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This study provides a framework for developing design rules and thermal management strategies for
electric double layer capacitors (EDLCs). First, it presents a scaling analysis of a physical model previously
derived from first principles for coupled electrodiffusion and thermal transport in electric double layer
capacitors. The model rigorously accounts for irreversible (Joule heating) and reversible heat generation
rates arising from electric double layer formation in binary and symmetric electrolytes. Scaling simplified
the problem from twelve independent design parameters to seven meaningful dimensionless similarity
parameters governing the spatiotemporal evolution of the electric potential, ion concentrations, heat
generation rates, and temperature in the electrolyte. Then, similarity behavior was observed and scaling
laws were developed for the total irreversible and reversible heat generated during a charging step and
for the maximum temperature oscillations in EDLCs under galvanostatic cycling of planar electrodes
using detailed numerical simulations.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Electric double layer capacitors (EDLCs) are devices that store
electrical energy within the electric double layer (EDL) forming
at the porous electrode/electrolyte interfaces. Their energy and
power densities lie between those of batteries and those of conven-
tional dielectric capacitors [1–3]. EDLCs use physical charge stor-
age, in contrast to chemical energy storage used in batteries. This
typically yields significantly larger power densities, longer cycle
life, and higher cycle efficiencies than batteries [1,3]. In addition,
EDLCs use porous electrodes with very small charge separation dis-
tances to achieve larger energy densities than dielectric capacitors
[1–3]. EDLCs are promising for applications requiring high power,
rapid cycling, and long cycle life such as load leveling, regenerative
braking, and dynamic stabilization of the utility grid [2,4–7].

During EDLC operation, some electrical energy is dissipated as
heat. The device efficiency and the heat generation rate vary with
the cell design, materials, and operating conditions [4]. Tempera-
ture rise increases EDLC capacitance and decreases the resistance
[8–10]. However, it also accelerates EDLC aging [4–7,10,11], and
increases self-discharge rates [5–7,10]. EDLC aging permanently
increases the cell’s resistance and decreases its capacitance, which
in turn leads to increases in cell temperature and in cell voltage at a
given state of charge [11]. Non-uniform temperature in series-con-
nected EDLC modules can cause voltage imbalance and destructive
overvoltage of individual cells [4,7]. A 20% decrease in capacitance
or a 100% increase in internal resistance typically define the end of
life for an EDLC [12]. These damaging effects could be avoided by
mitigating EDLC temperature rise. To do so, thermal modeling
can be used (i) to predict operating temperatures of existing and
novel EDLC designs and (ii) to develop thermal management strat-
egies for EDLCs.

This study aims to develop a theoretical framework and practi-
cal scaling laws to derive rules in the thermal design and manage-
ment of EDLCs. To do so, scaling analysis was performed on a
recent thermal model of EDLCs derived from first principles [13].
The first objective was to reduce the number of design parameters
to a few meaningful dimensionless similarity parameters govern-
ing the thermal behavior of EDLCs. Then, scaling laws for the heat
generation rate and the temperature rise in the electrolyte of
EDLCs were developed for planar electrodes.
2. Background

2.1. Structure of the electric double layer

Fig. 1(a) illustrates the Stern model [14,15] of an electric double
layer (EDL) forming near a planar electrode. The EDL within the
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Nomenclature

A semi-empirical fitting function
a effective ion diameter
B semi-empirical fitting function
C� dimensionless heat capacity
c ion concentration
cmax maximum ion concentration, cmax ¼ 1=NAa3

cp specific heat of the electrolyte at constant pressure
D diffusion coefficient of ions in electrolyte
e elementary charge, e ¼ 1:602� 10�19 C
eth thermal effusivity, eth ¼ ðkqcpÞ1=2

F Faraday constant, F ¼ eNA ¼ 9:648� 104 C mol�1

H Stern layer thickness
j ionic current density vector
js magnitude of current density imposed at electrode sur-

face
k thermal conductivity of electrolyte
L half of inter-electrode distance
Le Lewis number, Le ¼ a=D
NA Avogadro constant, NA ¼ 6:022� 1023 mol�1

Ni ion flux vector of species i
nc cycle number
Q amount of heat generated per charging step per unit

surface area
_q local volumetric heat generation rate
Ru universal gas constant, Ru ¼ 8:314 J mol�1 K�1

r location vector in three-dimensional space
T local, absolute temperature
T0 initial temperature

t time
tc cycle period
x location in one-dimensional space
z ion valency

Greek symbols
a thermal diffusivity, a ¼ k=qcp

�0 vacuum permittivity, �0 ¼ 8:854� 10�12 F m�1

�r relative permittivity of electrolyte
kD Debye length
mp packing parameter, mp ¼ 2c1NAa3

q density of electrolyte
r electrical conductivity of electrolyte
sd characteristic time for ion diffusion across EDL
sth characteristic time for heat diffusion across EDL
w electric potential

Superscripts and subscripts
⁄ refers to dimensionless variable
1 refers to bulk electrolyte
E;d refers to heat generation due to diffusion
E; s refers to heat generation due to steric effects
i refers to ion species i
irr refers to irreversible heat generation
rev refers to reversible heat generation
S; c refers to heat of mixing due to concentration gradient
S; T refers to heat of mixing due to temperature gradient
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electrolyte is divided into the Stern and diffuse layers. The Stern
layer is defined as the compact layer adjacent to the electrode sur-
face with no free charge [3,14,15]. In the diffuse layer, ions move
under the coupled influences of electrostatic forces and diffusion
[3,14,15]. The EDL thickness depends on the electrolyte concentra-
tion, valency, and temperature [14,15].

2.2. First-principles modeling of EDLC transport phenomena

In a recent study [13], we developed a thermal model predicting
the local heat generation rate and temperature within EDLC elec-
trolyte. The energy conservation equation was derived from first
principles and coupled to the modified Poisson–Nernst–Planck
(MPNP) model governing the local electric potential and ion con-
centrations [16]. Both were valid for binary and symmetric electro-
lytes, i.e., for only two ion species with identical valency z,
diffusion coefficient D, and effective diameter a [16]. Note that
symmetric electrolytes have also been defined based on symmetric
valency alone, i.e., z1 ¼ �z2, without considering the ion diameter
or the diffusion coefficient [1,14,15]. However, microscopic models
accounting for transient ion transport and finite ion size require a
more restrictive definition of electrolyte symmetry. The thermal
model was derived based on the thermodynamic activity coeffi-
cients of the ion species given by the Debye–Hückel limiting law
[17,18].

