
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

Electrochimica Acta 109 (2013) 316– 321

Contents lists available at ScienceDirect

Electrochimica  Acta

jou rn al hom ep age: www.elsev ier .com/ locate /e lec tac ta

Scaling  laws  for  carbon-based  electric  double  layer  capacitors

Hainan  Wang,  Jin  Fang,  Laurent  Pilon ∗

University of California, Los Angeles, Henry Samueli School of Engineering and Applied Science, Mechanical and Aerospace Engineering Department, 420
Westwood Plaza, Los Angeles, CA 90095, USA

a  r  t  i  c  l e  i  n  f  o

Article history:
Received 31 May  2013
Received in revised form 5 July 2013
Accepted 6 July 2013
Available online 19 July 2013

Keywords:
Mesoporous carbon
Supercapacitors
Modeling
Similarity
Modified Poisson–Boltzmann model

a  b  s  t  r  a  c  t

This paper  presents  scaling  laws  for the  integral  capacitance  of  electric  double  layer  capacitors  (EDLCs)
supported  by  rigorous  analysis  and  experimental  data  for  porous  carbon-based  electrodes.  First,
dimensionless  similarity  parameters  were  identified  based  on  dimensional  analysis  of  the  modified
Poisson–Boltzmann  model  for binary  and  symmetric  electrolytes.  Then,  a correlation  for  the  equilibrium
potential  at  the  Stern/diffuse  layer  interface  near  planar  electrodes  and  near  cylindrical  and  spherical
pores  was  obtained  as  a function  of previously  identified  dimensionless  numbers  for  a  wide  range  of
parameters.  Similarly,  an  analytical  expression  was proposed  for the  dimensionless  double  layer  inte-
gral capacitance  of  planar  electrodes.  Finally,  scaling  analysis  was  applied  to experimentally  measured
integral  capacitance  of mesoporous  carbon  electrodes  with  a wide  range  of  morphology  and  different
electrolytes.  To maximize  the integral  areal  capacitance,  the  electrolyte  should  have  small  ion effective
diameter  and  large  dielectric  constant.  The  electrode  pore  diameter  should  be  tailored  to  match  the  ion
diameter.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Electric double layer capacitors (EDLCs) have been the subject
of intense studies in recent years due to their promise as electri-
cal energy storage devices in high power applications [1–4]. EDLCs
store electric charges physically in the electric double layer (EDL)
forming at electrode/electrolyte interfaces. Fig. 1a and b shows
schematics of the electric double layer structure forming near a
positively charged surface of a planar electrode and of a cylindrical
or spherical pores, respectively. Solvated anions of effective diame-
ter a migrate and adsorb at the electrode surface due to electrostatic
forces while the solvated cations are repelled [5]. The Stern layer
is defined as the compact layer near the electrode surface [5]. Note
that there are no free charges within the Stern layer [5]. Beyond
the Stern layer is the so-called diffuse layer where ions are mobile
under the coupled influence of electrostatic forces and diffusion [5].

Electrodes of EDLCs are typically made of porous carbon-
based materials [1–3]. The porous structure increases the electrode
surface area per unit volume available for EDL formation thus
increasing energy density. However, the relationship between
energy density and surface area is neither linear nor straightfor-
ward. The capacitance of EDLCs depends on a variety of parameters
such as the electrode surface area, pore size, electrolyte properties,
and the potential window [1–3]. General correlations relating the
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capacitance of EDLCs to the physical or electrochemical properties
of the electrodes and electrolytes and accounting for the detailed
structure of the electric double layer are not available. Instead,
progress has been made mainly by trial and error informed by
physical intuition and simplified EDLC models [6–9].

This study aims to develop an experimentally validated cor-
relation relating the integral areal capacitance of EDLCs to these
parameters. Such correlations would rationalize the design of
EDLCs and provide rules for optimizing the porous architecture of
EDLCs and for selecting the electrolyte.

