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a  b  s  t  r  a  c  t

This  paper  aims  to clarify  the  intrinsic  limitations  of  electrochemical  impedance  spectroscopy  (EIS)  in
measuring  electric  double  layer  (EDL)  capacitance.  For  more  than  two decades,  capacitances  measured
using  EIS  at  low  frequencies  have  been  reported  to  be  significantly  smaller  than  those  measured  using
other  techniques  without  any  definitive  explanations.  In this  paper,  EIS  measurements  were  numerically
reproduced  for  electric  double  layers  formed  near  a planar  electrode  in  aqueous  electrolyte  solutions.  The
transient  double  layer  dynamics  was  simulated  for low  and  large  electrolyte  concentrations  using  the
classical  Poisson–Nernst–Planck  (PNP)  model  with  or  without  a Stern  layer,  and  a modified  PNP  model
with  a  Stern  layer,  respectively.  A  characteristic  time  for  ion  diffusion  �m was  identified  as  �2

m/D  where
�m is the Debye  length  based  on  the  maximum  ion  concentration.  For  a  given  concentration,  the predicted
capacitance  and  the  phase  shift  of surface  charge  density  plotted  versus  dimensionless  frequency  �mf for
various  values  of  diffusion  coefficient  overlapped  on  a  single  line.  This  was  true  for  all  models  considered
with  or  without  Stern  layer.  The  simulated  EIS  measurements  systematically  overestimated  the EDL
capacitance  for  dilute  electrolyte  solutions  while  they  underestimated  it for concentrated  electrolyte
solutions  subject  to large  electric  potential.  This  discrepancy  can  be attributed  to  the  fact  that  the  RC circuit
used in  EIS  to  model  electric  double  layers  is  not  valid.  This  study  established  that  the EIS measurements
have  intrinsic  limitations  and  are  inadequate  for accurately  determining  EDL  capacitances  for practical
applications  with  large  potentials  such  as electrochemical  capacitors.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Electrochemical impedance spectroscopy (EIS) is a powerful
tool in the field of electrochemistry [1–5]. It has been used exten-
sively to characterize the performance of various electrical energy
storage devices such as electrochemical capacitors (also known as
supercapacitors) [6–14], batteries [15–17],  and fuel cells [4,18].  In
these applications, the charged electrodes are typically immersed
in the electrolyte solution. Electric double layers form at the elec-
trode/electrolyte interfaces which are accessible to ions present in
the electrolyte. Fig. 1 shows a schematic of the electric double layer
structure forming near the surface of an anode. Solvated cations of
diameter a migrate and adsorb to the electrode surface due to elec-
trostatic forces [1,19–21]. The Stern layer is defined as the compact
layer of immobile ions strongly adsorbed to the electrode surface
[1,19–21]. Note that there are no free charges within the Stern layer
[1,19,20]. Beyond the Stern layer is the so-called diffuse layer where
ions are mobile under the coupled influence of electrostatic forces
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and diffusion [1,19–21]. Fig. 1b shows the typical representation of
an electric double layer capacitance with the Stern layer and diffuse
layer capacitances in series [1,6,19,21].

EIS measurements consist of imposing a time harmonic electric
potential with a certain frequency at the electrodes. This harmonic
potential consists of two  components: (i) a time-independent “DC
potential” and (ii) a periodically oscillating potential with a small
amplitude typically less than 10 mV  [4,12,13]. The resulting elec-
tric current is recorded. Then, the magnitude of the electrochemical
impedance can be defined as the ratio of the amplitudes of oscil-
lating potential and current while its phase angle is the shift by
which the current is ahead of the potential [1–4]. A simple RC
circuit consisting of a resistor and a capacitor in series is most
commonly used to model pure electric double layers (i.e., without
Faradic reaction) forming at an electrode as shown in Fig. 1c [1–11].
The resistance and capacitance for a given frequency are retrieved
from the in-phase and out-of-phase components of the measured
electrochemical impedance, respectively [1–11]. The double layer
capacitance measured by EIS is typically plotted as a function of
frequency [3,7–12,14,22–31]. It is known to decrease with increas-
ing frequency beyond a critical frequency due to the fact that the
double layer is not ideally capacitive at large frequencies [28–31].
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Fig. 1. Schematic of (a) the electric double layer structure showing the arrangement
of  solvated anions and cations near an anode/electrolyte interface and the simulated
computational domain consisting of the Stern layer and the diffuse layer, (b) the
Stern and diffuse layer capacitances in series [1,6,19], and (c) the equivalent RC
circuit used in EIS [1–4,8].

It has also been referred to as double layer impedance [29–32].  The
capacitance retrieved from EIS measurements at low frequencies
has been regarded as an estimate of the capacitance at the imposed
DC potential [8,9,12,33].

However, capacitances measured using EIS at low frequencies
have been reported to systematically underpredict capaci-
tances measured using cyclic voltammetry at low scan rates
[22–25,33–35] and galvanostatic charge/discharge at low current
density [24–27,36].  This was originally observed in the measure-
ments of pseudocapacitances of different conducting polymers
[22,33–36]. It has also been reported for various electrochemical
capacitors [23–27,36].  For example, Ren and Pickup [35] summa-
rized the literature measuring the pseudocapacitance of various
conducting polymers. They concluded that “it has been generally
observed that the low frequency limiting capacitances observed in AC
experiments on conducting polymers are significantly less than those
measured by cyclic voltammetry” [35]. Lufrano et al. [26] measured
the capacitance of electric double layer capacitors (EDLCs) with
electrodes made of carbon composite. Three electrolytes were used
including commercial Nafion 115, recast Nafion membrane, and
H2SO4 aqueous solution. The authors observed that the EDLC capac-
itances measured using EIS were smaller than those measured
using galvanostatic charge/discharge and “the maximum difference
of the capacitance is in the order of 20% for all capacitors”  [26].