2.2.1. Electric potential and ion concentrations
The local electric potential and ion concentrations in the elec-

trolyte can be predicted by solving the modified Poisson–Nernst–
Planck (MPNP) model accounting for the Stern layer and the finite
size of ions [13,16]. The electric potential wðr; tÞ at location r and
time t is governed by the Poisson equation expressed for binary
electrolytes as [13,16,19,20]
r � �0�rrwð Þ ¼
0 in the Stern layers;

�F
X2

i¼1

zici in the diffuse layer;

8><
>: ð1Þ

where ciðr; tÞ and zi denote the concentration and valency of ion
species i, respectively. For binary and symmetric electrolytes,
z1 ¼ �z2 ¼ z where subscripts i ¼ 1 and i ¼ 2 denote cations and
anions, respectively. Here, �0 ¼ 8:854� 10�12 F mol�1 and �r are
the vacuum permittivity and the relative permittivity of the electro-
lyte, respectively, while F ¼ 9:648� 104 C mol�1 is the Faraday con-
stant. Note that the potential profile within the Stern layers is linear
due to the absence of free charge. In the diffuse layer, the local con-
centrations c1ðr; tÞ and c2ðr; tÞ satisfy the mass conservation equa-
tion given by [16]

@ci

@t
¼ �r �Ni for i ¼ 1 and 2; ð2Þ

where Niðr; tÞ is the local ion flux vector of species i in mol m�2 s�1.
For binary and symmetric electrolytes, it is expressed as [16]

Niðr; tÞ ¼ � Drci þ
ziFD
RuT

cirwþ Da3NAci

1� a3NAðc1 þ c2Þ
rðc1 þ c2Þ

" #
;

ð3Þ

where the first, second, and third terms on the right-hand side of Eq.
(3) account for diffusion, electromigration, and steric effects,
respectively. The steric term prevents the total ion concentration
ðc1 þ c2Þ from exceeding the theoretical maximum concentration
cmax ¼ 1=NAa3 corresponding to simple cubic packing of ions. Here,
D is the diffusion coefficient of ions in the electrolyte, a is their
effective diameter, Ru ¼ 8:314 J mol�1 K�1 is the universal gas con-
stant, and NA ¼ 6:022� 1023 mol�1 is the Avogadro constant. Eqs.
(1) and (2) are intimately coupled because the potential profile
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(b)

Fig. 1. Illustration of (a) electric double layer structure near a planar electrode,
according to the Stern model [14,15] and (b) the simulated EDLC planar electrodes.
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depends on the ion concentration distribution and vice versa. The
effect of temperature on the electric potential and ion concentra-
tions is accounted for by the temperature-dependent electrolyte
properties such as the diffusion coefficient D and by the presence
of the local temperature T in the electromigration term.

2.2.2. Heat generation rate and temperature
The temperature Tðr; tÞ in the electrolyte is governed by the

energy conservation equation expressed as [13,21]

qcp
@T
@t
¼ r � krTð Þ þ _q; ð4Þ

where q; cp, and k are respectively the density, specific heat, and
thermal conductivity of the electrolyte. The local volumetric heat
generation rate _qðr; tÞ can be divided into an irreversible _qirr and a
reversible _qrev contribution so that _q ¼ _qirr þ _qrev .

The irreversible volumetric heat generation rate corresponds to
Joule heating within the electrolyte and is expressed as [13]

_qirrðr; tÞ ¼
jjj2

r
; ð5Þ

where the local ionic current density vector j and the electrolyte’s
electrical (ionic) conductivity r are respectively defined as [17,22]

jðr; tÞ ¼
X2

i¼1

ziFNiðr; tÞ and

rðr; tÞ ¼ ðDz2F2=RuTÞ½c1ðr; tÞ þ c2ðr; tÞ�: ð6Þ
Irreversible heat generation is responsible for the overall tempera-
ture rise from cycle to cycle observed experimentally during
galvanostatic cycling [4–6,10,23–25]. Eq. (5) is consistent with the
experimental observation that the irreversible heating was propor-
tional to the imposed electric current squared [6].

The reversible volumetric heat generation rate _qrevðr; tÞ com-
prises four contributions and is expressed as [13]

_qrev ¼ _qE;d þ _qE;s þ _qS;c þ _qS;T ; ð7Þ

where _qE;d and _qE;s denote the heat generation rates due to ion dif-
fusion and steric effects within an electric field, respectively. They
are expressed for binary and symmetric electrolytes as [13]

_qE;dðr; tÞ ¼
DzF
r

j � rðc1 � c2Þ and

_qE;sðr; tÞ ¼
DzFa3NAðc1 � c2Þ

r 1� a3NAðc1 þ c2Þ½ � j � rðc1 þ c2Þ: ð8Þ

In addition, _qS;c and _qS;T correspond to the heat of mixing associated
with ion flow along the partial molar entropy gradient and along
the temperature gradient. They are given by [13]

_qS;cðr; tÞ ¼
3

32p
z3eF2

ð�0�rÞ3=2R1=2
u T1=2ðc1 þ c2Þ1=2 ðN1 þ N2Þ � rðc1 þ c2Þ

and _qS;Tðr; tÞ ¼ �
3

32p
z3eF2ðc1 þ c2Þ1=2

ð�0�rÞ3=2R1=2
u T3=2 ðN1 þ N2Þ � rT ð9Þ

where e is the elementary charge e ¼ 1:602� 10�19 C. The revers-
ible heat generation rates _qE;d; _qE;s, and _qS;c are exothermic during
charging and endothermic during discharging [6,13,24], while _qS;T

was found to be negligible compared to the other contributions
for the conditions tested in Ref. [13]. The above expressions are con-
sistent with observations from galvanostatic cycling experiments
indicating that the reversible heat generation rate was proportional
to the current density [24,25]. This model was used to numerically
simulate the electrolyte temperature near planar electrodes under
galvanostatic cycling [13]. The temperature predictions showed
excellent qualitative agreement with experimental temperature
measurements from the literature for commercial EDLC devices
with porous carbon electrodes tested under different galvanostatic
cycling conditions [13].

Scaling analysis has proved to be a useful and powerful tool in
numerous areas of physics and engineering, particularly in heat
transfer [21]. Scaling of the above governing Eqs. (1)–(9) and of
the associated initial and boundary conditions could significantly
reduce the number of independent parameters that must be con-
sidered in performing thermal analysis of EDLC electrolytes. This
can facilitate the development of thermal design rules to mitigate
EDLC heating applicable to a wide range of electrolytes and operat-
ing conditions.

