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Abstract

This paper presents a simple, experimentally validated approach to analyze the transient formation of a foam layer produced by injecting
gas bubbles into a foaming solution. Based on experimental observations, three di6erent regimes in the transient growth of the foam have
been identi7ed as a function of the super7cial gas velocity. A model based on the mass conservation equation for the gas phase in the
foam combined with three di6erent models for the average porosity is proposed. It is shown that for practical calculations a constant
average porosity equal to 0.82 can be used. The model predictions show very good agreement with experimental data for low super7cial
gas velocity and provide an upper limit of the foam thickness for intermediate and large super7cial gas velocities. The paper discusses
the physical mechanisms that may occur during the foam formation and the e6ects of the super7cial gas velocity on the foam dynamics.
The present analysis speculates several mechanisms for the bursting of the bubbles at the top of the foams and proposes the framework
for more fundamental and detailed studies. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Pneumatic or semi-batch foams are produced by a con-
tinuous stream of gas bubbles rising to the surface of a
foaming liquid. Such foams are encountered in a number of
practical technological systems ranging from chemical and
materials processing, to protein separation and bioreactors.
Bubbles are either generated by chemical reactions taking
place within the liquid or injected into the liquid through a
single nozzle, a multinozzle inlet or a porous medium.
In electric arc furnaces, foam is often required to shield

the refractories from the arc, to protect the liquid metal from
the atmosphere (Ozturk & Fruehan, 1995) and to help sta-
bilize the arc in modern electric arc furnaces (Ozturk &
Fruehan, 1995). In many other applications such as chemi-
cal reactors or food processing, the foam is undesirable. In
glass melting furnaces, bubbles produced by chemical reac-
tions taking place within the melt accumulate at the surface
of the glass melt and form a foam layer that reduces signif-
icantly heat transfer rates from the combustion space to the
melt (Laimbock, 1998; Kappel, Conradt, & Scholze, 1987;
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Fedorov & Viskanta, 2000), thereby increasing the oper-
ating temperature, the NOx-formation rate, and the energy
consumption (Laimbock, 1998). The transient behavior of
foams is of particular importance for processes that require
constant adjustment of the operating parameters to meet the
production needs. For example, in glass melting furnaces,
operators have to constantly adapt the pull rate, the feeding
of the batch and the 7ring rate as a function of the produc-
tion needs. Such changes a6ect the foam layer thickness that
grows or decays accordingly.
Understanding and modelling of the transient foam thick-

ness is, therefore, of major importance from both fundamen-
tal and practical viewpoints. The objective of the present
work is to develop a model for predicting the thickness of a
foam layer during its formation, i.e., between the beginning
of the gas injection until the foam reaches a steady state.

2. Current state of knowledge

2.1. Foam structure

Foams consist of an ensemble of bubbles of di6erent sizes.
The bubble size distribution at the bottom of the foam layer
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depends on the injection systems (Narsimhan & Rucken-
stein, 1986a). Bubbles can take di6erent shapes and poly-
hedral and spherical bubbles often coexist within the foam
layer. The polyhedral bubbles tend to be located at the top of
the foam while the spherical ones are at its bottom (Malysa,
1992; Hutzler, Weaire, & Shah, 2000). Even though poly-
hedral bubbles can adopt di6erent geometries, they all obey
a few rules known as the Plateau’s laws (Bhakta & Rucken-
stein, 1997): (i) three and only three 7lms meet at an edge
at an angle of 120◦, (ii) four and only four edges (Plateau
border channels) meet at a point at an angle of 109◦. It has
been observed that a regular dodecahedron nearly satis7es
Plateau’s laws and is considered as an idealized polyhedral
bubble.

2.2. Physical phenomena

Several physical phenomena occur simultaneously or con-
secutively as the foam is generated. These phenomena are
as follows:

(i) Gravity drainage of the liquid through the Plateau bor-
ders opposed by the viscous forces.

(ii) Drainage of the liquid in the 7lms driven by the cap-
illary pressure due to the curvature of the adjacent
Plateau channels and opposed by the disjoining pres-
sure consisting of the Van der Waals attractive forces,
the repulsive electrical double layer and the hydration
forces (Bhakta & Ruckenstein, 1997). Drainage in the
foam eventually stops when the e6ect of the capillary
forces (or Plateau border suction) balances the e6ect of
gravity (Bhakta & Ruckenstein, 1997; Krotov, 1981).

(iii) Coalescence of two adjacent bubbles as a result of the
rupture of the 7lm separating them. Coalescence causes
the mean bubble size to increase and the number of
bubbles as well as the interfacial area of the foam to
decrease.

(iv) Interbubble gas di*usion 1 from small bubbles (higher
pressure) to large bubbles (lower pressure). This
causes the small bubbles to become smaller and the
large bubbles to become larger provided that the sol-
ubility and the di6usion coeLcient of the gas in the
liquid phase are large enough. A theoretical analysis
by Narsimhan and Ruckenstein (1986b) indicates that
interbubble gas di6usion is signi7cant only at the top
of the foam where the bubble lamellae are thin.

(1) Gibbs–Marangoni e6ect in thin liquid 7lms and foams
results in a decrease of the surface excess surfactant
concentration caused by stretching an interface, hence
in an increase in surface tension (Gibbs e6ect); the
surface tension gradient thus created causes liquid to
<ow toward the stretched region, thereby providing
both a “healing” force and also a resisting force against
further thinning (Marangoni e6ect).

1 Also called Ostwald ripening or disproportionation.

It has been observed for di6erent types of liquid phases
(molten glass, Laimbock (1998) and aqueous solutions, Bar-
ber and Hartland (1975)) that bubbles do not necessarily
burst when the lamellae reach their critical thickness. In-
stead, they remain in a so-called metastable state until they
burst. Thus, the rupture of lamellae occurs due to two in-
dependent and consecutive processes. The 7rst stage in the
rupture of the 7lm is its thinning due to drainage, and the
second stage is the tear of the 7lm probably due to random
molecular collisions (Djabbarah & Wasan, 1985). Accord-
ing to Hrma (1990), the lifetime of a bubble cannot be de-
termined from the thickness of its lamellae, and the charac-
teristic time of rupture can be expressed as a function of two
characteristic times: (i) the characteristic time of drainage
�d, and (ii) the lifetime of the critically thin 7lm �c (Djab-
barah & Wasan, 1985; Hrma, 1990):

� = �d + �c: (1)

The lifetime �c depends on the properties of the <uid and
on the bubble radius, but it is independent of the gas supply
(Hrma, 1990). If �c = 0, the foam is said to be evanescent,
that is, bubbles burst as soon as their lamellae reach the
critical thickness. In general, �c is non-zero and the foam is
said to be metastable (Hrma, 1990).