2. Background

2.1. Equilibrium model – planar electrode

The modified Poisson–Boltzmann (MPB) model for binary and
symmetric electrolytes predicts the equilibrium electric potential
  in the electrolyte and accounts for the finite ion size [10,11]. In
one-dimensional Cartesian coordinates corresponding to a planar
electrode, it is expressed as [10]

∂
∂x

(
�0�r

∂ 
∂x

)
= 2zeNAc∞ sinh((ze )/(kBT))

1 + 4NAa3c∞sinh2((ze )/(2kBT))
. (1)

where �0 and �r are the free space permittivity
(�0 = 8.854 × 10−12 F/m) and the relative permittivity of the
electrolyte solution, respectively. The Boltzmann constant is
denoted by kB = 1.38 × 10−23 J/K while T is the absolute temper-
ature, z is the ion valency, e = 1.602 × 10−19 C is the elementary
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Fig. 1. A schematic of the electric double layer structure showing solvated anions
and  cations arrangement near the surface of (a) a planar electrode and (b) a cylin-
drical or spherical pore.

charge, and NA = 6.022 × 1023 mol−1 is the Avogadro constant. The
effect of the Stern layer can be accounted for via a boundary condi-
tion at the Stern/diffuse layer interface located at x = H expressed
as [12,13]

−∂ 
∂x

(x = H) =  s −  D
H

(2)

where  s is the surface potential and H is the Stern layer thickness
corresponding to half of the effective ion diameter a, i.e., H = a/2,
as illustrated in Fig. 1. The potential at the Stern layer/diffuse
layer interface located at x = H is denoted by  D =  (H). The elec-
tric potential far away from the electrode was imposed as zero, i.e.,
 (x = L) = 0. Note that this boundary condition is valid for symmetric
electrolytes but cannot be used for asymmetric electrolytes [14].

Solving Eqs. (1) and (2) yields expression for the equilibrium
Stern and diffuse layer capacitances for planar electrodes in binary
and symmetric electrolytes, denoted by CSts and CDs , respectively.
Assuming constant electrolyte properties and accounting for the
finite ion size, they are expressed as [10,15–17]

CSts = �0�r
H

and

CDs = 2zeNAc∞�D
 D

√
2
�p

ln

[
1 + 2�psinh2

(
ze D
2kBT

)]
(3)

where �D is the Debye length for symmetric electrolytes defined
as �D =

√
�0�rkBT/2e2z2NAc∞ and corresponding to an estimate

of the EDL thickness [5,18]. The packing parameter �p is defined as
�p = 2a3NAc∞. It represents the ratio of the total bulk ion concentra-
tion to the maximum ion concentration assuming a simple cubic ion
packing [10,15–17]. By treating the Stern and diffuse layer capac-
itances in series, the total double layer integral areal capacitance
Cs,planar can be expressed as [5,19,16,20,17]

1
Cs,planar

= 1

CSts
+ 1
CDs

= a

2�0�r

+  D
2zeNAc∞�D

{
2
�p

ln

[
1 + 2�p sinh2

(
ze D
2kBT

)]}−1/2

(4)

2.2. Cylindrical and spherical pores

The MPB  model with Stern layer for cylindrical or spherical pores
is expressed as [16,17]

1
rp
∂
∂r

(
�0�rrp

∂ 
∂r

)
= zeNAc∞

2 sinh((ze )/(kBT))

1 + 4NAa3c∞sinh2((ze )/(2kBT))
(5)

where p = 1 or 2 for cylindrical or spherical pores, respectively.
Here also, the effect of the Stern layer can be accounted for via
the boundary condition at the Stern/diffuse layer interface, located
at r = R0 − H, expressed as [17]

∂ 
∂r

(r = R0 − H)

=

⎧⎪⎨⎪⎩
 s −  D

(R0 − H) ln(R0/(R0 − H))
for cylindrical pores (6a)

 s −  D
H

R0

R0 − H
for spherical pores (6b)

(6)

where  D is the potential at the Stern layer/diffuse layer interface,
i.e.,  D =  (r = R0 − H). Moreover, the gradient of electric poten-
tial at the center of the spherical or cylindrical pore (at r = 0) was
imposed as zero by virtue of symmetry, i.e.,

∂ 
∂r

(r = 0) = 0 (7)

To the best of our knowledge, unlike for planar electrodes, no ana-
lytical expressions exist for the total and diffuse layer capacitances
of cylindrical or spherical pores when accounting for the finite ion
size.