The origin of this discrepancy has been “a subject of some contro-
versy for more than two decades” [36]. Various hypotheses have been
proposed attempting to explain these observations [22,34–40]
including (i) the presence of “deeply trapped” counterions remain-
ing immobile in EIS experiments [22,38],  (ii) “conformation
changes” of electrode materials [35,39], and (iii) large hindrance
to AC current penetration into porous electrodes [25,27], to name a
few. However, there is still no clear and definitive explanations to
the observed discrepancies. Accordingly, EIS has been regarded as
“the least reliable and accurate technique for determining the superca-
pacitive properties of materials” [36]. In addition, to the best of our
knowledge, no studies have attempted to elucidate this question
via physics-based numerical simulations.

This paper aims to clarify the intrinsic limitations of EIS
for determining the electric double layer capacitances. The EIS

measurements were simulated by modeling ion transport in elec-
trolyte solutions as a function of frequency. The results were
compared with analytical expressions for capacitances under equi-
librium conditions.

2. Background

2.1. Electrochemical impedance spectroscopy

In EIS measurements, the electric potential  s(t) imposed at the
electrode is a harmonic function of time t. This results in a har-
monic current density Js (in A/m2) provided that the amplitude
of the harmonic potential is small enough (e.g., less than 10 mV).
Using complex notations, the imposed electric potential and the
corresponding current density can be expressed as [1–4],

 s(t) =  dc +  0e
i2�ft and Js(t) = Jdc + J0e

i(2�ft−�) (1)

where  dc and Jdc are time-independent DC potential and DC cur-
rent density, respectively. Here,  0 and J0 are the amplitudes of
the potential and current density around their DC components,
respectively. The imaginary unit is denoted by i, f is the frequency
expressed in Hz, while �(f) is the frequency-dependent phase angle
between the harmonic potential  s(t) and the current density Js(t).
The complex electrochemical impedance Z is defined as [1–4],

Z =  0

J0
ei� = Z ′ + iZ ′′ (2)

where Z′ and Z′′ (expressed in � m2) are the real and imaginary parts
of the impedance, respectively. Based on the equivalent RC circuit
shown in Fig. 1c, the resistance and capacitance per unit surface
area (also called specific resistance and capacitance) are given by
[1–4,8],

REISs = Z ′ and CEISs = −1
2�fZ ′′ (3)

Eq. (3) is the most commonly used formula to determine the capac-
itance of EDLCs from EIS measurements [7–11,36]. Alternatively,
more complicated RC circuits [6,41,42] or transmission line mod-
els [6,43–48] have also been developed to represent electric double
layers by introducing more resistor and capacitor components.
Then, these models have to be fitted with experimental EIS data to
retrieve the resistances and capacitances. However, these models
suffer from other drawbacks as stated in Ref. [49]: “First, it is possi-
ble for two different models to produce the same impedance response
[...]. Second, the overall impedance expressions corresponding to most
models give little or no direct information about the physical meaning
of the elements for such models.” Note also that the fitted pseudoca-
pacitance values based on complex RC circuits were also reported to
underpredict those measured using other techniques [37–40,50].

2.2. Ion transport in electrolyte solutions

It is well known that ion transport in dilute electrolyte solutions
can be accurately described by the classical Poisson–Nernst–Planck
(PNP) model [1,51–53]. The PNP model has been used extensively
to investigate EIS and reaction kinetics of one-dimensional elec-
trolytic cells [29–32,54] and ion-exchange membranes [55–59].
However, the PNP model neglects the finite size of ions and treat
ions as point-charges. This assumption is appropriate only when
both the ion concentration c∞ and the electric potential are small
[52,53].

Recently, efforts have been made to account for the effect of
finite ion size in modeling ion transport in concentrated electrolyte
solutions. Lim et al. [60,61] used the classical Nernst–Planck model
and accounted for the finite ion size by adding a Stern layer. Their
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model imposed linear potential profile and uniform ion concen-
trations in the Stern layer. However, it was limited to relatively
low surface potential and electrolyte concentration, i.e.,  s ≤ 0.2 V
and c∞ ≤ 0.01 mol/L. Kilic et al. [52] derived a modified PNP (MPNP)
model valid for binary and symmetric electrolytes under large elec-
trolyte concentration and electric potential. They added an excess
term in the expression of the electrochemical potential to account
for the finite ion size. They solved the MPNP model numerically
for a planar electrode and predicted the profiles of electric poten-
tial and ion concentrations in the diffuse layer [52]. Their results
demonstrated that under large electrolyte concentration and elec-
tric potential, the predictions of PNP model deviated significantly
from the MPNP model due to the point-charge assumption. Alter-
natively, Horno and co-workers [62,63] accounted for the finite ion
size in ion mass fluxes using the activity coefficient. It was  later
demonstrated that Kilic’s model [52] can be formulated in a form
equivalent to that based on activity coefficient [53,64].  However,
to the best of our knowledge, no studies have simulated EIS mea-
surements under both large electrolyte concentrations and electric
potential other than by using RC circuits [6,8,9] or transmission line
models [6,45–48].