2.3. Foam porosity

As a result of gravity drainage, the foam becomes “dryer”
and the porosity, de7ned as the ratio of the local volume of
gas to the volume of foam, increases from the bottom to the
top of the foam layer. It is usually assumed (Narsimhan &
Ruckenstein, 1986a, b; Bhakta & Ruckenstein, 1997) that
the porosity at the bottom of the foam is constant with time
and equals 0.74 corresponding to the maximum packing of
spherical bubbles of the same size. In reality, the porosity
varies with time from zero as bubbles start reaching the
surface of the liquid to its steady-state value. Hartland and
Barber (1974) have observed that even though the liquid
holdup close to the liquid=foam interface varies with time, it
rapidly reaches a steady state while the foam is still growing.
In other words, the characteristic time for the porosity at
the bottom of the foam required to reach a steady state is
negligible compared to that of the foam thickness. Therefore,
the assumption that the porosity at the bottom of the foam
is constant with time is an acceptable approximation.

2.4. Modelling

Several models describing the transient behavior of pneu-
matic foams are available in the literature and have been
reviewed recently (Bhakta & Ruckenstein, 1997). Most of
them consist of solving a system of di6erential equations
for the foam thickness and for the local foam porosity or the
liquid hold-up (Bhakta & Ruckenstein, 1997; Narsimhan,
1991). The fundamental governing equation called “the
drainage equation” is based on the local mass conservation
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of the liquid phase (Bhakta & Ruckenstein, 1997). The
one-dimensional formulation of the drainage equation in
terms of the foam porosity at height z and time t, 
(z; t), is
written as follows (Bhakta & Ruckenstein, 1997):

@

@t

=
@
@z

(
qPB); (2)

where qPB is the volumetric <ux of the liquid phase through
the Plateau border channels at location z and time t. Assum-
ing that (1) the foam bed consists of dodecahedron bubbles
of the same size, (2) the Plateau borders are randomly ori-
ented, (3) the drainage through the Plateau borders due to
7lm thinning is negligible compared to that due to gravity
[see Bhakta and Ruckenstein (1997), Narsimhan (1991) for
additional discussion], (4) coalescence of bubbles and Ost-
wald ripening within the foam are absent, (5) surface ten-
sion is constant, (6) the wall e6ects are negligible, and (7)
the foam is under isothermal conditions, an expression for
the volumic <ow rate through the Plateau border qPB(z; t) is
given by (Pilon, Fedorov, & Viskanta, 2001)
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where � is the liquid density, � is the liquid viscosity, �
is the surface tension of the gas=liquid system, and r is the
bubble radius. In this equation � =

√
0:644=0:322, and the

velocity coeLcient cv (dimensionless) accounts for the mo-
bility of the walls of a Plateau border channel and has been
computed by Desai and Kumar (1982). In most of their cal-
culations, Ruckenstein and coworkers used cv = 1 (Bhakta
& Ruckenstein, 1997). The initial porosity distribution in
the foam and two boundary conditions are needed to solve
Eqs. (2) and (3). The porosity at the bottom of the foam
layer 
(z2; t) is traditionally assumed to be constant and
equal to 0.74 and the volumetric <ux qPB is assumed to be
zero at the top of the foam (Germick, Rehill, & Narsimhan,
1994; Bhakta & Ruckenstein, 1995). Two approaches have
been used to determine the initial porosity in the studies
of the decay of standing foams. Narsimhan (1991) used a
quasi-steady-state model to compute the initial porosity as a
function of the location in the pneumatic foam. His analysis
is based on the assumption that the loss of liquid by grav-
ity drainage is compensated by the liquid entrained with the
rising bubbles. On the other hand, Bhakta and Ruckenstein
(1995) solved the drainage equation using moving bound-
aries during the foam formation. The latter model compares
better with experimental data for the decay of pneumatic
foams than the quasi-steady-state approach indicating that
“the unsteady nature of foam formation cannot be ignored”

(Bhakta & Ruckenstein, 1995). Thus, the solution for foam
decay has been proven to be highly sensitive to the initial
bubble size distribution in the foam (Bhakta & Ruckenstein,
1997). However, it is diLcult to obtain or predict the initial
bubble size distribution either experimentally, analytically
or numerically (Monsalve & Schechter, 1984; Bhakta &
Ruckenstein, 1997).
More sophisticated models have been proposed that ac-

count for coalescence of bubbles as well as interbubble gas
di6usion and require the solution of an additional equation
for the local average 7lm thickness of the lamellae as a func-
tion of position in the foam (Bhakta & Ruckenstein, 1997;
Narsimhan & Ruckenstein, 1986b). These models assume
that the neighboring bubbles coalesce as soon as the thick-
ness of the lamellae reaches the critical 7lm thickness, i.e.,
the foam is assumed to be evanescent.
Another possible approach to deal with transient behavior

of foams is the use of population balance theory. Narsimhan
and Ruckenstein (1986a) developed such a model account-
ing for drainage, coalescence, and interbubble gas di6usion.
Drainage is treated assuming dodecahedron bubbles while
the treatment of interbubble gas di6usion is based on spher-
ical bubbles. Such assumptions have been judged to be in-
evitable given the complexity of the system, and this model
is diLcult to extend to transient problems (Bhakta & Ruck-
enstein, 1997). More recently, Hartland and co-workers
Ramaswami, Hartland, & Bourne, 1993; Hartland,
Bourne, & Ramaswami, 1993) have developed a transient
population balance equation by accounting for drainage
and interbubble gas di6usion and neglecting coalescence.
However, the population balance equations available in the
literature for bubbles in foams (Narsimhan & Ruckenstein,
1986a; Ramaswami et al., 1993) assume that the number
density function is smooth, di6erentiable with respect to
time and space coordinates [see Ramkrishna (2000) for more
details]. In other words, “the population balance equation is
to be viewed as an averaged equation” (Ramkrishna, 2000)
that is valid when the population is large enough to consider
its behavior as deterministic, i.e., the deviation about the
average is negligible (Ramkrishna, 2000). However, the
validity of the above-mentioned models (Narsimhan &
Ruckenstein, 1986a; Ramaswami et al., 1993) can be ques-
tionable in the upper part of the foam where only a small
number of bubbles is present. For such small populations a
stochastic approach seems to be more appropriate (Ramkr-
ishna, 2000) but is not available in the literature.
Even though the physical phenomena taking place in the