This paper aims to identify scaling laws governing the inte-
gral areal capacitance of actual EDLCs with porous carbon-based
electrodes as a function of the dimensionless similarity parame-
ters rigorously identified from scaling analysis of the governing
equations for the electric potential and ion concentrations.

3. Analysis

3.1. Equilibrium modified Poisson–Boltzmann model

3.1.1. Planar electrodes
The dimensional analysis of the MPB  model can be performed

by scaling (i) the spatial coordinate by the Debye length �D and (ii)
the local potential   by the thermal voltage kBT/ez representing
the voltage that would induce a potential energy equivalent to the
thermal energy of an ion of charge z so that [21]

x∗ = x

�D
and  ∗ =  

kBT/ez
. (8)
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Then, Eq. (1) can be written in dimensionless form as

∂2
 ∗

∂x∗2
= 2 sinh  ∗

1 + 2�p sinh2( ∗/2)
. (9)

Moreover, the dimensionless boundary conditions can be written
as

−∂ 
∗

∂x∗

(
x∗ = a∗

2

)
=  ∗

s −  ∗
D

a∗/2
and  ∗(x∗ = L∗) = 0. (10)

where  ∗
D =  D/(kBT/ez)  =  ∗(a∗/2) is the dimensionless diffuse

layer potential. Four dimensionless similarity parameters arise
from the scaling analysis of the equilibrium MPB  model with
Stern layer for planar electrodes (Eqs. (9) and (10)) namely (i) the
dimensionless surface potential  ∗

s =  s/(kBT/ze),  (ii) the pack-
ing parameter �p = 2NAa3c∞, (iii) the dimensionless ion diameter
a* = a/�D = 2H/�D, and (iv) the dimensionless electrolyte layer thick-
ness L* = L/�D. Note that these four dimensionless numbers, or
combination thereof, were also derived from scaling analysis of
the modified Poisson–Nernst–Planck (MPNP) model [20]. In the
scaling analysis of the MPNP model, an additional number was
obtained corresponding to the dimensionless scan rate. The two
approaches are equivalent if one considers low scan rates and
imposes  s = � /2 where �  is the potential window used in
cyclic voltammetry simulations [20].

Similarly, scaling the total integral areal capacitance of a pla-
nar electrode Cs,planar (Eq. (3)) by the Stern layer capacitance CSts =
�0�r/H with H = a/2, results in the dimensionless total integral areal
capacitance C∗

s,planar
expressed as,

1
C∗
s,planar

= CSts
Cs,planar

= 1 + 2 ∗
D

a∗

{
2
�p

ln

[
1 + 2�psinh2

(
 ∗
D

2

)]}−1/2

(11)

To the best of our knowledge, analytical expressions for the dif-
fuse layer potentials  D or  ∗

D do not exist when accounting
for the finite ion size, i.e., when �p /= 0. Alternatively, they can
be determined numerically by solving the equilibrium modified
Poisson–Boltzmann (MPB) model with the Stern layer (Eqs. (1) and
(2)). If the above scaling analysis is correct,  ∗

D should depend only
on the four dimensionless numbers identified namely �p, a*, L*, and
 ∗
s .