This paper aims (i) to simulate the electric double layer dynam-
ics in EIS measurements and (ii) to understand the limitations
of EIS in determining electric double layer capacitances. The
transient double layer dynamics was simulated for the electric
double layer formed near a planar electrode in aqueous elec-
trolyte solutions. For low electrolyte concentrations, the classical
Poisson–Nernst–Planck (PNP) model with or without a Stern layer
was solved. Instead, for large electrolyte concentrations, a modified
PNP model [52] was used accounting for a Stern layer.

3. Analysis

3.1. Schematics and assumptions

Fig. 1a shows the schematic of the computational domain sim-
ulating a planar electrode immersed in an electrolyte solution. The
region of electrolyte solution consists of two layers correspond-
ing to (1) a Stern layer of thickness H near the electrode surface
and (2) a diffuse layer beyond. A time-dependent electric potential
 s(t) was prescribed at the electrode surface and was zero far away
from the electrode surface. The length of the overall computational
domain was specified to be (i) L = 160 nm for electrolyte concentra-
tion c∞ less than 0.01 mol/L and (ii) L = 80 nm for c∞ = 1 mol/L. Note
that the electric double layer thickness decreases with increasing
electrolyte concentration [20,52,53].  Increasing the value of L by a
factor of two was found to have no effect on the predicted specific
capacitance Cs under equilibrium conditions and capacitance CEISs
retrieved from EIS simulations at low frequency using Eq. (3).  How-
ever, the values of CEISs predicted at large frequencies were found
to decrease with increasing L. This can be attributed to the fact that
the charge storage or charge relaxation took longer as the domain
length L increased under large frequencies [65]. Then, the charge
storage at large frequencies was limited as it could not follow the
fast variation in the electric potential.

To make the problem mathematically tractable, the following
assumptions were made: (1) anions and cations had the same effec-
tive diameter and diffusion coefficient which were assumed to be
constant and independent of electrolyte concentration [53,66,67],
(2) the electrolyte relative permittivity was constant, independent
of frequency, and equals to that of water. Note that the relative per-
mittivity of water at room temperature is known to significantly
decrease for frequency larger than 5 × 109 Hz [68]. The frequency
range considered here did not exceed this value except other-
wise mentioned, (3) isothermal conditions prevailed throughout

the electrode and electrolyte, (4) advection of the electrolyte was
assumed to be negligible, (5) the ions could only accumulate at
the electrode surface and could not diffuse into the electrode,
i.e., there was  no ion insertion, and (6) the specific ion adsorp-
tion due to non-electrostatic forces were assumed to be neg-
ligible.

3.2. Governing equation and boundary conditions

The local electric potential  (x, t) and ion concentrations ci(x, t)
in the electrolyte solution were computed by solving (i) the Poisson
equation in the Stern and diffuse layers [19,60,61] and (ii) the PNP
or MPNP model in the diffuse layer for small or large electrolyte
concentration, respectively [52,53,64].  For binary and symmetric
electrolytes, the valency is such that z1 = − z2 = z and the bulk ion
concentration is given by c1∞ = c2∞ = c∞. Then, assuming identical
diffusion coefficient D1 = D2 = D, the MPNP model with Stern layer
can be written as [52,53,64],

∂
∂x

(
�0�r

∂ 
∂x

)
=

{
0 for 0 ≤ x < H (4a)
eNAz(c1 − c2) for x ≥ H (4b)

∂ci
∂t

= ∂

∂x

(
D
∂ci
∂x

+ ziD

RuT
Fci
∂ 

∂x
+ 	Dci

2c∞ − 	(c1 + c2)
∂(c1 + c2)

∂x

)
for x ≥ H (4c)

where ci(x, t) is the local molar concentration of ion species
“i” (i = 1, 2). The Cartesian coordinate is denoted by x while �0
and �r are the free space permittivity (�0 = 8.854 × 10−12 F/m)
and the relative permittivity of the electrolyte solution, respec-
tively. The absolute temperature is denoted by T, e is the
elementary charge (e = 1.602 × 10−19 C), NA is the Avogadro’s
number (NA = 6.022 × 1023 mol−1) while F and Ru are the Fara-
day constant (F = eNA sA/mol) and the universal gas constant
(Ru = 8.314 J K−1 mol−1), respectively. The packing parameter is
defined as 	 = 2a3NAc∞ where a is the effective ion diameter. It
represents the ratio of the total bulk ion concentration to the max-
imum ion concentration cm = 1/NAa3 assuming a simple cubic ion
packing [52,53,64].  Therefore, 	 should not be larger than unity
for the model to be physically acceptable [52,53,64].  Eqs. (4b) and
(4c) reduce to the classical Poisson–Nernst–Planck model when
	 = 0 [52,53,64].  Note that in Refs. [52,53,64],  the Stern layer was
accounted for via a boundary condition relating the potential drop
across the Stern layer and the potential gradient at the Stern/diffuse
layer interface. Here, the electric potential in the Stern layer was
solved explicitly. In fact, these two approaches are equivalent for
planar electrodes [52,53,64].