formation of a foam layer appear to have been identi7ed and
are qualitatively understood, the modelling of the transient
behavior of pneumatic foams have been concerned mainly
with the decay of standing foams (Bhakta & Ruckenstein,
1997, 1995; Narsimhan & Ruckenstein, 1986b; Barber &
Hartland, 1975; Narsimhan, 1991; Germick et al., 1994).
One should also mention that parametric studies of the tran-
sient and steady-state foam behaviors have been performed
(Bhakta & Ruckenstein, 1997), but very little validation
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against experimental data has been reported (Germick et al.,
1994; Bhakta & Ruckenstein, 1995).
Moreover, all the models assume that bubbles are dodec-

ahedron in shape and are continuously bursting at the top of
the foam layer. Although such assumptions are valid for the
decay of standing foams, they are diLcult to justify during
the foam formation, particularly at an early stage (Bhakta &
Ruckenstein, 1997). The polyhedral shape assumption does
not account for the fact that as drainage, coalescence and
Ostwald ripening take place, the foam porosity increases
from 0.74 to values close to unity, requiring the bubble to
change from spherical to polyhedral shape. Such a change
in shape is particularly important in the transient formation
of the foam.
Finally, the observation that the solution of the model

equations for the foam decay available in the literature are
highly dependent on the initial conditions provides an ad-
ditional motivation for studying the formation of the foam
layer from a liquid surface free of foam to a steady-state
foam layer.
In the present work, an attempt is made to develop a sim-

ple model for predicting the transient thickness of a foam
layer generated by bubbling a gas in a foaming solution.
A simple yet physically sound approach based on the 7rst
principles is preferred to the solution of a complex system
of di6erential equations accounting for drainage, bubble co-
alescence, and interbubble gas di6usion.

3. Analysis

Following Hartland and Barber (1974), the experimental
data for the formation of pneumatic foams can be classi7ed
into three di6erent types of transient behavior depending on
the super7cial gas velocity (see Fig. 1 for illustration):

(1) For low super7cial gas velocity, the foam thickness
increases almost linearly with time until it reaches a
steady state. Small and slow transient <uctuations of
the foam thickness around the steady-state thickness are
observed.

(2) For intermediate super7cial gas velocity, the foam
thickness increases almost linearly with time until
the foam gets into a cycle of successive collapse and
growth. Unlike the previous type, the <uctuations of
the foam thickness with time are such that one cannot
consider the foam as being at a steady state. Note that
as the <ow rate increases, the oscillations tend to be
smoother but their amplitude remains signi7cant. Hart-
land and Barber (1974) divided this type of transient
behavior into two di6erent regimes: the 7rst one char-
acterized by sudden oscillations, and the second one
characterized by smoother oscillations. Here, we do
not make the distinction since the overall behavior is
similar, i.e., no apparent steady state can be de7ned due
to large oscillations of the foam thickness with time.

(3) For large super7cial gas velocity, the foam thickness
increases almost linearly with time but after some time
the foam breaks down into a froth (Hartland & Barber,
1974). The froth height is lower than that of the foam
for similar conditions. Hartland and Barber (1974) at-
tributed this to turbulence and other factors that cause
the 7lm at the top of the foam to rupture at greater
thicknesses. At higher gas <ow rates, no foam is ob-
served and the dispersion becomes a froth immediately
as indicated by Hartland and Barber (1974).

Experimental data do not permit the de7nition of a general
criteria between the three di6erent transient behaviors. Such
a criteria would depend on the thermophysical properties of
the liquid and gas phases, on the super7cial gas velocity, on
the container size and shape, and on other factors.

3.1. Mass conservation equation

In this section, we present a model for predicting the foam
thickness as a function of time during the foam generation.
The analysis uses the following simplifying assumptions:

(1) The problem is one-dimensional and transient, i.e., the
foam porosity is a function of time and vertical position
only (Bhakta & Ruckenstein, 1997).

(2) The wall e6ects are negligible.
(3) The foam is isothermal.
(4) During the transient formation of the foam layer, no

bubbles burst at the surface of the foam.

Let us consider a container of constant cross-sectional area
S containing a solution at rest as schematically represented
in Fig. 2. Initially (i.e., at t = 0), gas bubbles are injected
at the bottom of the container at a constant super7cial gas
velocity j. We also assume that the gas <ux j is large enough
to generate foam. Let H (t) be the height of the foam at
any time t. The coordinate system is chosen with the origin
located at the top of the foam as shown in Fig. 2.
According to the above assumptions, the mass conserva-

tion of the gas phase within the foam can be expressed as

dmg(t)
dt

= �gjS if t6 �; (4)

where �g is the density of the gas phase, j the volumetric
gas <ux or super7cial gas velocity, and � is the time for the
foam thickness to reach a steady state. The total mass of
gas retained within the foam mg(t) can be expressed as a
function of the gas density �g and the foam porosity 
(z; t):

mg(t) =
∫ H (t)

0
�g
(z; t)S dz: (5)

Assuming that the gas density and the container area are
constant, Eqs. (4) and (5) can be combined and simpli7ed
to become

H (t) R
(t) = jt if t6 �; (6)
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Fig. 1. Di6erent types of transient during foam formation.
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Fig. 2. Schematic of a foam layer generated by bubbling and coordinate
system with notations.

where R
(t) is the instantaneous average foam porosity de-
7ned as

R
(t) =
1

H (t)

∫ H (t)

0

(z; t) dz: (7)

According to Eq. (6), the transient foam thickness can be
predicted if one knows the evolution of the instantaneous
average (over height) foam porosity R
(t) with time.