3. Analysis

3.1. Problem statement

Fig. 1(b) illustrates the simulated one-dimensional EDLC con-
sisting of two planar electrodes separated by a binary and symmet-
ric electrolyte with inter-electrode distance 2L. The planar
electrodes located at x ¼ 0 and x ¼ 2L were denoted as electrodes
A and B, respectively. The electrolyte was divided into three
regions: a Stern layer adjacent to each electrode and a diffuse layer.
We further assume that (1) the electrolyte properties were con-
stant and independent of temperature, except for the electrical
conductivity calculated from the local ion concentrations (Eq.
(6)). (2) The Stern layer thickness H was equal to half of the effec-
tive ion diameter, i.e., H ¼ a=2, and (3) the EDLC was thermally
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insulated. The present study models only the electrolyte. In EDLC
devices, electrodes and current collectors also contribute to irre-
versible Joule heating and to the thermal inertia. Electrodes and
current collectors obey Ohm’s law [17] and do not contribute to
the reversible heating. Note also that the electrical conductivity
of the electrode and current collector materials are expected to
be much larger than that of the electrolyte. For example, the bulk
electrical conductivity r1 of the electrolyte considered in
Ref. [13] and the present study was on the order of 1 S m�1 while
the conductivity of activated carbon is on the order of 100–
1000 S m�1 [26–28]. Thus, the electrolyte is the dominant source
of heat generation in the device. Assumption (1) is reasonable for
small changes in temperature and commonly used for scaling
analysis. Thus, the temperature T appearing in the expressions
for Ni; _qS;c , and _qS;T was taken as the initial temperature T0.
Note that the thermal behavior of EDLCs is intrinsically transient,
as ion fluxes responsible for the heat generation vanish at
equilibrium.

3.2. Initial and boundary conditions for planar electrodes

In one-dimensional (1D) Cartesian coordinates, the governing
Eqs. (1)–(4) for wðx; tÞ; ciðx; tÞ, and Tðx; tÞ are first-order partial dif-
ferential equations (PDEs) in time and second-order PDEs in space.
They require one initial condition and two boundary conditions in
each region. The present study considers the electrolyte region
0 6 x 6 2L only. Eqs. (1) and (4) were solved in all three layers of
the electrolyte while Eq. (2) was solved in the diffuse layer only.
Initially, the potential, ion concentrations, and temperature
were taken as uniform throughout the electrolyte domain
0 6 x 6 2L and equal to wðx;0Þ ¼ 0 V; c1ðx; 0Þ ¼ c2ðx;0Þ ¼ c1, and
Tðx; 0Þ ¼ T0, respectively. Table 1 summarizes the boundary condi-
tions at the electrode/electrolyte and Stern/diffuse layer interfaces
during galvanostatic charging and discharging of a thermally
insulated EDLC under current density�js with cycle period tc . Here,
nc ¼ 1;2;3 . . . is the cycle number. These initial and boundary
conditions are the same as those used in Ref. [13].

3.3. Scaling analysis

3.3.1. Dimensionless variables
Eqs. (1)–(9) along with the associated initial and boundary

conditions were non-dimensionalized using the dimensionless
variables
Table 1
Dimensional and dimensionless boundary conditions for thermally insulated EDLC with p

Interface w

Electrode A/electrolyte (x ¼ 0 nm) ��0�r
@2w
@t@x ¼

js ðnc � 1Þtc 6 t < ð
�js ðnc � 1=2Þtc 6 t <

�
Stern/diffuse layer A (x ¼ H ¼ a=2) wðH�; tÞ ¼ wðHþ; tÞ

@w
@x ðH

�; tÞ ¼ @w
@x ðH

þ; tÞ
Stern/diffuse layer B (x ¼ 2L� H) wð2L� H�; tÞ ¼ wð2L� Hþ; tÞ

@w
@x ð2L� H�; tÞ ¼ @w

@x ð2L� Hþ; tÞ
Electrode B/electrolyte (x ¼ 2L) w ¼ 0V

w�

Electrode A/electrolyte (x� ¼ 0)
� @2w�

@t�@x� ¼
j�s
2 ðnc � 1Þt�c 6 t� < ðn
� j�s

2 ðnc � 1=2Þt�c 6 t� <

(

Stern/diffuse layer A (x� ¼ a�=2) w� a��
2 ; t�
� �

¼ w� a�þ
2 ; t�

� �
@w�

@x�
a��
2 ; t�
� �

¼ @w�

@x�
a�þ
2 ; t�
� �

Stern/diffuse layer B (x� ¼ 2L� � a�=2) w� 2L� � a��
2 ; t�

� �
¼ w� 2L� � a�þ

2 ; t�
� �

@w�

@x� 2L� � a��
2 ; t�

� �
¼ @w�

@x� 2L� � a�þ
2 ; t�

� �
Electrode B/electrolyte (x� ¼ 2L�) w� ¼ 0
r� ¼ r
kD
; t� ¼ t

k2
D=D

; w�ðx�; t�Þ ¼ wðx; tÞ
RuT0=zF

;

c�i ðx�; t�Þ ¼
ciðx; tÞ

c1
; and T�ðx�; t�Þ ¼ Tðx; tÞ � T0

T0
: ð10Þ

Here, the position vector r was scaled by the Debye length defined

for binary and symmetric electrolyte as kD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0�rRuT0=2z2F2c1

q
and corresponding to an estimate of the EDL thickness at tempera-
ture T0 [22,29,30]. Specifically, it characterizes the distance
required for the potential to decay by about 66% from its value at
the electrode surface [30]. The time t was scaled by the characteris-
tic time for ion diffusion across the EDL thickness estimated as
sd ¼ k2

D=D [21]. The thermal voltage RuT0=zF represents the voltage
inducing an electrical potential energy equivalent to the thermal
energy for an ion of valency z at temperature T0 [22]. Thus, the
dimensionless surface potential w� characterizes the extent to
which the potential w perturbs the ion concentrations from their
equilibrium distribution under zero electric field. Finally, the
concentration ciðx; tÞ and the temperature change Tðx; tÞ � T0 were
scaled by the bulk ion concentration c1 and the initial temperature
T0, respectively.

Using the scaled position vector r�, the gradient, divergence, and
Laplacian operators can be respectively non-dimensionalized as

r�f �ðr�Þ¼ kD

f0
rf ; r� �v�ðr�Þ ¼ kD

v0
r�v; and r�2f � ¼ k2

D

f0
r2f ; ð11Þ

where the function f ðrÞ and the vector v are scaled by the scalars f0

and v0, respectively so that f � ¼ f=f0 and v� ¼ v=v0.