Moreover, the associated boundary and initial conditions were
given by [19,51,52],

 (x = 0, t) =  s(t), (5a)

 |x=H− =  |x=H+ and �0�r
d 

dx
|x=H− = �0�r

d 

dx
|x=H+ , (5b)

D
∂ci
∂x

+ ziD

RuT
Fci
∂ 
∂x

+ 	Dci
2c∞ − 	(c1 + c2)

∂(c1 + c2)
∂x

= 0, at x = H (5c)

 (x = L, t) = 0 and ci(x = L, t) = c∞, (5d)

 (x, t = 0) = 0 and ci(x, t = 0) = c∞, for 0 ≤ x ≤ L (5e)

Note that the surface electric potential  s(t) in Eq. (5a) was given by
Eq. (1).  Eq. (5b) states that the electric potential and displacement
were continuous across the Stern/diffuse layer interface located at
x = H [19,51]. Eq. (5c) indicates that the mass fluxes vanish for both
ion species at the electrode surface since there is no ion insertion
[assumption (6)] [52,53]. Note that, when H = 0 nm, Eqs. (4) and (5)
correspond to simulations without the Stern layer.
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3.3. Constitutive relations

In order to solve Eqs. (4) and (5),  the electrolyte properties �r, z,
c∞, a and D along with the temperature T and the surface potential
 s(t) are needed. The present study focuses on aqueous electrolyte
solution at room temperature (T = 298 K) with �r = 78.5 [68]. Note
that the electrolyte dielectric permittivity decreases at large local
electric field [69,70]. The electric double layer capacitance may
decrease by a factor two or three when accounting for this effect
[69,70]. However, this is not expected to affect either the compari-
son between the capacitance under equilibrium conditions and that
retrieved from EIS simulations or the qualitative conclusions of the
present study.

The effective ion diameter and diffusion coefficient were taken
as a = 0.66 nm [67] and D = 2 × 10−9 m2/s [68], respectively, while
the valency was z = 1. These values correspond to solvated ions such
as K+ and Cl− in aqueous solutions. The diffusion coefficients of
ions such as K+ and Cl− are known to decrease by about 10% when
increasing the electrolyte concentration from 0 to 1 mol/L [71].
In addition, ion diffusion coefficients significantly decrease in the
presence of charged obstacles [72] or porous electrodes [73]. Here,
a parametric study was also carried out for other values of diffusion
coefficient, namely, D = 2 × 10−8 and 2 × 10−10 m2/s. The electrolyte
concentration was chosen as (i) c∞ = 0.01 and 0.001 mol/L so that
the classical PNP model was valid and (ii) c∞ = 1.0 mol/L corre-
sponding to typical values in actual electrochemical capacitors.
In addition, the Stern layer thickness H was approximated as the
radius of solvated ions [1,20,21], i.e., H = a/2 = 0.33 nm.

Moreover, the DC potential component  dc of the harmonic sur-
face electric potential  s(t) was varied from 0.01 to 0.5 V. A DC
potential of  dc = 0.5 V corresponds to a typical potential difference
of 1 V between the anode and the cathode for aqueous electrochem-
ical capacitors. The amplitude of the potential oscillation was taken
as (i)  0 = 0.001 V for  dc ≤ 0.1 V and (ii)  0 = 0.005 V for  dc > 0.1 V.
Decreasing  0 by up to a factor five was found to have no effect on
the predicted impedance and capacitance.

Finally, note that for low electrolyte concentrations
c∞ = 0.001–0.01 mol/L, the frequency range explored in the
present study was f = 10–107 Hz. It was similar to the range
f = 1–107 Hz in the experiments used for planar electrodes of gold
platted stainless steel in 0.001–0.01 mol/L KCl and BaCl2 elec-
trolyte solutions [74]. For c∞ = 1 mol/L, frequency ranged from 103

to 109 Hz due to the significant decrease in the electrical resistance
to ion transport when increasing electrolyte concentration [55,75]
as discussed in Section 4.2. However, these frequency ranges
were several orders of magnitude larger than those encountered
in typical EIS measurements for electrochemical capacitors with
mesoporous electrodes where the frequency typically ranges from
10−3 to 105 Hz [9–13,25]. The difference is due to the fact that the
electrode was not simulated in the present study. The electrical
resistance of the mesoporous electrodes is significantly larger
than that of planar electrodes. This, in turn, limits the range of
frequencies in EIS measurements of practical EDLCs [8–11].

3.4. Method of solution and data processing

Eq. (4) were solved using the commercial finite element solver
COMSOL 3.5a, along with the boundary and initial conditions given
by Eq. (5).  The capacitance under equilibrium conditions and the
capacitance determined using EIS simulations were computed as
follows.

3.4.1. Capacitance under equilibrium conditions
The double layer capacitance under equilibrium conditions cor-

responds to the time-independent surface potential, i.e.,  s(t) =  dc.
Then, the Stern and diffuse layer specific capacitances CSts and CDs

are defined by dividing the surface charge density [1,20,51,76,77]
qs(x) = �0�rE(x) by their respective potential difference [1,51,69].
Here, E(x) =|− d /dx| is the norm of the local electric field. The
capacitances CSts and CDs of planar electrodes assuming constant
electrolyte properties and accounting for the finite ion size are
given by [1,51,53,66,69],

CSts = qs(0)
 s −  D

= �0�r
H

(6a)

CDs = qs(H)
 D

= 2zeNAc∞�D
 D

√
2
	

log

[
1 + 2	sinh2

(
ze D
2kBT

)]
(6b)

where  D =  (H) is the electric potential computed at the Stern
layer/diffuse layer interface x = H by solving the steady-state equi-
librium modified Poisson–Boltzmann model at surface potential
 dc and electrolyte concentration c∞ [52,53,66,69].  Then, the total
specific capacitance Cs was  calculated using the series formula as
[1,51,69],

1
Cs

= 1

CSts
+ 1
CDs

(7)

Note that  D =  dc when computing the capacitance CDs (Eq. (6b))
without the Stern layer. Note also that the so-called differential
capacitance defined as Cd = dqs/d  is different from the capacitance
given by Eqs. (6) and (7) for double layers [1,51,66] and CEISs inves-
tigated in the present study.