3.2. Porosity pro;le

In this section, we develop an approximate expression for
the porosity pro7le in the foam layer as a function of time
t and location z. We choose a second-order polynomial to
represent the local porosity distribution 
(z; t):


(z; t) = a0 + a1

[
z

H (t)

]
+ a2

[
z

H (t)

]2
; (8)

where the coeLcients a0, a1, and a2 are generally functions
of time, unless self-similar solution is obtained. Three con-
ditions are needed to determine these three coeLcients and
they are obtained from the boundary conditions at the top
and bottom of the foam layer:


[H (t); t] = 
2; (9)


(0; t) = 
1(t); (10)

@
(z; t)
@z

∣∣∣∣
z=0

= 0: (11)
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Eq. (9) states that the porosity at the bottom of the foam is
constant, as previously discussed, and is taken as 0.74 cor-
responding to the maximum packing of spherical bubbles of
identical size. Eq. (10) indicates that the porosity at the top
of the foam is a function of time only. The third condition
[Eq. (11)] re<ects the fact that, in most cases, drainage of
liquid occurs in the lower part (bottom) of the foam layer
and this eventually stops at the top of the foam layer when
the gradient of the capillary pressure balances the gravity
force (Bhakta & Ruckenstein, 1997; Krotov, 1981). Then,
only coalescence may cause the foam porosity to increase
at the top of the foam (Bhakta & Ruckenstein, 1997), but
it is speculated to occur only when the foam is suLciently
drained and the lamella thickness is less than about 100 nm
(Narsimhan & Ruckenstein, 1986b). The drainage <ow rate
induced by the rupture of the foam lamellae is extremely
small, thereby making the porosity 
(z; t) change very little
and, thus, the partial derivative @
(z; t)=@z can be assumed
to vanish at the top of the foam (i.e., at z = 0) as given
by Eq. (11). Several models and numerical simulations of
the foam liquid holdup using boundary conditions di6erent
from Eq. (11) (Desai & Kumar, 1983; Narsimhan & Ruck-
enstein, 1986b; Bhakta & Ruckenstein, 1997) have been
presented in the literature. They all predict that “the liquid
holdup decreases rapidly near the foam=pool liquid inter-
face and less in the rest of the [foam] bed” (Narsimhan &
Ruckenstein, 1986b). Predicted porosity pro7les computed
for foaming solutions with di6erent viscosity, surface ten-
sion, and bubble radius indicate that Eq. (11) is a reasonable
7rst-order approximation. It should be noted that the bound-
ary conditions [Eq. (11)] can also be deduced by using the
well-known condition of zero velocity or zero <ow rate of
the liquid though the Plateau borders at the top of the foam
[i.e., qPB (z = 0; t) = 0] (Bhakta & Ruckenstein, 1997). In
addition, it must be assumed that the radius does not change
with the location z and the porosity is unity at the top of the
foam layer.
Using the boundary conditions, Eqs. (9)–(11) and solv-

ing Eq. (8) for the parameters a0, a1, and a2 results in the
following porosity pro7le within the foam:


(z; t) = 
1(t) + [
2 − 
1(t)]
[

z
H (t)

]2
: (12)

The average foam porosity corresponding to this pro7le can
be computed using Eq. (7):

R
(t) =
2
1(t) + 
2

3
: (13)

At the beginning of the foam growth, the bottom and the
top of the foam are superimposed and the gas volume frac-
tion at the top of the foam is similar to that at the bottom.
As the foam grows and gravity drainage takes place, the
porosity at the top increases until the thickness of the lamel-
lae and the porosity at the top reach their respective critical
values for which bubbles start bursting. Moreover, Jeelani,

Ramaswami, and Hartland (1990) reported porosity values
at the top of the foam approaching unity for steady-state
foams. Therefore, it is believed that 
1(t) varies between

2 at the beginning of the foam formation and its maximum
values taken as unity at steady state.
The next step in the present analysis is to model the evolu-

tion of 
1(t) and thus R
(t) with time. Three di6erent models
are considered in the following sections: the average poros-
ity is (i) constant with time, (ii) an exponential function
of time, and (iii) obtained by approximate solution of the
drainage equation.
(i) Constant porosity at the top
The simplest approach is to assume that the porosity at

the top of the foam 
1(t) does not change with time and
equals the arithmetic mean of its minimum and its maximum
values. In agreement with the experimental observations, we
assume that 
1;min=0:74 and 
1;max ≈ 1:0. In this case 
1(t)
is taken to be 0.86, and according to Eq. (13) the average
foam porosity is R
(t) = 0:82.
(ii) Exponential variation of 
1 with time
The characteristic time for reaching the steady-state foam

thickness should be identical to the characteristic time for
the porosity at the top of the foam to reach a critical value
beyond which bubbles start bursting at the top. Let � be the
characteristic time for the foam thickness to reach a steady
state, then the change of the porosity 
1(t) with time can
be expressed as


1(t) = 
1;max + (
1;min − 
1;max)e−t=�: (14)

The value for � can be obtained by solving Eq. (6) for the
case H (t = �) = H∞ where H∞ is the steady-state foam
thickness:

� =
R
(�)H∞

j

=
H∞

j

{
2
3


1;max + (
1; min − 
1; max)e−1 +
1
3


2

}
: (15)

Again, assuming that 
2 = 
1;min = 0:74 and 
1;max = 1:0,
we obtain

� =
0:85H∞

j
: (16)

An expression for the steady-state thickness H∞ can
be found in the literature for foams generated from
high-viscosity <uids (Pilon et al., 2001). Two dimension-
less numbers have been identi7ed as describing the e6ect
of surface tension, viscosity, density, bubble radius, and
super7cial gas velocity (Pilon et al., 2001). However, all
the experimental data for transient foam behavior collected
from the literature are concerned with low-viscosity solu-
tions, and nitrogen is used as the 7lling gas, except for one
set of experimental data reported by Hartland et al. (1993)
who used xenon. But, according to Pilon et al. (2001), in
the case of nitrogen bubbled in low-viscosity solutions, the
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same approach as that used for high-viscosity solutions can
be used. Thus, a correlation for the steady-state thickness
of foams generated by bubbling nitrogen into low-viscosity
solutions has been developed using the two dimensionless
parameters previously mentioned:

H∞
r0

=
213; 177

Ca

(
Fr
Re

)1:77

; (17)

where Re, Fr, andCa are the Reynolds, Froude and Capillary
numbers, respectively, de7ned as

Re =
�c(j − jm)r0

�
; Fr =

(j − jm)2

gr0
; Ca =

�(j − jm)
�

;

(18)

here jm is the super7cial gas velocity for onset of foaming,
� is the viscosity of the foaming solution, r0 is the radius of
the bubbles at the bottom of the foam, and � is the surface
tension. Since all the experimental data sets for transient
foam thickness except one were obtained by bubbling nitro-
gen in low-viscosity solutions, the value of the steady-state
foam thickness can be substituted into Eq. (15) to give the
following expression for � as the function of the thermo-
physical properties and the super7cial gas velocities:

� = 1:812× 105
�

jr2:54
0

[�(j − jm)]0:77

(�g)1:77 : (19)

Finally, having determined the characteristic time for the
foam to reach a steady state �, the average foam porosity
can be expressed as a function of time t, 
1;min = 0:74, and

1;max = 1:0, as follows:

R
(t) = 0:91 + 0:17e−t=�: (20)