3.3.2. Dimensionless Poisson equation
Substituting Eq. (10) into the 1D Poisson equation (1) yields the

following governing equation for the dimensionless electric poten-
tial w�ðx�; t�Þ [31]

�2r�2w� ¼ 0 in the Stern layers;
c�1 � c�2 in the diffuse layer:

�
ð12Þ
3.3.3. Dimensionless mass conservation equation
The dimensionless concentrations c�i ðx�; t�Þ of the cations and

anions in the diffuse layer satisfy the dimensionless 1D mass con-
servation equations expressed as

@c�i
@t�
¼ �r� � N�i i ¼ 1 and 2: ð13Þ
lanar electrodes during galvanostatic cycling.

ci T

nc � 1=2Þtc

nctc

�k @T
@x ¼ 0 W

m2

Ni ¼ 0 mol
m2 s TðH�; tÞ ¼ TðHþ; tÞ

@T
@x ðH

�; tÞ ¼ @T
@x ðH

þ; tÞ
Ni ¼ 0 mol

m2 s Tð2L� H�; tÞ ¼ Tð2L� Hþ; tÞ
@T
@x ð2L� H�; tÞ ¼ @T

@x ð2L� Hþ; tÞ
�k @T

@x ¼ 0 W
m2

c�i T�

c � 1=2Þt�c
nct�c

@T�
@x� ¼ 0

N�i ¼ 0 T� a��
2 ; t�
� �

¼ T� a�þ
2 ; t�

� �
@T�
@x�

a��
2 ; t�

� �
¼ @T�

@x�
a�þ
2 ; t�

� �
N�i ¼ 0 T� 2L� � a��

2 ; t�
� �

¼ T� 2L� � a�þ
2 ; t�

� �
@T�
@x� 2L� � a��

2 ; t�
� �

¼ @T�
@x� 2L� � a�þ

2 ; t�
� �

@T�
@x� ¼ 0
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The dimensionless local ion flux vector N�i ðx�; t�Þ is defined as
N�i ¼ Ni=ðDc1=kDÞ and expressed for binary and symmetric electro-
lytes as

N�i ¼ � r�c�i þ sgnðziÞc�ir�w� þ
c�i mp=2

1� ðc�1 þ c�2Þmp=2
r�ðc�1 þ c�2Þ

� �
:

ð14Þ

Here, the dimensionless number mp ¼ 2c1=cmax ¼ 2c1NAa3 is the so-
called packing parameter corresponding to the ratio of the total
bulk concentration 2c1 to the theoretical maximum concentration
cmax [16]. It is less than unity as the bulk concentration cannot
exceed cmax. It approaches zero in the limiting case of negligibly
small ion diameter a. The function sgnðziÞ is equal to +1 or �1
depending on the sign of the valency zi.
3.3.4. Dimensionless energy conservation equation
The dimensionless energy equation derived from Eq. (4) can be

expressed as

@T�

@t�
¼ Ler�2T� þ

_q�

C�
: ð15Þ

The Lewis number Le is defined as Le ¼ a=D where a ¼ k=qcp is the
thermal diffusivity [21]. The dimensionless heat capacity C� is
defined as C� ¼ qcp=Ruc1. Here, the dimensionless local volumetric
heat generation rate is given by _q� ¼ _q=ðRuT0Dc1=k

2
DÞ ¼ _q�irr þ _q�rev

where _q�rev ¼ _q�E;d þ _q�E;s þ _q�S;c þ _q�S;T . The irreversible Joule heating
_qirr is expressed in dimensionless form as

_q�irr ¼
jj�j2

c�1 þ c�2
; ð16Þ

where j� ¼ j=ðzFDc1=kDÞ ¼ N�1 �N�2 is the dimensionless local cur-
rent density vector. The diffusion and steric contributions _qE;d and
_qE;s are expressed in dimensionless form as

_q�E;d ¼
j� � r�ðc�1 � c�2Þ

c�1 þ c�2
and

_q�E;s ¼
j� � r�ðc�1 þ c�2Þ

c�1 þ c�2

ðc�1 � c�2Þmp=2
½1� ðc�1 þ c�2Þmp=2� ; ð17Þ

while the heat of mixing contributions _qS;c and _qS;T can be non-
dimensionalized as

_q�S;c ¼
3

32
ffiffiffi
2
p

p
a�3

mp

ðN�1 þ N�2Þ � r�ðc�1 þ c�2Þ
ðc�1 þ c�2Þ

1=2 ;

and _q�S;T ¼ �
3

32
ffiffiffi
2
p

p
a�3

mp
ðN�1 þ N�2Þðc�1 þ c�2Þ

1=2 � r�T�: ð18Þ

Here, a� ¼ a=kD is the dimensionless effective ion diameter.
3.4. Dimensionless initial and boundary conditions for planar
electrodes

In 1D Cartesian coordinates, the initial conditions for the
dimensionless variables w�; c�i , and T� can be expressed as
w�ðx�;0Þ ¼ 0; c�1ðx�;0Þ ¼ c�2ðx�;0Þ ¼ 1, and T�ðx�;0Þ ¼ 0. Table 1
summarizes the dimensionless boundary conditions for w�; c�i ,
and T� at the electrode/electrolyte and Stern/diffuse layer inter-
faces. The Stern layers for electrodes A and B are located at
0 � x� < a�=2 and ð2L� � a�=2Þ < x� � 2L�, respectively. The diffuse
layer is the region a�=2 � x� � 2L� � a�=2 where L� ¼ L=kD is the
dimensionless inter-electrode half-width. Here, j�s ¼ js=ðzFDc1=kDÞ
is the dimensionless current density imposed at the electrode
surface and t�c ¼ tc=ðk2

D=DÞ is the dimensionless cycle period.
3.5. Physical interpretation

The solution of the governing Eqs. (1)–(4) and their initial and
boundary conditions for galvanostatic cycling of planar EDLCs with
binary and symmetric electrolyte depended on twelve parameters,
namely z; a; D; �r; q; cp; k; c1; L; T0; js, and tc. The scaling
analysis of these equations and their initial and boundary condi-
tions revealed that the dimensionless variables w�; c�i , and T�

depended on only seven dimensionless similarity parameters
expressed as

a� ¼ a
kD
; L� ¼ L

kD
; j�s ¼

js

zFDc1=kD
;

t�c ¼
tc

k2
D=D

mp ¼
2c1
cmax

; Le ¼ a
D
; and C� ¼ qcp

Ruc1
: ð19Þ

The dimensionless numbers a� and L� scale the Stern layer thickness
and the inter-electrode distance by the Debye length, respectively.
The dimensionless current density j�s scales the imposed current
density at the electrode by a characteristic diffusion current density
driven by a concentration gradient from c1 to 0 mol/L across the
Debye length kD (equal to the concentration drop of the co-ion
across the EDL). In addition, t�c is the ratio of the cycle period to
the characteristic time sd ¼ k2

D=D for ion diffusion across the Debye
length. The Lewis number Le can be interpreted as the ratio of the
characteristic time for ion diffusion sd ¼ k2

D=D to that for heat diffu-
sion sth ¼ k2

D=a. The dimensionless heat capacity C� represents the
ratio of the volumetric heat capacity qcp of the solvent to that of
the ions at bulk concentration Ruc1, both expressed in J m�3 K�1.