3.4.2. Simulating EIS measurements
EIS measurements were simulated by numerically imposing

the harmonic surface electric potential given by Eq. (1).  The cor-
responding transient surface current density was estimated as
[32,55,56,76–81],

Js(t) = dqs
dt

= �0�r
dEs
dt

(8)

where Es(t) = −
(
∂ /∂x

)
(x = 0, t) is the electric field at the elec-

trode surface x = 0 at time t. Simulations of EIS measurements were
run for at least 50 periods (i.e., t ≥ 50/f) to ensure the current density
and impedance had reached their stationary and periodic states.
Then, the electrochemical impedance Z as well as the associated
specific capacitance CEISs were computed using Eqs. (2) and (3),
respectively. The convergence criterion was defined such that the
maximum relative difference in the predicted CEISs was less than
2% when (1) multiplying the total number of finite elements by
two, (2) dividing the time step by two, and (3) running the EIS
simulations for 50 more periods. The time step was imposed to
be 
t  � 1/400f.  The mesh size was  smallest at the electrode sur-
face due to large potential gradient and then gradually increased.
The maximum mesh size was  specified to be 0.01 nm at the elec-
trode surface and 1 nm in the rest of the domain. The total number
of finite elements was  less than 300 for all cases simulated in the
present study.

3.4.3. Validation
The numerical tool was  validated based on three cases reported

in the literature. First, the predicted equilibrium electric potential
profile in the diffuse layer was validated against the exact solu-
tion for planar electrodes [19,20,51] with �r = 78.5, c∞ = 0.01 and
0.001 mol/L, 	 = 0, and  D = 0.1 V. Second, the computed specific
capacitances for the Stern and diffuse layers under equilib-
rium conditions were validated against Eqs. (6a) and (6b) for (i)
 s = 0.1 V, c∞ = 0.01 mol/L, and a = 0.66 nm as well as (ii)  s = 0.5 V,
c∞ = 1 mol/L, and a = 0.66 nm.  Third, the predicted transient ion con-
centration and electric potential profiles were compared with the
numerical solutions for planar electrodes using PNP and MPNP
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Fig. 2. (a) Specific capacitance determined from EIS simulations as a function
of  frequency f and (b) normalized specific capacitance CEISs /C

D
s as a function of

dimensionless frequency �mf for different values of ion diffusion coefficient. Results
were obtained by numerically solving the classical PNP model without Stern layer
(H  = 0 nm)  for c∞ = 0.001 or 0.01 mol/L and  dc = 0.1 V. The diffuse layer capacitance
CDs given by Eq. (6b) is also shown.

models reported in Ref. [52]. Comparison was made for a wide range
of packing parameter 	 and dimensionless potential (ze D/kBT).
Good agreement was obtained between our results and reported
values of ci(x, t) and  (x, t) [52] for all cases considered.

4. Results and discussion

4.1. EIS in dilute electrolyte solutions

4.1.1. Predictions by PNP model without Stern layer
Fig. 2(a) shows the predicted diffuse layer specific capacitance

CEISs from EIS simulations using Eq. (3) as a function of frequency
ranging from 10 to 107 Hz. Results were obtained by numerically
solving the classical PNP model without the Stern layer, i.e., 	 = 0
and H = 0 nm.  The electrolyte concentration was either c∞ = 0.001 or
0.01 mol/L while  dc = 0.1 V. The effect of diffusion coefficient was
assessed by performing simulations for D = 2 × 10−8, 2 × 10−9, and
2 × 10−10 m2/s. Fig. 2(a) demonstrates that, for D = 2 × 10−8 m2/s,
the diffuse layer specific capacitance CEISs was  independent of
frequency for f ≤ 105 Hz for both electrolyte concentrations con-
sidered. Then, it decreased with increasing frequency beyond
105 Hz. Similarly, for smaller diffusion coefficients D = 2 × 10−9 and
2 × 10−10 m2/s, CEISs was independent of frequency for f ≤ 104 and
103 Hz, respectively. Below these frequencies, CEISs was  indepen-
dent of diffusion coefficient. This suggests that ion transport by
diffusion becomes a limiting factor in charge storage for frequencies
larger than a critical frequency which depends on the ion diffusion
coefficient D.

Fig. 2(a) also shows the diffuse layer specific capacitance CDs
under equilibrium conditions given by Eq. (6b) with 	 = 0 and equals
to 12.7 �F/cm2 and 40.3 �F/cm2 for c∞ = 0.001 and 0.01 mol/L,
respectively. It is evident that the frequency-independent capac-
itance CEISs overestimated the equilibrium values predicted by Eq.
(6b) by more than 100% for both concentrations.