3.1.2. Cylindrical and spherical pores
By employing the scaling parameters r* = r/�D and

 * =  /(kBT/ez), the MPB  model with Stern layer (Eq. (5)–(7))
for cylindrical and spherical pores can be written in dimensionless
form as

1
r∗p

∂
∂r∗

(
r∗p
∂ ∗

∂r∗

)
= 2 sinh  ∗

1 + 2�p sinh2( ∗/2)
(12)

The dimensionless boundary conditions at the Stern/diffuse layer
interface can be written as,

∂ ∗

∂r∗

(
r∗ = R∗

0 − a∗

2

)

=

⎧⎪⎪⎨⎪⎪⎩
 ∗
s −  ∗

D

(R∗
0 − a∗/2) ln((R∗

0/(R∗
0 − a∗/2))

for cylindrical pores

 ∗
s −  ∗

D

a∗/2

R∗
0

R∗
0 − a∗/2

for spherical pores

(13)

Fig. 2. Dimensionless diffuse layer potential  ∗
D

as a function of dimensionless sur-
face  potential  ∗

s ranging from 0.01 to 20 for different values of L*, a*, and �p .

where  ∗
D =  ∗(R∗

0 − a∗/2). The symmetry boundary condition at
the center of the pore is given by,

∂ ∗

∂r∗
(r∗ = 0) = 0. (14)

Here also, four dimensionless numbers appeared in the dimension-
less MPB  model with Stern layer (Eqs. (12)–(14)) for cylindrical and
spherical pores, namely (i)  ∗

s , (ii) �p, (iii) a*, and (iv) the dimension-
less pore radius defined as R∗

0 = R0/�D. The only difference from the
dimensionless numbers governing the integral areal capacitance of
planar electrodes is the substitution of L* by R∗

0.

4. Results and discussion

4.1. Equilibrium diffuse layer potential

4.1.1. Planar electrodes
Fig. 2 shows the dimensionless diffuse layer potential  ∗

D as a
function of the dimensionless surface potential window  ∗

s ran-
ging from 0.01 to 20 with L* varying between 16 and 329, while �p

ranged from 0.052 to 0.94, and a* from 1.15 to 3.03. It was  com-
puted by numerically solving the equilibrium MPB  model with the
Stern layer (Eqs. (9) and (10)). It is evident that all data points nearly
collapsed on a single line irrespective of the values of �p, a*, and L*

so that  ∗
D depended solely on  ∗

s . The inter-electrode distance 2L
did not affect  D provided that the electric double layer on each
electrode did not overlap the other, i.e., for L � �D or L* � 1. Then,
the dimensionless diffuse layer potential  ∗

D as a function of  ∗
s was

fitted with a power law to yield

 ∗
D = 0.37 ∗1.16

s (15)

The associated coefficient of determination was  R2 = 0.98. Predic-
tions of CDs using Eq. (3) and the above expression for  ∗

D fell within
1% of its value obtained using the numerically computed value of
 D.

4.1.2. Cylindrical and spherical pores
Fig. 3 shows the predicted dimensionless diffuse layer potential

 ∗
D as a function of dimensionless surface potential window  ∗

s ran-
ging from 0.01 to 20 for (a) cylindrical and (b) spherical pores with
dimensionless pore radius R∗

0=6.58, 11.5, 16.44, 65.76, and 328.8.
These values correspond to surface potential  s ranging from 0.001
to 0.5 V and R0 equals to 2, 3.5, 5, 20, and 100 nm, respectively. Here,
�p ranged from 0.15 to 0.94 and a* from 1.64 to 3.03. The dimen-
sionless diffuse layer potential  ∗

D for planar electrodes given by
Eq. (15) was  also shown in Fig. 3 for comparison. It is evident that
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(a)

(b)

Fig. 3. Predicted dimensionless diffuse layer potential  ∗
D

as a function of dimen-
sionless surface potential  ∗

s for (a) cylindrical and (b) spherical pores obtained from
MPB  model with Stern layer for different values of R∗

0, a*, and �p .

 ∗
D for cylindrical or spherical pores was nearly identical to that of

planar electrodes for R∗
0≥16. For R∗

0 < 16, the predicted  ∗
D for cylin-

drical or spherical pores was larger than that of planar electrodes.
The difference increased with increasing  ∗

s and decreasing R∗
0. The

maximum difference was less than 15% and 30% for cylindrical and
spherical pores, respectively, for the range of R∗

0 and  s consid-
ered. Overall, these results demonstrate that the correlation for the
equilibrium diffuse layer potential for planar electrodes (Eq. (15))
may  be applied to cylindrical or spherical pores with acceptable
accuracy.