(iii) Approximate solution of the drainage equation
The drainage equation [Eqs. (2) and (3)] is solved approx-

imately by the series method (Tenenbaun & Pollar, 1963)
using the following boundary conditions:


[H (t); t] = 
2; (21)

qPB(0; t) = 0; (22)

where qPB is the volumetric <ux of the liquid phase through
the Plateau border channels at location z and time t. Note
that at the top of the foam the velocity of the <uid through
the Plateau border due to gravity drainage must be zero since
no liquid enters the foam at the top (Bhakta & Ruckenstein,
1995), therefore, qPB(0; t) = 0. Integrating Eq. (2) with re-
spect to the space variable from z =0 to z =H (t) and using
the above boundary conditions together with the Leibnitz
rule yields

d
dt

(∫ H (t)

0

 dz

)
− 
2

dH (t)
dt

= 
2qPB[H (t); t]; (23)

where qPB[H (t); t] is the <ux of liquid through the Plateau
borders at the foam=liquid interface. Substituting the expres-
sion for the average porosity R
(t) given by Eq. (7) into

Eq. (23) leads to the following di6erential equation:

d
dt
( R
H)− 
2

dH
dt

= 
2qPB[H (t); t]: (24)

The <ux of liquid through the Plateau borders at the
foam=liquid interface qPB[H (t); t] can be found by substi-
tuting Eq. (12) into Eq. (3) and assuming that 
2=0:74 and
the change in the bubble radius with location is negligible,
then Eq. (24) becomes

H
d
dt
( R
H)− 0:74H

dH
dt

= AH − B(
1(t)− 0:74); (25)

where

A = 2:46× 10−4cv
�gr2

�
; (26)

B = 1:10× 10−2cv
�r
�

: (27)

Eq. (25) has two unknowns [ R
(t) andH (t)]. Thus, one needs
an additional equation to complete the problem formulation.
One can use Eq. (6) to obtain the following system of equa-
tions for R
(t) and H (t) as dependent variables:

d
dt
( R
H) = j; (28)

H
d
dt
( R
H)− 0:74HḢ = AH − 3

2
B( R
 − 0:74): (29)

The initial conditions are:

R
(t = 0) = 
2; (30)

H (t = 0) = 0: (31)

Integrating Eq. (28) and substituting the expression for the
foam thickness H (t) (=jt= R
) into Eq. (29) yields

j2t R
( R
 − 0:74) + 0:74j2t2
d R

dt

=Ajt R

2 − 3

2
B( R
 − 0:74) R


3
: (32)

We now have a single non-linear 7rst-order ordinary di6er-
ential equation [Eq. (32)] that can be solved approximately
or numerically.
An approximate solution for early times of the foam for-

mation is sought using the series method (Tenenbaun & Pol-
lar, 1963). We assume that the average porosity R
(t) can be
expressed as a Taylor series during the initial phase of the
foam formation (i.e., t is small):

R
 =
∞∑
i=0

biti: (33)

Substituting this expression in Eq. (32) and identifying the
7rst three terms in ti gives

b0 = 
2; b1 =
2
3

(
Aj

B
2

)
; b2 =−j
2(A + 2j)b1:

(34)
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The Taylor series in Eq. (33) needs to be truncated for prac-
tical calculations. If only the 7rst two terms are retained, the
approximate solution of the low O(1) order could be only
obtained and this approximation is valid as long as the time
interval is between 0 and o(b1=b2). On the other hand, if
more precise solution with a second order of approximation
[e.g., O(2)] is sought, the 7rst three terms in the series need
to be retained in Eq. (33), albeit this more precise solution
is valid over much shorter time interval between t = 0 and
o(b2=b3). Unfortunately, the upper limit of time for validity
of the second-order approximation [i.e., o(b2=b3)] is a very
small number (tenths of a second), and no experimental data
fall into this time interval to warrant any further discussion
and use of the second-order approximation. Thus, the cruder
7rst-order model (i.e., 
=b0 +b1t) that is valid for a much
longer time interval is used in this study to provide mean-
ingful comparison with available experimental data.

4. Results and discussion

4.1. Validation against experimental data

4.1.1. Low super;cial gas velocity
Fig. 3 shows typical experimental data for the transient

foam thickness with the type 1 behavior obtained with a
nitrogen <ux of j = 0:1719 mm=s in a solution of 10%
glycerine + water + 80 mg=l of Marlophen-89 (Jeelani
et al., 1990). The predictions of Eq. (6) are also plotted
by assuming an average porosity R
 of 0.74 and 0.91. As
one can see, the experimental data fall between these two
extreme cases. The assumption that no bubbles burst at the
surface of the foam during the transient growth is valid for
transients of type 1. It appears that the steady-state thick-
ness is reached shortly after the mass conservation equation
for the gas phase [Eq. (6)] is no longer satis7ed. The only
possible reason for the equation not to be valid is if the
bubbles at the top of the foam start bursting or if the gas
contained in the bubble at the top of the foam di6uses to the
atmosphere. However, the sudden change in the transient
foam thickness toward its steady-state value indicates that
the responsible phenomena is abrupt and suggests that the
bursting of the bubbles at the top is a major event causing
the foam to rapidly reach a steady-state thickness.
It is also interesting to note that at the early stage of

the foam formation, the experimentally measured thickness
follows Eq. (6) with R
 = 0:74 and, at a later stage, it tends
toward the predictions of Eq. (6) with R
 = 0:91. Similar
plots were obtained for other type 1 transients. This can be
explained by the fact that as the liquid phase leaves the foam
at the bottom as a result of drainage, the average porosity
increases causing the slope dH=dt to slightly decrease with
time. At the same time, the bubbles change from spherical
to polyhedral shape.
Figs. 4–6 compare the experimental data (see Table 1) for

the transient foam thickness in the case of the low super7-
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Fig. 3. Comparison between the predictions equation (6) using the limiting
values for the average porosity R
 and typical experimental data for
nitrogen <ux j = 0:1719 mm=s in 10% glycerine + water + 80 mg=l of
Marlophen-89, (Jeelani et al., 1990).