As opposed to a dielectric capacitor, the electric double layer
capacitance of porous electrodes is known to depend on fre-
quency. The origin of this so-called “capacitance dispersion” of
electrode materials [2,47,48,82–85] has been attributed to vari-
ous phenomena such as surface inhomogeneity (e.g., defect) [85],
surface roughness [2,82–85], pore size distribution in porous elec-
trodes [47,48], as well as specific ion adsorption [2,84],  to name
a few. However, Fig. 2(a) demonstrates that electric double layers
feature capacitance dispersion at high frequencies even for per-
fectly planar electrodes when only electrostatic phenomena were
accounted for. Similar trend was  observed in Refs. [28–31] based
on the exact solution of the linearized PNP model without Stern
layer and assuming zero DC potential. Then, Fig. 2(a) establishes
that, besides the above-mentioned mechanisms, the capacitance
dispersion can be also attributed to the fact that, at high frequen-
cies, ion transport cannot follow the rapid variations in the electric
potential.

Moreover, Fig. 2(b) plots the normalized specific capacitance
CEISs /C

D
s as a function of dimensionless frequency �mf where �m is

the characteristic diffusion time scale defined as

�m = �2
m

D
with �m =

( �0�rkBT
2e2z2NAcm

)1/2

(9)

Here, �m is analogous to the Debye length �D defined based on the
maximum concentration cm instead of the bulk electrolyte con-
centration c∞. The data of CEISs and CDs were the same as those
shown in Fig. 2(a). Note that the traditional diffusion characteristic
time is typically defined as �L = L2/D [65] where the characteristic
length is the electrolyte thickness L. Here, �L was not the proper
characteristic time since the predicted CEISs at low frequency was
found to be independent of L as previously discussed. In addition,
Fig. 2(a) shows that the critical frequency below which CEISs is con-
stant was  independent of electrolyte concentration c∞. Then, time
scales involving c∞ are also inadequate including the characteris-
tic time for charge relaxation defined as �D = �2

D/D [65]. Fig. 2(b)
demonstrates that the predicted CEISs /C

D
s versus �mf curves for three

different diffusion coefficients overlapped for each value of elec-
trolyte concentration considered. Moreover, two regions can be
identified in Fig. 2(b). First, for �mf < 2 × 10−8, ion transport is fast
enough to follow the variation in the electric potential  s(t) and
thus the specific capacitance CEISs is independent of frequency. In
these cases, CEISs /C

D
s was  equal to 2.0 regardless of the electrolyte

concentration c∞. Second, for �mf > 2 × 10−8, ion transport was  the
limiting phenomenon for charge storage and CEISs decreased with
increasing frequency.

To better understand these results, Fig. 3(a) and (b) shows the
imposed surface potential  s(t) and the resulting instantaneous
surface charge density qs(t) = �0�rEs(t) as a function of dimension-
less time t × f ranging from 0 to 10 at two different frequencies, i.e.,
f = 10 and 105 Hz. The electrolyte concentration was c∞ = 0.01 mol/L
and the diffusion coefficient was taken as D = 2 × 10−8, 2 × 10−9,
or 2 × 10−10 m2/s. The model and other parameters were identi-
cal to those used to generate Fig. 2. Note that the origin of time t
was shifted to the time when qs(t) reached its stationary periodic
oscillations. Fig. 3(a) shows that the instantaneous surface charge
density qs(t) was  nearly in phase with the imposed surface poten-
tial  s(t) at f = 10 Hz. At this frequency, the diffusion coefficient had
no effect on the predicted qs(t) and the plots overlap for D = 2 × 10−8

to 2 × 10−10 m2/s. In addition, Fig. 3(b) shows qs(t) and  s(t) at high
frequency f = 105 Hz. It is evident that qs(t) and  s(t) were nearly in
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a

b

Fig. 3. Imposed surface potential  s(t) and predicted instantaneous surface charge
density qs(t) as a function of dimensionless time t × f for (a) f = 10 Hz and (b) f = 105 Hz
obtained by numerically solving the classical PNP model without Stern layer. The
electrolyte concentration was  c∞ = 0.01 mol/L while  dc = 0.1 V and D = 2 × 10−8,
2  × 10−9, and 2 × 10−10 m2/s.

phase with each other for D = 2 × 10−8 m2/s. However, they were
not in phase for small values of D. The phase depended on the
diffusion coefficient. In addition, the amplitude of qs(t) increased
with increasing diffusion coefficient and decreased with increas-
ing frequency. Note that in RC circuits such as those used in EIS,
the capacitance was assumed to be either constant or dependent
only on frequency [8]. However, the instantaneous diffuse layer
specific capacitance computed using CDs (t) = qs(t)/ s(t) also varied
harmonically with time (not shown). Consequently, assumptions
used for the equivalent RC circuits in EIS are invalid for representing
the charging dynamics of electric double layers at high frequencies
when qs(t) and  s(t) are not in phase. This constitutes an inherent
limitation of RC circuits and EIS measurements.

Furthermore, Fig. 4(a) shows the predicted phase angle ϕ
between the instantaneous charge density qs(t) and the imposed
surface potential  s(t) for the same frequency range and parame-
ters as those used to generate Fig. 2(a). Fig. 4(a) shows that the phase
angle ϕ was nearly zero at low frequency and increased rapidly
beyond a critical frequency. In addition, for a given frequency f,
the phase angle decreased with increasing diffusion coefficient D
thanks to faster ion transport. It also decreased with increasing elec-
trolyte concentration due to decreasing electrolyte resistance to
ionic current [55,75].