4.2. Equilibrium integral areal capacitance

Combining Eqs. (11) and (15), the dimensionless equilibrium
integral areal capacitance C∗

s,planar
for planar electrodes can be

expressed in terms of the three dimensionless numbers identified
previously  ∗

s , �p, and a* as

1
C∗
s,planar

=1 + 0.74 ∗1.16
s

a∗

{
2
�p

ln [1 + 2�psinh2(0.185 ∗1.16
s )]

}−1/2

(16)

Note that, under equilibrium conditions, C∗
s,planar

does not depend

on L* as also observed in CV simulations at low scan rates [20]. This
analytical expression enables the prediction of the integral areal
capacitance of planar electrodes without solving the MPB  model.

4.3. Experimental data

A wide range of experimental data was  collected from the lit-
erature in order to assess the applicability of the above scaling
analysis to actual carbon-based porous electrodes. Experimen-
tal data were selected to ensure that (i) the electrolytes were
binary and symmetric such as KOH and TEABF4, (ii) the reported
capacitance was  the integral areal capacitance and not the dif-
ferential areal capacitance, and (iii) the integral areal capacitance
was measured using either cyclic voltammetry at low scan rates
or galvanostatic charge/discharge at low currents corresponding to
the quasi-equilibrium regime. Then, the integral areal capacitances
measured by two  techniques were identical as quasi-equilibrium
conditions prevailed [20,22]. It is convenient to consider the areal
capacitance as it accounts for the possibility that electrodes might
have different porosity and surface area per unit volume.

Table 1 summarizes the experimental data reported in the lit-
erature for EDLCs with various electrolytes, electrode pore radii
R0, and potential windows �  = 2 s along with the corresponding
range of the experimentally measured integral areal capacitance,

Table 1
Summary of experimental data reported in the literature for various carbon electrodes, binary and symmetric electrolytes, potential window �  = 2 s , and average pore
radius  R0 along with their integral areal capacitance Cs,exp (in �F/cm2).

Ref. Electrode R0 (nm) Electrolyte �  = 2 s (V) Cs,exp (�F/cm2)

[23] TiC-CDC 0.68–1.09 1 M TEABF4 in AN 2.3 6.0–13.6
[24] OMC-M 2.15–4.25 6.88 M KOH 0.8 16.8–27.5
[24] OMC-K 1.95–4.7 6.88 M KOH 0.8 12.0–22.5
[30] GNS/CB 0.364–0.37 6 M KOH 1 28.3–46.6
[29] HOMC 0.37–0.41 6 M KOH 1 8.2–11.2
[31] FSMC 2.15 6 M KOH 0.6 19.4
[25] OMC  1.35–3.0 6 M KOH 1 5.8–11.8
[25] OMC  1.35–3.0 1 M TEABF4 in AN 2 5.2–6.7
[26] OMC  2.7–3.25 6.88 M KOH 0.89 11.9–15.0
[32] CMK-8 2.39 2 M KOH 1 13.3
[32] H-CMK-8 2.33 2 M KOH 1 20.2
[27] OMC  2.25 6 M KOH 0.8 18.8
[38] MC spheres 1.34 2 M KOH 1 11.1
[39] MC 0.625–0.69 1 M TEABF4 in AN 2 10.3–11.6
[28] OMC  0.395–0.555 1 M TEABF4 in PC 2 5.5–6.7
[33] Carbon foam 1.9 6 M KOH 1 12.5
[40] OMC  0.6 6 M KOH 0.8 14.1–19.6
[34] GAC 0.245–0.26 6 M KOH 1 13.4–17.7
[35] C-CS 1.95 6 M KOH 0.9 10.6–16

Note: Solvent for KOH was  water.
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(a)

(b)