0 1000 2000 3000 4000 5000 6000 7000
0

50

100

150

200

250

300

350

400

Time (s)

F
oa

m
 T

hi
ck

ne
ss

 (
m

m
)

TYPE 1

Jeelani et al., 1990; j=0.1719 mm/s
Constant average porosity
Exponential profile
Drainage equation
Steady_state value

Fig. 4. Comparison of the model predictions with experimental data for
nitrogen <ux of j = 0:1719 mm=s in 10% glycerine +water + 80 mg=l of
Marlophen-89 (Jeelani et al., 1990).

cial gas velocity with the predictions of the present work ob-
tained with the three di6erent models previously presented.
Good agreement is obtained for all three models and partic-
ularly when the average porosity is assumed constant and
equal to 0.82. Note that there were not enough data at the be-
ginning of the foam formation to fully assess the validity of
the approximate solution of the drainage equation which is
valid when the time t is small. Moreover, as observed in Fig.
3, the experimental data fall within the predictions of Eq.
(6) using the extreme values for R
 of 0.74 and 0.91, and the
di6erence between the predictions of the two limiting cases
is relatively small. Therefore, even the simplest models ex-
pressed in terms of average quantities (e.g., porosity) will
produce suLciently accurate results even though it ignores
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Fig. 5. Comparison of the model predictions with experimental data for
nitrogen <ux of j = 0:2176 mm=s in 10% glycerine +water + 80 mg=l of
Marlophen-89 (Jeelani et al., 1990).
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Fig. 6. Comparison of the model predictions with experimental data for
nitrogen <ux of j = 0:3091 mm=s in 10% glycerine +water + 80 mg=l of
Marlophen-89 (Jeelani et al., 1990).

some key physical processes taking place during foam for-
mation (e.g., coalescence and Ostwald ripening). Conse-
quently, a simpler approach is preferred and for practical
purposes, the average foam porosity can be taken as con-
stant and equal to 0.82.
Fig. 7 shows the average foam porosity deduced from

experimental data for low super7cial gas velocities by us-
ing Eq. (6). A maximum value of 0.91 was imposed when
the foam thickness reaches a steady state. It is worth noting
that the typical variation with time of the average porosity
features a sharp increase in the early stage of the foam
formation, then a plateau follows where it does not change
signi7cantly, and 7nally an increase toward its maximum
value. This can be explained by the fact that at the beginning,
the foam formation is dominated by drainage due to grav-
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Fig. 7. Evolution of the average porosity with time for nitrogen <ux of
j = 0:2176 mm=s in 10% glycerine + water + 80 mg=l of Marlophen-89
(Jeelani et al., 1990).

ity which eventually stops when balanced by the capillary
forces (Plateau border suction e6ects). The foam internal
structure does not change signi7cantly for a certain length of
time until some 7lms rupture within the foam. The plateau
may be due to the stochastic character of 7lm rupture requir-
ing a random time for the 7rst 7lm to rupture. Then, coales-
cence and drainage of the broken 7lms through the Plateau
border channels take place making the average foam poros-
ity increase again. Note that such an analysis is traditionally
applied to the foam porosity (Bhakta & Ruckenstein, 1997)
at a given location, but it seems that it is also valid for
the average foam porosity. All the models reported in the
literature (Bhakta & Ruckenstein, 1997; Narsimhan &
Ruckenstein, 1986a, b; Narsimhan, 1991) describe drainage,
coalescence, and interbubble gas di6usion as occurring si-
multaneously and continuously in the foam layer. According
to Fig. 7, this hypothesis does not seem to be valid for foam
formation. Gravity drainage dominates initially during the
formation of the foam layer. However, only a few experi-
mental data are available to fully assess the validity of the
drainage equation during the drainage-dominated regime
of the foam formation. Only when the 7lms separating the
bubbles are thin enough, coalescence and interbubble gas
di6usion can occur (Narsimhan & Ruckenstein, 1986b).
Therefore, the 7rst part of the transient foam formation
would consist of gravity drainage only while the second
part should depend on gravity drainage and coalescence, as
well as interbubble gas di6usion.
Moreover, two di6erent characteristic times for drainage

and 7lm rupture or coalescence within the foam seem to
prevail and can be measured from Fig. 7. The 7rst increase
in the average porosity corresponds to the drainage only and
appears to be the same for the three di6erent cases, i.e, the
characteristic time for drainage (�d) is independent of the
super7cial gas velocity. The duration of the plateau, i.e.,
the lifetime of the critically thin 7lm (�c), however, seems to
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Fig. 8. Comparison of the evolution of the foam thickness with
time for nitrogen and xenon <ux of j = 0:3091 mm=s in 10%
glycerine + water + 80 mg=l of Marlophen-89 (Jeelani et al., 1990).

increase with the super7cial gas velocity. This may be due
to the fact that as the super7cial gas velocity increases, the
foam thickness increases and acts as a cushion protecting
the bubbles already drained in the upper part of the foam
from disturbances occurring at the liquid=foam interface.
The larger the super7cial gas velocity, the thicker is the
absorbing “cushion”. Note also that according to Fig. 7, the
characteristic time for drainage is signi7cantly smaller than
the lifetime for the critically thin 7lm.
To assess the e6ect of the gas contained is the bub-

ble, only two experimental data sets were found in the
literature. Jeelani et al. (1990) and Hartland et al. (1993)
reported the variation of the foam thickness with time for
a super7cial gas velocity of j = 0:3091 mm=s in a solution
of 10% glycerine + water containing 80 and 120 mg=l of
Marlophen-89 and with nitrogen and xenon as the 7lling
gas, respectively. According to Eq. (6) both systems should
behave identically since the super7cial gas velocity is the
same. However, Fig. 8 shows that when xenon is injected
into the solution the transient foam thickness deviates
signi7cantly from the predictions of Eq. (6), whereas this
equation is valid for nitrogen. Even though the amount of
surfactant added to the solution is di6erent, the di6erences
in surface tension, density or viscosity between the two so-
lutions are negligible [see Pilon et al. (2001) for a summary
of the thermophysical properties]. Therefore, the di6erence
in the transient behavior can only be explained by the type
of gas injected into the solutions. Detailed analysis of the
physical properties of nitrogen and xenon reported by Hart-
land et al. (1993) indicates that xenon and nitrogen have
similar di6usion coeLcients in the liquid phase, but the sol-
ubility of xenon is seven times larger than that of nitrogen.
Furthermore, Hartland et al. (1993) reported that the Sauter
mean diameter increases sharply from the bottom to the top
of the foam when xenon is injected while it does not change
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Fig. 9. Evolution of the foam thickness with time for nitrogen <ux of
j = 0:83 mm=s in a solution containing 800 g sucrose, 0.52l glycerol, 1l
distilled water, 600 mg=l aerosol OT (Hartland & Barber, 1974).
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Fig. 10. Evolution of the foam thickness with time for nitrogen <ux of
j = 1:5 mm=s in a solution containing 800 g sucrose, 0.52l glycerol, 1l
distilled water, 600 mg=l aerosol OT (Hartland & Barber, 1974).

signi7cantly with nitrogen. This can be explained by the en-
hanced mass transfer from smaller to larger bubbles as the
solubility increases. As suggested by Hartland et al. (1993),
the interbubble gas di6usion occurring with xenon leads to
larger and more unstable bubbles at the top of the foam
that tend to burst faster leading to an early deviation from
Eq. (6). For high solubility gases, Ostwald ripening and
bursting of the bubbles at the top of the foam should
be accounted for to obtain correct predictions of foam
dynamics.