Finally, Fig. 4(b) plots the phase angle shown in Fig. 4(a) as
a function of the dimensionless frequency �mf. Here also, the
plots of phase angle ϕ versus �mf for different values of diffusion

a

b

Fig. 4. Predicted phase angle ϕ between the instantaneous surface charge density
qs(t) and the imposed surface potential  s(t) as a function of (a) frequency f and
(b)  dimensionless frequency �mf. Results were obtained by numerically solving the
classical PNP model without Stern layer with c∞ = 0.001 or 0.01 mol/L,  dc = 0.1 V for
D  = 2 × 10−8, 2 × 10−9, and 2 × 10−10 m2/s.

coefficient D collapsed on one line for each concentration con-
sidered. This confirms that �m is the characteristic time for ion
diffusion in electric double layer during EIS measurements. Note
also that the phase angle of the impedance �(f) in Eq. (2) was related
to ϕ(f) by �(f) = ϕ(f) − 90◦ (not shown).

4.1.2. Predictions by PNP model with Stern layer
Fig. 5 shows the specific capacitance CEISs retrieved from EIS (Eq.

(3)) as a function of dimensionless frequency �mf ranging from
10−10 to 2 × 10−4 as well as the specific capacitance Cs under equi-
librium conditions. Results were obtained by solving the PNP model
accounting for a Stern layer of thickness H = a/2 = 0.33 nm. The
electrolyte concentration was set to be c∞ = 0.01 and 0.001 mol/L,
 dc = 0.1 V while D = 2 × 10−8, 2 × 10−9, and 2 × 10−10 m2/s.

The trend of the specific capacitance CEISs as a function of �mf
was similar to the predictions of PNP model without Stern layer
shown in Fig. 2(b). However, the critical dimensionless frequency
�mf was  larger and equal to 10−7 when accounting for the Stern
layer. In addition, scaling of CEISs by CDs , as performed in Fig. 2(b),
could not make the ratio CEISs /C

D
s collapse on one line for different

concentrations. Note also that EIS predictions overestimated the
capacitance by 60–80% for different values of c∞ instead of 100%
when the Stern layer was  not accounted for (Fig. 2(a)).
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Fig. 5. Predicted specific capacitance CEISs determined from EIS (Eq. (3))  as a function
of  dimensionless frequency �mf. Results were obtained by numerically solving the
classical PNP model with Stern layer along with the specific capacitance Cs (Eq.
(7))  with c∞ = 0.01 and 0.001 mol/L, H = a/2 = 0.33 nm,   dc = 0.1 V, and D = 2 × 10−8,
2  × 10−9, and 2 × 10−10 m2/s.

4.2. EIS in concentrated electrolyte solutions

Fig. 6 shows the numerically predicted specific capacitance CEISs
retrieved from EIS (Eq. (3)) as a function of dimensionless frequency
�mf ranging from 10−9 to 2 × 10−2. The results were obtained by
solving the MPNP model with a Stern layer (Eqs. (4) and (5))
for H = a/2 = 0.33 nm,  c∞ = 1 mol/L,  dc = 0.3 V, and three values of
D = 2 × 10−8, 2 × 10−9, and 2 × 10−10 m2/s. Fig. 6 also shows the cor-
responding specific capacitance Cs defined by Eq. (7).  Here, the
Stern layer and diffuse layer specific capacitances predicted by
Eq. (6) were CSts = 210.6 �F/cm2 and CDs = 186.1 �F/cm2, respec-
tively, resulting in Cs = 98.8 �F/cm2. Fig. 6 indicates that the specific
capacitance CEISs for c∞ = 1 mol/L was constant for dimensionless
frequency �mf less than 36.4 × 10−4 corresponding to f = 4 × 107 Hz.
This value should be compared with �mf = 10−7 for electrolyte con-
centrations c∞ = 0.01 and 0.001 mol/L (Fig. 5). The difference can be
attributed to the fact that the electrolyte resistance to ionic current
decreases significantly as the electrolyte concentration increases
and ion transport to and away from the electrode becomes limit-
ing only at very large frequencies. Thus, at high concentrations, ions
can respond nearly instantaneously to the rapid variation in electric

Fig. 6. Predicted specific capacitance CEISs determined from EIS (Eq. (3)) as a func-
tion of dimensionless frequency �mf. Results were obtained by numerically solving
the  MPNP model with Stern layer along with the specific capacitance Cs (Eq.
(7))  with H = a/2 = 0.33 nm,  c∞ = 1 mol/L,  dc = 0.3 V, and D = 2 × 10−8, 2 × 10−9, and
2  × 10−10 m2/s.

Fig. 7. Relative error between EIS estimates of CEISs and double layer capacitance Cs

as a function of DC potential obtained by solving (i) the classical PNP model with or
without a Stern layer for c∞ = 0.01 mol/L and (ii) the MPNP model with a Stern layer
for  c∞ = 1 mol/L with H = a/2 = 0.33 nm and D = 2 × 10−9 m2/s.

potential  s(t). Fig. 6 also demonstrates that the specific capac-
itance decreased sharply for dimensionless frequency �mf larger
than 6.4 × 10−4. It is expected to decrease at much smaller frequen-
cies when simulating the electrode and accounting for its electrical
resistance. This was observed in the capacitance versus scan rate
curves retrieved in the simulations of cyclic voltammetry in EDLCs
[86]. Overall, the characteristic time �m given by Eq. (9) is the proper
characteristic time scale for low and high concentrations using PNP
or MPNP model with or without Stern layer.