Finally, w�ðx�; t�Þ and c�i ðx�; t�Þ are functions of the dimensionless
similarity parameters a�; L�; j�s ; t�c , and mp only. On the other hand,
the Lewis number Le and the dimensionless heat capacity C� gov-
ern the transient dimensionless temperature response T�ðx�; t�Þ
for a given dimensionless volumetric heat generation rate. Since
the dimensionless volumetric heat generation rates _q�irr; _q�E;d; _q�E;s,
and _q�S;c do not depend on T�; Le, or C�, they should also be func-
tions of the five parameters a�; L�; j�s ; t�c , and mp.
3.6. Numerical simulations

3.6.1. Method of solution
The governing Eqs. (1)–(4) were solved for a planar EDLC in

dimensional form using finite element methods. Numerical con-
vergence was assessed based on the computed local electric poten-
tial w, ion concentrations c1 and c2, and temperature T at time t. Of
these quantities, the temperature was the most sensitive to mesh
refinement. The mesh size was the smallest at the Stern/diffuse
layer interface due to the large potential and concentration gradi-
ents and then gradually increased away from this interface. The
mesh was refined by reducing the element size at the Stern/diffuse
layer interface and the maximum element growth rate. The time
step was refined by decreasing the relative and absolute tolerances
[32]. During each time step, these tolerances were compared to the
estimated local error between solutions at the previous and cur-
rent time steps for each degree of freedom in the model [32].
The time step was then adjusted until the convergence criterion
was satisfied, as described in Ref. [32]. This enabled the use of very
small time steps near the transitions between charging and dis-
charging steps while using a larger time step for the rest of the
computation. The numerical solution was considered converged
when halving (i) the element size at the Stern/diffuse layer inter-
face, (ii) the maximum element growth rate, and (iii) both the rel-
ative and absolute tolerances resulted in less than 0.5% maximum
relative difference in the local temperature rise Tðx; tÞ � T0.



Table 2
Input parameters for Cases 1 to 3 used to illustrate the scaling analysis. The
dimensionless parameters a� ¼2:4; L� ¼7:2�104; j�s ¼2:4�10�6; t�c ¼2:2�107; mp

¼0:38; Le¼374, and C� ¼310 are the same for all three cases.

Case 1 Case 2 Case 3

z 1 1 2
a (nm) 0.68 0.34 1.36
D (m2/s) 1:7� 10�10 1:7� 10�10 3:4� 10�10

�r 66.1 88.2 66.1
q (kg/m2) 1205 2409 602
cp (J/kg K) 2141 8564 535
k (W/m K) 0.16 1.3 0.041
c1 (mol/L) 1.0 8.0 0.125
L (lm) 20 10 40
T0 (K) 298 447 596
js (mA/cm2) 14 224 3.5
tc (ms) 10 2.5 20
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3.6.2. Data processing
The temperature evolution is characterized by the irreversible

temperature rise Tirr , the temperature oscillation amplitude DTrev ,
and the cycle period tc [13]. The irreversible temperature rise Tirr

corresponds to the temperature that would result from irreversible
Joule heating alone. Our previous study [13] showed that _qirr was
uniform through the electrolyte and equal to

_qirr ¼
j2
s

r1
; ð20Þ

where r1 ¼ 2Dz2F2c1=RuT0 is the electrolyte conductivity at the
bulk concentration c1 ¼ c2 ¼ c1. Thus, assuming insulated elec-
trode/electrolyte interfaces, Tirr was also uniform and expressed as

TirrðtÞ ¼ T0 þ
_qirr

qcp
t ¼ T0 þ

j2
s

qcpr1
t: ð21Þ

The irreversible volumetric heat generation rate and the irreversible
temperature rise given by Eqs. (20) and (21), respectively, are
expressed in dimensionless form as

_q�irr ¼
_qirr

RuT0Dc1=k
2
D

¼ j�2s

2
and T�irrðt�Þ¼

TirrðtÞ�T0

T0
¼

_q�irr

C�
t� ¼ j�2s

2C�
t�:

ð22Þ

The temperature oscillations Trev ðx; tÞ associated with the
reversible heating can be evaluated by subtracting the irreversible
temperature rise TirrðtÞ from the temperature Tðx; tÞ, i.e.,
Trev ðx; tÞ ¼ Tðx; tÞ � TirrðtÞ. The temperature oscillations varied with
location x due to the non-uniformity of _qrev [13]. For temperature-
independent electrolyte properties and ion transport, Trevðx; tÞ was
a periodic function of t. In the present study, the oscillation ampli-
tude DTrev ðxÞ was evaluated at the Stern/diffuse layer interface
where it was found to be the largest [13]. It was defined as
DTrev ða=2Þ ¼maxtc6t62tc Trev ða=2; tÞ½ � �mintc6t62tc Trev ða=2; tÞ½ � and
was an unknown function of the twelve parameters characterizing
the electrolyte, inter-electrode spacing, and cycling conditions. In
dimensionless form, the reversible temperature evolution and the
oscillation amplitude are expressed as T�revðx�; t�Þ ¼ Trev ðx; tÞ=T0 ¼
T�ðx�; t�Þ � T�irrðt�Þ and DT�rev ða�=2Þ ¼ DTrev ða=2Þ=T0. Based on the
above dimensional analysis, one can show that DT�rev is a function
of the seven similarity parameters identified in Eq. (19). The
parameters j�s and mp do not affect DT�rev directly, but they affect
the value of _q�rev . A correlation relating DT�rev to these seven param-
eters would enable predictions of the EDLC temperature evolution
for various design and operating parameters without performing
complex and time-consuming numerical simulations [13].

Finally, the reversible heat generation rate was characterized by
the total amount of reversible heat Q rev generated per unit elec-
trode surface area during a complete charging step (in J m�2). Here,
Qrev comprises the sum of all reversible contributions such that
Qrev ¼ Q E;d þ QE;s þ Q S;c . Individual Q i were computed by integrat-
ing the corresponding local volumetric heat generation rate
_qiðx; tÞ spatially over the electrolyte domain 0 6 x 6 2L and tempo-
rally over one charging step tc 6 t 6 3tc=2 so that

Q i ¼
Z 3tc=2

tc

Z 2L

0

_qiðx; tÞdxdt: ð23Þ

Here, the time integral was taken over the second charging step in the
simulation, i.e., tc 6 t 6 3tc=2, to avoid start-up effects occurring near
t ¼ 0. Longer simulations showed that two cycles were sufficient to
reach oscillatory steady state. In dimensionless form, each individual
contribution to the reversible heat generation is expressed as

Q �i ¼
Q i

RuT0c1kD
¼
Z 3t�c=2

t�c

Z 2L�

0

_q�i ðx�; t�Þdx�dt�: ð24Þ
Note that QS;T was ignored because its contribution to the total Qrev
was negligible for all cases considered. During the corresponding
discharging step (3tc=2 � t � 2tc), the energy �Qi was consumed
so that the net reversible heat generation over a complete
charging/discharging cycle was zero.
4. Results and discussion