4.1.2. Intermediate and large super;cial gas velocity
Figs. 9–10 show the evolution of the foam thickness with

time for intermediate super7cial gas velocity. One can see
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Fig. 11. Comparison of the model predictions with experimental data for
nitrogen <ux of j=2:15 mm=s in a solution containing 800 g sucrose, 0.52l
glycerol, 1l distilled water, 600 mg=l aerosol OT (Hartland & Barber,
1974).
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Fig. 12. Evolution of the foam thickness with time for nitrogen <ux of
j=6:2 mm=s in 0.3% gum arabic+1:5% isobutyl alcohol in water solution
(Pattle, 1950).

that the model predictions deviate from the experimental
data. More precisely, the bubbles at the top of the foam
seem to collapse before the foam reaches a steady state.
This is believed to be due to the larger gas <ow rates that
create disturbances in the liquid and at the liquid=foam in-
terface causing the 7lm at the top of the foam to rup-
ture at larger thicknesses. This phenomena is ampli7ed for
large super7cial gas velocity where foam changes quickly
to a steady state froth as suggested by Hartland and Bar-
ber (1974) (see Figs. 11 and 12). Therefore, transients of
type 2 feature a bifurcating behavior between two possi-
ble steady states: (i) steady-state foam and (ii) steady-state

froth. Oscillations of the foam thickness with time at inter-
mediate super7cial gas velocity are discussed in the next
section.

4.2. Oscillations of the foam thickness with time

For low super7cial gas velocity (type 1), the steady-state
foam thickness oscillates slightly around its mean value,
but it was not possible to identify any periodicity, possibly,
due to a small sampling rate. However, for intermediate su-
per7cial gas velocity (type 2) it is believed that the foam
thickness oscillates signi7cantly due to the discrete charac-
ter of the bubble rupture at the top of the foam (Table 1).
Several mechanisms explaining such a behavior can be
suggested:

(1) The 7rst bubble bursting at the top of the foam gen-
erates a high-velocity liquid jet that breaks up into a
number of small drops as observed for a single bub-
ble bursting at a free surface (Boulton-Stone & Blake,
1993). Those drops, when falling back on top of the
foam, cause the bubbles suLciently drained to burst al-
most simultaneously in a chain reaction. Note that this
rupture mechanism has been observed for small single
bubbles [¡ 5 mm in diameter, Boulton-Stone and Blake
(1993)] bursting at the free surface of a liquid. No jet
was observed for large bubbles indicating that the pres-
sure inside the bubble has to be high enough to generate
a jet that later breaks up into drops (Boulton-Stone &
Blake, 1993). Moreover, the collapse of standing foams
has been observed to be discontinuous (Barber & Hart-
land, 1975), and H (t) is a step function rather than a
continuous function of time (Barber & Hartland, 1975).
The stages of collapse were longer for higher surface
tension and lower viscosity (Barber & Hartland, 1975).
This can be explained in terms of the proposed mecha-
nism, by virtue of the fact that the viscosity tends to slow
down the jet due to viscous dissipation (Boulton-Stone
& Blake, 1993), and the surface tension increases the
energy released when the bubbles burst. Note that in the
experimental data set reported in Figs. 4 and 6 (Jeelani
et al., 1990), the mean diameter of the bubbles at the
top of the foam increases with the super7cial gas veloc-
ity but remains ¡ 3:2 mm indicating that the bubbles
could generate a jet when bursting.

(2) The 7rst bubble bursting at the top of the foam cre-
ates a pressure wave (detonation) propagating through
the foam. The magnitude of the detonation depends on
the bubble size and is larger for small bubbles since
their inside pressure is larger than that of large bubbles.
The viscous forces limit the propagation of the pressure
wave and a larger surface tension increases the ampli-
tude of the detonation.

For both mechanisms the bubbles that still have thick
lamellae can stand the disturbance and act as a protection
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Table 1
Summary of experimental conditions for studies reported in the literature and concerned with transient foam thickness

Solution Dimensions Gas Gas <ux � � � T r0 Foam References
I.D. and H0 (mm=s) (mN=m) (mPa s) (kg=m3) (◦C) (mm) type

Water + sucrose AR+ I:D: = 6:15 cm N2 0. to 26 20 1220 30 3.9 1, 2, Hartland and Barber
glycerol SLR + aerosol OT H0 = N:A: 0.82 and 3 (1974)

Water + 10% glycerinate I:D: = 10 cm Xe 0.31 31.52 1.22 1014 20 0.4 1 Hartland et al. (1993)
Marlophen-89 and 812 H0 = 45 cm

Water + 10% glycerinate I:D: = 10 cm N2 0.09 to 32.0 to 1.22 1014 20 0.5 to 1 Jeelani et al. (1990)
Marlophen-89 and 812 H0 = 45 cm 0.3091 41.1 0.78

0:3% gum arabic + water Air 6.2 260 N=A N=A Room 0.7 to 3 Pattle (1950)
+1:5% isobutyl alcohol temp. 1.0

preventing the entire foam from collapsing. This is con-
7rmed by experimental observation on cells cultivated in
a bioreactor that undergo severe damages due the burst of
small bubbles close to the free surface (Boulton-Stone &
Blake, 1993). However, the damage is signi7cantly reduced
in the presence of a slowly draining foam covering the free
surface of the reactor (Boulton-Stone & Blake, 1993). For
low super7cial gas velocities and as observed in Figs. 4
–6, oscillations around the steady-state thickness tend to
decrease as the super7cial gas velocity increases. Similarly,
for intermediate super7cial gas velocity (type 2 transients),
the oscillations are larger for smaller super7cial gas veloc-
ity as shown in Figs. 9 and 10, even though no steady state
can be observed. This can be explained by the fact that as
the super7cial gas velocity increases, the steady-state foam
thickness increases as well as the residence time of the
bubbles in the foam allowing them to coalesce more. Thus,
increasing the super7cial gas velocity causes the bubbles
at the top to increase in diameter and their inside pressure
to decrease. Hence, the rupture of large bubbles does not
trigger the burst of other bubbles as much as does the rup-
ture of smaller bubbles. For thick foams, the bubbles at
the top of the foam have a large mean diameter and their
rupture can be considered as an isolated event that may
generate neither a jet nor a strong detonation. Therefore,
the oscillations of the foam thickness become smoother as
the super7cial gas velocity increases. The major di6erence
between type 1 and type 2 transients can be attributed to
the agitation in the liquid phase at the foam=liquid interface
that increases with higher super7cial gas velocity.
It is interesting to note (in Fig. 9) that during the 7rst