Fig. 4. (a) Experimental data of integral capacitance Cs,exp as a function of pore radius
R0 and (b) the ratio Cs,exp/Cs,planar as a function of R∗

0 − a∗/2 for EDLCs with various
mesoporous carbon electrodes and binary symmetric electrolytes.

denoted by Cs,exp (in �F/cm2). The electrodes consisted of var-
ious mesoporous carbons, namely (i) titanium carbide-derived
carbon (TiC-CDC) [23], (ii) ordered mesoporous carbon (OMC)
[24–28], (iii) highly ordered mesoporous carbon (HOMC) [29],
(iv) graphene nanosheet (GNS) and graphene nanosheet/carbon
black composites (GNS/CB) [30], (v) free-standing mesoporous car-
bon thin films (FSMC) [31], (vi) cubic mesoporous carbon (CMK),
(vii) acid-modified CMK  (H-CMK) [32], (vii) carbon foams [33],
(viii) ginkgo activated carbon shells (GAC) [34], and (ix) hierarchi-
cal porous core–shell carbon structure (C-CS) [35]. The electrode
average pore radius varied from 0.36 to 3.25 nm. Three different
electrolytes were considered including aqueous KOH and TEABF4
in propylene carbonate (PC) or acetonitrile (AN) at concentrations
c∞ between 1 and 6.88 M.  Anion and cation effective diameters typ-
ically differ, at least slightly. For example, OH− and TEA+ ions are
slightly larger than K+ and BF−

4 , respectively. However, they were
assumed to be identical. The non-solvated effective ion diameter a
was taken as 0.35 nm for ions K+ and OH− in water. It was assumed
to be 0.68 nm for TEA+ and BF−

4 [36,23]. The potential window var-
ied between 0.6 and 2.3 V depending on the electrolyte. Overall,
a total of 56 experimental data points were collected correspond-
ing to dimensionless numbers in the ranges 23 ≤ � ∗ = 2 ∗

s ≤ 90,
0.1 ≤ �p ≤ 0.57, 1.6 ≤ a* ≤ 4.05 (based on non-solvated ion diame-
ters), and 1.4 ≤ R∗

0 ≤ 40.2.
Fig. 4a shows the reported integral areal capacitance Cs,exp

as a function of the reported average pore radius R0 for the

above-mentioned experimental data. As expected, these data are
scattered and the capacitance varies from 5.5 to 47 �F/cm2 due
to the wide range of electrolytes, electrode morphologies and pore
sizes, and potential windows considered. On the other hand, Fig. 4b
shows the same data plotted in terms of the ratio Cs,exp/Cs,planar as
a function of R∗

0 − a∗/2 where Cs,planar = 2�0�rC∗
s,planar

/a was pre-
dicted using Eq. (16). It indicates that Cs,exp/Cs,planar decreased from
0.5 to about 0.1 when R∗

0 − a∗/2 increased from 0 to 40. First, it
is remarkable that the experimental capacitances of mesoporous
carbon electrodes had the same order of magnitude as the theoret-
ical capacitance for planar electrodes Cs,planar. It is also worth noting
that plotting the data in terms of Cs,exp/Cs,planar versus R∗

0 − a∗/2 sig-
nificantly reduced the scatter compared to Fig. 4a and described a
consistent trend. The capacitance ratio Cs,exp/Cs,planar increased as
the dimensionless pore radius R∗

0 decreased and approached the
dimensionless ion radius a*/2. As the pore radius increased, the
capacitance ratio Cs,exp/Cs,planar reached a plateau of around 0.08.
Curve fitting of the experimental data led to the following correla-
tion,

Cs,pred
Cs,planar

= 0.08 + 0.084√
R∗

0 − a∗/2
. (17)

Fig. 4b also shows curves with ±20% deviations. The scatter in the
experimental data and the fact that Cs,exp differs from Cs,planar for
large values of R0 can be attributed to the following main reasons:
(i) experimentally, the pores featured a nonuniform size distribu-
tion while the scaling analysis was based on the reported average
pore radius, (ii) the relative permittivity �r was  assumed to be con-
stant although it may  vary significantly under high electric fields
such as those encountered near the electrode surface [37,16], (iii)
the electrolytes were assumed to be symmetric while anions and
cations may  have different solvated and/or non-solvated ion diam-
eters, and (iv) the simple cubic packing of ions near the electrode
assumed in formulating the MPB  model may  be overly simplistic.
Note that attempts to account for the field-dependent dielectric
constant in the Stern layer did not yield a better correlation (not
shown). In other words, the semi-empirical constants in Eq. (17)
overall accounted for this effect.

