estimations based on density mea-
surements and on image analysis of high-resolution
photographs of the thin sample.

The values of the transport albedo and of the ab-
sorption coefficient determined by the identification
procedure for f� � 4% are presented in Figs. 8 and 9.
In the latter, the theoretical value of the absorption
coefficient predicted by Eqs. (7) is also shown. One
can see that the difference between experimental and
theoretical values of the absorption coefficient ��� is
relatively small except around the narrow absorption
peak near � � 2.7 �m. This result can provide an
estimate of the maximum value of the integral pa-
rameters in the event impurities are present in the

medium containing bubbles. Assuming the presence
of an absorbing medium inside the bubbles, one can
obtain from Eqs. (11) the following approximate
relation:

��� � 4f�
i�i�3ni�n0 � 1���. (35)

Fig. 7. Directional-hemispherical reflectance for two samples of
fused quartz containing bubbles: a, z0 � 5 mm; b, 10 mm; 1, mea-
surement; 2, calculation for f� � 3.5%; 3, f� � 4.5%.

Fig. 8. Transport albedo of fused quartz containing bubbles �f�

� 4%�: 1, z0 � 5 mm; 2, 10 mm.

Fig. 9. Absorption coefficient of fused quartz containing bubbles
�f� � 4%�: a, z0 � 5 mm; b, z0 � 10 mm; 1, experiment; 2, theoretical
prediction.
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It should be noted that even the presence of molecu-
lar water impurity in the fused quartz should be ac-
counted for in the absorption spectrum of glass.44–46

To obtain some quantitative estimates, consider wa-
ter as a model condensed substance inside some part
of small bubbles. Using the data by Hale and
Querry47 (ni � 1.3, �i � 10�3 at � � 2 �m and ni

� 1.2, �i � 0.02 at � � 2.7 �m) and assuming
f�

i � 0.4%, we find ��� � 1 m�1 at � � 2 �m and
��� � 30 m�1 at � � 2.7 �m. These evaluations cor-
relate rather well with the level of differences be-
tween the experimental data for fused quartz
containing bubbles and the theoretical predictions
based on the assumption of f�

i � 0. This suggests that
the experimental data for the absorption coefficient of
fused-quartz samples containing bubbles do not ex-
clude the presence of some radiation-absorbing im-
purities entrapped in the bubbles.

6. Conclusions

The research of absorption and scattering of near-
infrared radiation by fused quartz containing bubbles
is based on a combination of experimental measure-
ments and theoretical analysis using Mie theory. Mie
calculations over a wide range of parameters enable
the formulation of approximate relations for the main
radiative characteristics of semitransparent media
containing large polydisperse bubbles, including
those filled with an absorbing and refracting sub-
stance. It is shown that radiation scattering by bub-
bles is independent of the weak absorption by the
matrix and the potential absorbing substance inside
the bubbles. Use of theoretically predicted scattering
characteristics of the heterogeneous medium makes
it possible to avoid large errors in the identification
procedure caused by noisy experimental data for the
small values of reflectance.

A modified two-flux approximation that takes into ac-
count the total internal reflection of radiation at both
interfaces of the plane-parallel slab samples is suggested
for radiation transfer calculations. The corresponding an-
alytical solution for directional-hemispherical transmit-
tance and reflectance is derived. In the transport
approximation, comparison with exact numerical calcu-
lations based on the composite discrete ordinate method
showed that the error of the modified two-flux approxi-
mation is less that 5% in the most important range of the
problem parameters. It is shown also that the transport
approximation is sufficiently accurate in the case of small
optical thickness of the sample and it is not necessary to
use the more complex Henyey–Greenstein approxima-
tion for the scattering function.

Application of the suggested identification proce-
dure used to study, the near-infrared properties of
fused-quartz samples containing bubbles provides
new data on spectral single-scattering albedo and for
the absorption coefficient of the heterogeneous me-
dium in the spectral range from 2 to 4 �m. The
volume fraction of bubbles obtained from directional-
hemispherical reflectance of fused-quartz samples is
in good agreement with both density measurements

and image analysis of high-resolution photographs of
the thin sample. Comparison between experimen-
tally determined and predicted values of the absorp-
tion coefficient of fused quartz containing bubbles
enables the evaluation of the integral characteristic
of possible impurities that are treated as an absorb-
ing substance entrapped inside the bubbles.

The suggested procedure combining experimental
measurements and theoretical analysis of infrared
radiative properties of semitransparent substances
containing bubbles can be used to both control the
optical purity of the medium and to estimate the
volume fraction of polydisperse bubbles in various
applications.

This work is a continuation of the study started in
collaboration with R. Viskanta. The authors thank
him for initiating the research. L. Dombrovsky is
grateful also to the French National Centre for Sci-
entific Research, the Centre Thermique de Lyon, and
the Russian Foundation for Basic Research (grant
04-02-16014) for their partial financial support of the
work. The Ph.D. studies of J. Randrianalisoa were
supported by the French government.
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