4.1. Illustration of scaling analysis

Table 2 summarizes three sets of input parameters used to illus-
trate the scaling analysis. Case 1 was based on the properties of tet-
raethylammonium tetrafluoroborate (TEABF4) electrolyte at
1 mol L�1 in propylene carbonate (PC) solvent. This electrolyte
was treated as binary and symmetric. The ions TEA+ (i ¼ 1) and
BF�4 (i ¼ 2) have valency z1 ¼ �z2 ¼ 1. Their effective diameter
was taken as that of non-solvated TEA+ ions, i.e., a ¼ 0:68 nm
[33,34]. In fact, Wang and Pilon [34] found that using this ion
diameter resulted in predictions of the integral capacitance of
ordered bimodal mesoporous carbon electrodes in good agreement
with experimental data. The dielectric constant �r , thermal
conductivity k, density q, and specific heat cp were taken as the
properties of the PC solvent [35,36]. The ion diffusion coefficient
D was estimated from the experimentally measured electrical con-
ductivity r for a concentration of c1 ¼ c2 ¼ c1 ¼ 1 mol/L using the
expression given in Eq. (6) [37]. The electrolyte properties
�r; k; q; cp, and r were measured at temperatures within 5 K of
the simulated initial temperature T0 ¼ 298 K [37,35,36]. The
inter-electrode half-width L ¼ 20 lm fell within the range
reported in experimental studies of EDLCs [23,24]. Similarly, the
current density js ¼ 14 mA cm�2 was within the typical range of
current densities per unit separator surface area [6,24]. The cycle
period tc ¼ 10 ms was selected to yield a maximum voltage of
wð0; tÞ � wð2L; tÞ ¼ 2:5 V chosen by analogy with the operating
voltages of many commercial EDLCs using organic electrolytes
[1,38]. Note that planar electrodes charge very rapidly compared
to porous electrodes, resulting in a significantly shorter cycle
period.

The dimensionless numbers associated with Case 1 were
a� ¼2:4; L� ¼7:2�104; j�s ¼2:4�10�6; t�c ¼2:2�107; mp¼0:38; Le¼
374, and C� ¼310. The dimensionless governing Eqs. (12), (13), and
(15) and their associated initial and boundary conditions indicate
that the dimensionless solution for w�; c�1; c�2, and T� depends only
on the seven dimensionless numbers defined in Eq. (19). To illustrate
this, the twelve input parameters z; a; D; �r; q; cp; k; c1; L; T0; js,
and tc for Cases 2 and 3 were all varied arbitrarily, while the seven



A. d’Entremont, L. Pilon / International Journal of Heat and Mass Transfer 75 (2014) 637–649 643
dimensionless numbers a�; L�; j�s ; t�c ; mp; Le, and C� remained identi-
cal for Cases 1 to 3.

4.1.1. Dimensionless potential
Fig. 2(a) shows the computed electric potential wð0; tÞ at the

surface of electrode A as a function of time t during two consecu-
tive galvanostatic cycles for Cases 1 to 3. As expected, the surface
potential increased during charging and decreased during dis-
charging. The temporal evolution of wð0; tÞ and/or its peak value
differed among the three cases considered. As previously men-
tioned, Case 1 featured realistic electrolyte properties and cycling
conditions resulting in a maximum surface potential of 2.5 V. On
the other hand, the surface potential in Case 2 reached values in
excess of 3.7 V due to the different properties of a hypothetical
electrolyte chosen to maintain the same dimensionless similarity
parameters as in Case 1. Fig. 2(b) plots the same data shown in
Fig. 2(a) in terms of dimensionless potential w�ð0; t�Þ as a function
of dimensionless time t�. It is evident that the dimensionless data
for all three cases collapsed onto a single curve. Similar results
were obtained at any arbitrary location in the domain (not shown).

4.1.2. Dimensionless concentration
Similarly, Fig. 3(a) shows the computed anion concentration

c2ða=2; tÞ at the Stern/diffuse layer interface near electrode A as a
function of time t for Cases 1 to 3. The computed maximum values
of c2ða=2; tÞ for the different cases varied by nearly two orders of
(a)

(b)

Fig. 2. Computed (a) electric potential wð0; tÞ at the surface of electrode A as a
function of time t and (b) dimensionless electric potential w�ð0; t�Þ as a function of
dimensionless time t� during two consecutive galvanostatic charging/discharging
cycles for Cases 1 to 3 (Table 2).
magnitude. This can be attributed to the differences in ion diame-
ter a between the different cases causing large differences in cmax.
Fig. 3(b) presents the same data in dimensionless form as
c�2ða�=2; t�Þ versus t�. Here also, the computed dimensionless con-
centration c�2ða�=2; t�Þ at the Stern/diffuse layer interface as a func-
tion of t� collapsed onto a single curve for the three different cases
considered. The maximum dimensionless concentration c�max was
determined by the packing parameter mp as c�max ¼ 2=mp. Similar
results were obtained at other locations in the domain as well as
for the cation concentration c1ðx; tÞ and c�1ðx�; t�Þ (not shown).
4.1.3. Dimensionless temperature
Finally, Fig. 4(a) and (b) shows the temporal evolution of the

computed temperature change Tða=2; tÞ � T0 at the Stern/diffuse
layer interface and TðL; tÞ � T0 at the centerline, respectively. Tem-
perature oscillations about an overall temperature rise were evi-
dent at each location. Fig. 4(c) and (d) shows the same data but
in dimensionless form. Here also, the dimensionless temperatures
T�ða�=2; t�Þ and T�ðL�; t�Þ for all three cases considered collapsed
onto a single curve. Similar results were obtained at other locations
in the domain (not shown). Fig. 4(c) also shows the irreversible
temperature rise T�irrðt�Þ associated with irreversible Joule heating
and given by Eq. (22) as well as the temperature oscillation ampli-
tude DT�rev ða�=2Þ associated with reversible heating. As expected,
the slope of the overall dimensionless temperature rise was given
by j�2s =2C�.
(a)

(b)

Fig. 3. Computed (a) anion concentration c2ða=2; tÞ at the Stern/diffuse layer
interface as a function of time t and (b) dimensionless anion concentration
c�2ða�=2; t�Þ as a function of dimensionless time t� during two consecutive
galvanostatic charging/discharging cycles for Cases 1 to 3 (Table 2).



(a) (b)

(c) (d)

Fig. 4. Computed temperature change (a) Tða=2; tÞ � T0 at the Stern/diffuse layer interface and (b) TðL; tÞ � T0 at the centerline as functions of time t as well as dimensionless
temperature change (c) T�ða�=2; t�Þ and (d) T�ðL�; t�Þ as functions of dimensionless time t� during two consecutive galvanostatic charging/discharging cycles for Cases 1 to 3
(Table 2).
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Overall, these results illustrate the scaling analysis performed
on the coupled MPNP and energy conservation equations and their
initial and boundary conditions for EDLCs with binary and sym-
metric electrolytes under galvanostatic cycling. The dimensionless
variables w�ðx�; t�Þ; c�i ðx�; t�Þ, and T�ðx�; t�Þ depended only on the
seven similarity parameters a�; L�; j�s ; t�c ; mp; Le, and C�. The same
observations were made for the dimensionless local volumetric
heat generation rates _q�irr and _q�rev (see Supplementary Materials).