few instants of the foam thickness growth, the experimental
data deviate signi7cantly from the predictions of Eq. (6),
i.e., bubbles start bursting soon after the beginning of the
foam formation. At some point in time the foam su6ers its
7rst collapse and starts a cycle of linear growth with time
followed by sudden and periodic collapses. Unlike the ini-
tial growth, the secondary growths closely follow Eq. (6),
i.e., no bubble burst at the top of the foam. As mentioned

by Hartland and Barber (1974), below a certain height (i.e.,
200 mm) the foam appeared to be stable and the collapse
stopped when this height is reached and the foam starts
growing again. It is believed that the 200 mm layer of sta-
ble foam acts as a cushion for the upper part and absorbs
the agitation at the foam=liquid interface created by the ris-
ing bubbles. As a consequence to this “cushion”, the upper
part of the foam can grow without being a6ected by the ag-
itation at the liquid=foam interface. The foam grows like in
a transient of type 1 and follows Eq. (6). When the 7rst
bubble bursts, it makes the unstable part of the foam col-
lapse in a chain reaction down to 200 mm. The fact that at
each growth the foam reaches a higher and higher thickness
was attributed to the washing of dust and impurities on the
tube walls that previously prevented the foam from growing
(Hartland & Barber, 1974).

5. Conclusions

This paper presents a simple, experimentally validated
approach to analyze the transient formation of a foam layer
produced by injecting gas bubbles into a foaming solu-
tion. Three di6erent regimes in the transient growth of the
foam have been identi7ed as a function of the super7cial
gas velocity: (i) at low super7cial gas velocities, the foam
thickness increases linearly with time and quickly reaches
a steady state, (ii) at intermediate super7cial gas velocities,
the foam thickness exhibits large oscillations with time and
never reaches a steady state, and (iii) at large super7cial gas
velocity, the foam thickness initially increases linearly and
then suddenly collapses into a steady-state froth. The pro-
posed model is based on the mass conservation equation for
the gas phase in the foam combined with three di6erent mod-
els for the average porosity: (1) a constant average poros-
ity of 0.82, (2) an exponential variation of average porosity
with time, and (3) an approximate solution of the drainage
equation. This model enables one to better understand the
physical mechanisms that occur during the foam formation
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and the e6ects of the super7cial gas velocity on the foam
dynamics. The present analysis provides the framework for
more fundamental and detailed studies of the foam forma-
tion and leads to the following conclusions:

(1) For practical calculations, a linear model given by
Eq. (6) with a constant average porosity equal to 0.82
can be used. The model predictions show very good
agreement with experimental data for low super7cial
gas velocity and provide an upper limit for the foam
thickness in the case of an intermediate and large
super7cial gas velocity.

(2) In most of the experimental data used in the present
work interbubble gas di6usion can be neglected. How-
ever, we also observed that for gases with large sol-
ubility in the liquid phase, interbubble gas di6usion
could play an important role and should be accounted
for. Thus, further experimental and modelling work is
needed to better understand the e6ect of interbubble
gas di6usion on the transient foam thickness.When the
gas solubility in the foaming solution is high, the Ost-
wald ripening e6ect becomes dominant especially when
the bubble size is small and the bubbles are polydis-
persed. In this case, the interbubble mass transfer be-
comes signi7cant, and the proposed model may not be
valid.

(3) In the case of intermediate super7cial gas velocity fea-
turing large transient oscillations of the foam thickness,
two di6erent mechanisms could be suggested to explain
the foam dynamics. The 7rst bubble bursting at the top
of the foam generates either (1) a high-velocity liquid
jet that breaks up into a number of small drops, or (2)
a pressure wave (detonation) propagating through the
foam. Both mechanisms cause the bubbles suLciently
drained to burst in a chain reaction and explain quali-
tatively the experimental observations. However, more
careful observations and measurements have to be per-
formed in order to experimentally validate these mech-
anisms. The addition of salts to a surfactant solution
and the Gibbs–Marangoni e6ect may have a profound
e6ect on the 7lm=interface stability, and this e6ect on
the dynamics of the foam growth needs to be further
investigated.

(4) Additional work is needed on modelling the character-
istic time for drainage and the lifetime of a critically
thin lamellae. The mechanical e6ect of the disturbances
at the liquid=foam interface on the total foam thickness
should also be investigated.

(5) The present work also contributes to better understand-
ing of the decay of standing foams that was proven to
be very sensitive to the bubble size distribution in the
foam layer at the instant the gas supply is shut o6 (Mon-
salve & Schechter, 1984); the bubble size distribution
at the beginning of the foam decay can only be deter-
mined in the limit of the dynamic foam growth, which
is analyzed in this paper.

Notation

A parameter, Eq. (26)
ai coeLcients of the polynomial expansion of

R
(z; t) in terms of z [Eq. (8)]
B parameter, Eq. (27)
bi coeLcients of the polynomial expansion of R
 in

terms of t [Eq. (33)]
cv dimensionless parameter, Eq. (3)
g speci7c gravity
H∞ steady-state thickness
H (t) transient foam thickness
j super7cial gas velocity
jm super7cial gas velocity for onset of foaming
m mass
qPB mass <ow rate through the Plateau border
r local bubble radius in the foam
r0 average bubble radius in the foam
R universal gas constant =8:314 J=mol K
S cross-sectional area of the container
t time
z downward vertical elevation (see Fig. 2)

Dimensionless numbers

Ca Capillary number, de7ned in Eq. (18)
Fr Froude number, de7ned in Eq. (18)
Re Reynolds number, de7ned in Eq. (18)

Greek letters

� parameter, =
√
0:644=0:322, Eq. (3)


 foam porosity (volumetric gas fraction)
R
(t) average foam porosity

1 porosity at the top of the foam

2 porosity at the bottom of the foam
� dynamic viscosity
� density
� surface tension
� characteristic time required to reach steady-state

conditions
�c lifetime of the critically thin 7lm
�d characteristic time for drainage

Subscripts

g refers to gas
max refers to the maximum value
min refers to the minimum value
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