The scaling law given by Eq. (17) indicates that the equilibrium
integral areal capacitance of mesoporous carbons with binary and
symmetric electrolytes can be expressed as

Cs,pred = f

(
R∗

0 − a∗

2

)
Cs,planar (18)

where Cs,planar is the equilibrium areal capacitance of the planar
electrode given by Eq. (4) while f (R∗

0 − a∗/2) is a geometric function
correcting for the fact that pore/electrolyte interfaces are not pla-
nar. It is constant in the limiting case when R0 � a/2 or R∗

0 − a∗/2 �
1 such that the effect of the pore curvature on the areal capacitance
is negligible.

Sensitivity analysis of this semi-empirical model was  performed
by randomly sampling it with 1300 sets of input parameters with
realistic electrolyte properties (i) a ranging from 0.1 to 1 nm,  (ii) �r

between 20 and 100, (iii) c∞ from 1 to 6 M,  and (iv) z with integer
values between 1 and 3. The electrode properties were such that
(v) R0 ranged from 1 to 10 nm and (iv)  s varied between 1 and 3 V.
Scatter plots of Cs,pred against each individual input variable indi-
cate that the integral areal capacitance was most sensitive to the
effective ion diameter a and to the electrolyte dielectric constant �r.
This can be attributed to the fact that under large ion concentrations
and potential windows, the total capacitance was dominated by the
Stern layer capacitance expressed as CSts = 2�0�r/a [16]. Interest-
ingly, Cs,pred was  only weakly sensitive to the surface potential  s.
However, the fact that the total energy stored E (in J) is proportional
to  2

s , i.e., E = C 2
s /2 confirms the importance of maximizing the
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surface potential or potential window to maximize EDLCs’ perfor-
mance. Similarly, Cs,pred was weakly sensitive to the pore radius
R0 except for R0 approaching a, as suggested by Eq. (17). Note that
reducing the pore size also increases the interfacial area Ai between
the electrode and the electrolyte and thus the total energy stored
E and the capacitance C (in F) given by C = Cs,pred × Ai.

5. Conclusion

This study presented scaling analysis of equilibrium model for
the electric double layer integral areal capacitance Cs,planar for pla-
nar electrodes in binary and symmetric electrolytes. It was  based on
a power law correlation for the equilibrium diffuse layer potential.
For the first time, a scaling law was derived to predict the integral
areal capacitance Cs,pred of porous carbon electrodes as the product
of an analytical expression (Eq. (16)) for the integral areal capaci-
tance of a planar electrode Cs,planar and a semi-empirical function
f (R∗

0 − a∗/2) accounting for the porous electrode morphology. The
latter was obtained using experimentally measured integral areal
capacitance Cs,exp for EDLCs with various porous carbon electrodes
and binary electrolytes. The scaling law indicated that the integral
areal capacitance was most sensitive to the ions’ effective diame-
ter and to the electrolyte dielectric constant. It was also sensitive to
the pore radius R0 only as R0 approached the ion radius a/2. Over-
all, to achieve large integral areal capacitance (i) the effective ion
diameter a should be small, (ii) the electrolyte dielectric constant �r

should be large, (iii) the pore radius R0 should be tailored to match
the ion diameter, i.e., 2R0 ≈ a, and (iv) the ion valency z should be
large. The total energy stored can be further enhanced by increasing
the surface potential  s or the potential window and the interfacial
area between electrode and electrolyte.
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