4.2. Scaling laws for thermal effects

4.2.1. Temperature oscillation amplitude
Table 3 summarizes three baseline sets of dimensionless simi-

larity parameters used to develop scaling laws for DT�rev . Case 1 cor-
responds to the similarity parameters for 1 mol L�1 TEABF4 in PC
solvent, previously used to illustrate the scaling analysis. Cases 4
and 5 feature different values of a�; L�; j�s ; t�c ; mp; Le, and C�.

Fig. 5(a) shows DT�rev ða�=2Þ as a function of the dimensionless
heat capacity C� varying from 78 to 735 while the other six rele-
vant dimensionless similarity parameters are provided in Table 3.
Since the reversible heat generation Q �rev does not depend on C�,
it remained identical for all points in each case. Fig. 5(a) indicates
that DT�rev ða�=2Þ was proportional to 1=C�. Note that this was con-
sistent with the expression of T�irr given by Eq. (22).

Fig. 5(b) plots DT�revða�=2ÞC� as a function of the Lewis number
Le ranging from 187 to 748. Here also, the similarity parameters
other than Le are given in Table 3. Fig. 5(b) reveals that
DT�rev ða�=2ÞC� was proportional to 1=Le1=2. As previously men-
tioned, large Lewis numbers correspond to rapid heat diffusion
compared to mass diffusion. Thus, DT�rev ða�=2Þ at the Stern/diffuse
layer interface decreased as Le increased due to the increased rate
of heat diffusion within the electrolyte.

Fig. 5(c) plots DT�revða�=2ÞC�Le1=2 as a function of Q �rev computed
numerically for various values of j�s and mp in the ranges
3� 10�7

6 j�s 6 2:4� 10�6 and 0:0012 6 mp 6 0:88. It confirms that
DT�rev ða�=2ÞC�Le1=2 was linearly proportional to Q �rev .

Fig. 5(d) shows DT�rev ða�=2ÞC�Le1=2=Q �rev as a function of the cycle
period t�c ranging from 1:2� 106 to 4:4� 107 with all other param-
eters given by Table 3. It indicates that DT�rev ða�=2ÞC�Le1=2=Q �rev was
proportional to 1=t�1=2

c and that all cases fell on a single curve. In



Table 3
Baseline values of the seven dimensionless similarity parameters used in Fig. 5 to
develop the correlation for DT�rev given by Eq. (25).

Case 1 Case 4 Case 5

a� 2.4 1.6 6.1
L� 7:2� 104 4:7� 104 1:4� 105

j�s 2:4� 10�6 8:7� 10�6 6:0� 10�7

t�c 2:2� 107 9:2� 106 4:4� 107

mp 0.38 0.16 0.74
Le 374 748 281
C� 310 735 233
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fact, charging over a longer cycle period t�c allows more time for the
heat generated to dissipate from the EDL region to the bulk electro-
lyte, thus reducing the maximum oscillation amplitude.

Finally, the ratio DT�rev ða�=2ÞC�Le1=2t�1=2
c =Q �rev was found to be

independent of a� and varied negligibly with L� (see Supplemen-
tary Materials). It was approximately constant and equal to 1.3
(a)

(c)

Fig. 5. Computed values of (a) DT�rev ða�=2Þ as a function of C� , (b) DT�rev ða�=2ÞC� as a functio
a function of t�c .
so that the dimensionless temperature oscillation amplitude was
given by

DT�revða�=2Þ ¼ 1:3
Q �rev

t�1=2
c Le1=2C�

¼ 1:3
Q �E;d þ Q �E;s þ Q �S;c

t�1=2
c Le1=2C�

: ð25Þ

It can be expressed in dimensional form as

DTrevða=2Þ ¼ 1:3
Q rev

ðtckqcpÞ1=2 : ð26Þ

The temperature oscillation amplitude DTrevða=2Þ increased with
increasing amount of reversible heat generated during the charging
step Qrev and with decreasing cycle period tc , as well as decreasing
electrolyte thermal effusivity defined as eth ¼ ðkqcpÞ1=2. The latter
represents the rate at which the electrolyte can absorb heat from
its surroundings [39].

4.2.2. Heat generation
The scaling analysis of Section 3.3 indicated that the

dimensionless volumetric heat generation rates _q�E;d; _q�E;s, and _q�S;c
(d)

(b)

n of Le, (c) DT�rev ða�=2ÞC�Le1=2 as a function of Q �rev , and (d) DT�rev ða�=2ÞC�Le1=2=Q �rev as



(a)

(b)

Fig. 6. (a) Computed values of 1=Q �E;d as a function of mp for different values of j�s t�c
along with curve fits of the form 1=Q �E;d ¼ AE;dmp þ BE;d (Eq. (27)) and (b) fitting
functions AE;d and BE;d versus j�s t�c .
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were functions of a�; L�; j�s ; t�c , and mp only. This section aims to
derive scaling laws for Q �E;d; Q �E;s, and Q �S;c as functions of these five
similarity parameters to be used in Eq. (25).

First, plotting Q �E;d; Q �E;s, and Q �S;c as functions of L� and a� indi-
cated that the dimensionless inter-electrode spacing L� had no
effect on Q �E;d; Q �E;s, and Q �S;c (see Supplementary Materials). Indeed,
for sufficiently large L�, i.e., L� 	 1, the EDLs did not overlap, and
the EDL concentration profiles, responsible for reversible heating,
were independent of L� as previously observed by Wang and Pilon
[19,20,40]. In addition, the heat of mixing contribution Q �S;c was
found to be proportional to a�3 while Q �E;d and Q �E;s were indepen-
dent of a�. This is consistent with the expressions for _q�E;d; _q�E;s,
and _q�S;c given by Eqs. (17) and (18). Plotting Q �E;d as a function of
the dimensionless product j�s t�c for several combinations of mp; j�s ,
and t�c showed that predictions for the same values of mp and j�s t�c
overlapped despite featuring different values of j�s and t�c . This indi-
cates that Q �E;d depended only on the product j�s t�c rather than on the
individual parameters j�s and t�c . This was also true for Q �E;s and
Q �S;c=a�3 (see Supplementary Materials).

Fig. 6(a) shows the reciprocal 1=Q �E;d as a function of the packing
parameter mp for various values of j�s t�c . It indicates that 1=Q �E;d was a
linear function of mp given by 1=Q �E;d ¼ AE;dðj�s t�cÞmp þ BE;dðj�s t�cÞ where
AE;d and BE;d are semi-empirical functions of j�s t�c . As mp increased
and steric effects became more significant, Q �E;d decreased, i.e.,
1=Q �E;d increased. Fig. 6(b) shows the fitting functions AE;d and BE;d

as functions of the product j�s t�c . Both could be fitted as power

law functions of j�s t�c so that AE;d ¼ 0:4ðj�s t�cÞ
�0:6 and

BE;d ¼ 10ðj�s t�cÞ
�1:8. This yielded the correlation for Q �E;d

Q �E;d ¼
1

10ðj�s t�cÞ
�1:8 þ 0:4ðj�s t�cÞ

�0:6mp

: ð27Þ

Note that in the limiting case when mp approaches zero,
Q �E;d ¼ 0:1ðj�s t�cÞ

1:8. This corresponds to cases when ions can be trea-
ted as point charges whose transport is governed by the Poisson–
Nernst–Planck model [16].