Moreover, Fig. 6 indicates that EIS measurements underesti-
mated the double layer capacitance by about 20% for c∞ = 1 mol/L
and  dc = 0.3 V. This qualitatively agrees with experimental obser-
vations for various electrode materials such as conducting
polymers [22,33–40],  multi-wall carbon nanotubes and glassy car-
bons [23], and carbon composites [26] under large electrolyte
concentration (c∞ ≥ 1 mol/L) and electric potential  dc ∼ 0.3 − 1 V
[22–26,33–36].

4.3. Intrinsic limitation of EIS

The previous sections established that EIS measurements
overestimated the electric double layer capacitance under low elec-
trolyte concentration (Figs. 2 and 5) while they underestimated it
under large electrolyte concentration and electric potential (Fig. 6).
This constitutes an intrinsic limitation of EIS measurements for
determining the capacitance of EDLCs. It is mainly attributed to
the invalidity of the RC circuit and associated assumptions used to
predict the electric double layer capacitance.

In order to quantify the intrinsic limitation of EIS in determin-
ing double layer capacitance, the relative error was defined as
ı =

∣∣(CEISs − Cs)/Cs
∣∣ where Cs is the total specific capacitance (Eq.

(7)) and CEISs is that retrieved by EIS using Eq. (3) at low frequency
in the diffusion-independent regime.

Fig. 7 shows the computed relative error ı as a function of DC
potential  dc ranging from 0.01 to 0.5 V. Predictions of CEISs for
 dc ≤ 0.1 V and c∞ = 0.01 mol/L were obtained by numerically solv-
ing the PNP model with or without a Stern layer for frequency
f = 10 Hz. Predictions of CEISs for  dc > 0.1 V and c∞ = 1 mol/L were
obtained by solving the MPNP model with a Stern layer for fre-
quency f = 103 Hz. It is evident that the relative error increased with
increasing DC potential for any model considered. For cases with
low DC potential and low concentration based on the PNP model,
the relative error was  smaller when accounting for the Stern layer.
However, it grows rapidly from less than 5% for  dc = 0.01 V to
more than 60% for  dc = 0.1 V. For concentration c∞ = 1 mol/L and
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 dc > 0.1 V, which are typical of EDLCs, EIS simulations based on
the MPNP model with Stern layer underestimated the double layer
specific capacitance. In fact, the relative error increased from 0.2%
to 45% as the DC potential increased from 0.05 to 0.5 V.

Overall, Fig. 7 indicates that the EIS measurements can predict
the double layer capacitance only at very low DC potential and at
low frequency. Similar conclusion was drawn by Macdonald [30,31]
based on the exact solution of the linearized PNP model without
Stern layer and assuming zero DC potential. Note that Macdonald’s
solution is valid only at very small electrolyte concentration and
electric potential due to the point-charge assumption discussed in
Section 2.2. This intrinsic limitation can be attributed to the RC cir-
cuit used to model electric double layers shown in Fig. 1c. Indeed,
previous studies have demonstrated that the RC circuits or trans-
mission line models can accurately represent the linearized PNP
model when both the potential and electrolyte concentration are
small [29,55,65,75,87–89]. However, these models are not valid
under large electric potential. Thus, EIS measurements appears to
be inadequate for determining double layer capacitances for practi-
cal applications when concentrations and DC potential are typically
large such as in electrochemical capacitors for energy storage appli-
cations [24,25,27,36].

5.  Conclusions

This paper presented numerical simulations of electrochemical
impedance spectroscopy measurements for determining the elec-
tric double layer capacitance near a planar electrode in aqueous
electrolyte solutions. The double layer dynamics was  simulated
using (i) the PNP model with or without Stern layer for low elec-
trolyte concentrations and electric potential, and (ii) the MPNP
model with a Stern layer for large electrolyte concentration and
electric potential.

For a given value of electrolyte concentration c∞, the pre-
dicted CEISs and impedance phase shift ϕ plotted versus �mf for
various values of ion diffusion coefficient overlapped on a single
line for all models considered. Here, the ion diffusion charac-
teristic time was defined as �m = �2

m/D using the Debye length
�m = (�0�rkBT/2e2z2NAcm)1/2 based on the maximum ion concen-
tration cm. The electric double layer capacitance was  found to be
constant for dimensionless frequency �mf less than a critical value.
However, electric double layers featured an intrinsic “capacitance
dispersion” at high frequencies. This was attributed to the fact that
ion transport could not follow the fast variation in electric potential.

The EIS simulations overestimated the electric double layer
capacitance for dilute electrolyte solutions while they underesti-
mated it for concentrated electrolyte solutions. This corroborates
existing experimental observations reporting the discrepancies
between EIS measurements [22–27,33–36] and other techniques
such as cyclic voltammetry [22–25,33–35] and galvanostatic
charge/discharge [25–27,36].  This study established that for large
DC potential, the series RC circuit used in EIS to model electric
double layer is not valid. Such conditions are typical of energy stor-
age systems such as EDLCs. Then, more reliable techniques such as
the galvanostatic charge/discharge and cyclic voltammetry mea-
surements should be preferred in determining the double layer
capacitances as recommended in Refs. [24,25,27,36].
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