Similarly, Fig. 7(a) plots Q �E;s as a function of the packing param-
eter mp for different values of j�s t�c . It indicates that Q �E;s was (i) line-
arly proportional to mp for small values of mp and (ii) inversely
proportional to mp as mp approached 1. The dashed lines are curve

fits of the form Q �E;s ¼ 1= AE;sðj�s t�cÞmp
� �

þ mp=BE;sðj�s t�cÞ
� 	�1 where AE;s

and BE;s are functions of the product j�s t�c . Fig. 7(b) shows the fitting
functions AE;s and BE;s versus j�s t�c . Both could be fitted as power laws

such that AE;s ¼ ðj�s t�cÞ
3:3
=680 and BE;s ¼ ðj�s t�cÞ=6:7. Then, the correla-

tion for Q �E;s can be written as

Q �E;s ¼
1

680ðj�s t�cÞ
�3:3m�1

p þ 6:7ðj�s t�cÞ
�1mp

: ð28Þ

Fig. 8(a) plots Q �S;c=a�3 as a function of mp for various values of
j�s t�c . It is evident that Q �S;c=a�3 (i) was inversely proportional to mp

when mp was small and (ii) decreased steeply towards zero as mp

approached 1. In the latter case, the behavior of Q �S;c=a�3 can be esti-
mated based on the expression for _q�S;c given by Eq. (18) indicating
that _q�S;c was proportional to the concentration gradient
@ðc�1 þ c�2Þ=@x�. This concentration gradient could be approximated
in the limiting case when the dimensionless surface concentration
is c�max ¼ 2=mp. Then, the dimensionless concentration sum c�1 þ c�2
decreased from c�1 þ c�2 ¼ 2=mp at the electrode surface to the bulk
concentration c�1 þ c�2 ¼ 2 over the EDL thickness (Dx� 
 1) so that
@ðc�1 þ c�2Þ=@x� 
 ð1� mpÞ=mp. Thus, Fig. 8(b) plots Q �S;c=a�3 as a func-
tion of ð1� mpÞ=mp, along with dashed lines of slope 2 to guide the
eye. It indicates that for small values of ð1� mpÞ=mp, i.e., for mp
approaching unity, Q �S;c=a�3 was proportional to ð1� mpÞ=mp
� 	2.

The data can be fitted with curve fits of the form

Q �S;c=a�3 ¼ mp=AS;cðj�s t�cÞ þ m2
p=ð1� mpÞ2BS;cðj�s t�cÞ

h i�1
represented by

the dashed lines in Fig. 8(a). Fig. 9(a) and (b) shows the fitting func-
tions AS;c and BS;c , respectively, as functions of j�s t�c . They were fitted

as AS;c ¼ ðj�s t�cÞ
2:7
=6700 and BS;c ¼ 0:0095j�s t�c � 0:045. Thus, the cor-

relation for Q �S;c can be expressed as

Q �S;c ¼
a�3

6700mpðj�s t�cÞ
�2:7 þ 100ð0:95j�s t�c � 4:5Þ�1½ð1� mpÞ=mp��2

:

ð29Þ

The above scaling laws for DT�rev ða�=2Þ and for Q �E;d; Q �E;s, and Q �S;c
were derived for a wide range of dimensionless parameters, namely,
1:26 a�629; 3:6�104

6 L�62:2�105; 3:0�10�7
6 j�s 68:7�10�6;

1:2�106
6 t�c 68:7�107; 0:00126 mp60:88; 1876 Le6748, and

786C�6735. Note that Q �E;d; Q �E;s, and Q �S;c given by Eqs. (27)–(29)
could predict those computed numerically with average relative
error of 5%, 20%, and 46%, respectively, as well as DT�rev given by
Eq. (25) with average relative error of 12% (see Supplementary
Materials).

The correlations for the reversible heating terms Q �E;d; Q �E;s, and
Q �S;c given by Eqs. (27)–(29) offer several interesting insights into
the reversible heating in an EDLC. In particular, Q �E;d; Q �E;s, and

Q �S;c=a�3 were all found to be functions of j�s t�c ¼ jstc=zFc1kD ¼
jstc=ð�0�rRuT0c1=2Þ1=2 and mp ¼ 2Naa3c1 only. This indicates that



(a)

(b)

Fig. 7. (a) Computed values of Q �E;s as a function of mp for different values of j�s t�c
along with curve fits of the form Q �E;s ¼ 1=AE;smp þ mp=BE;s

� 	�1 (Eq. (28)) and (b) fitting
functions AE;s and BE;s versus j�s t�c .

(a)

(b)

ig. 8. Computed Q �S;c=a�3 as a function of (a) mp , along with curve fits of the form
�
S;c=a�3 ¼ mp=AS;c þ m2

p=ð1� mpÞ2BS;c

h i�1
(Eq. (29)), and (b) ð1� mpÞ=mp for different

alues of j�s t�c .

A. d’Entremont, L. Pilon / International Journal of Heat and Mass Transfer 75 (2014) 637–649 647
the amount of reversible heat generated during a charging step
Q rev depended only on the electrolyte properties and on the
amount of charge added to the EDLC corresponding to
Dqs ¼ jstc=2 (in C/m2). In addition, the amount of reversible heat
consumed during the discharging step is equal to �Q rev . This
implies that the net reversible heating in an EDLC is zero over a
complete charge–discharge cycle. This is true even if the charging
current density and discharging current density differ, since the
total charge would remain the same. In addition, QE;d and Q E;s (in
dimensional form) were proportional to z�1 while QS;c was propor-
tional to z2. This is consistent with the expressions for _qE;d and _qE;s

(Eq. (8)), depending on z�1 through the electrical conductivity r. By
contrast, the dependence of QS;c on the valency z was weaker than
that of the local volumetric heat generation rate _qS;c (Eq. (9)) which
is proportional to z3. This difference can be attributed to the fact
that the ion fluxes N1 and N2 are approximately proportional to
z�1. As a result, the heat of mixing contributed the most to the
reversible heat generation rate for electrolytes featuring large
valency z. Interestingly, the diffusion coefficient D did not affect
the amount of reversible heat generated per charging step repre-
sented by Q rev . This was due to the fact that, although D appears
in the numerator of the expressions for _qE;d and _qE;s (Eq. (8)), the
electrical conductivity r, appearing in the denominator, is also
proportional to D.
F

Q

v

4.2.3. Thermal behavior of porous electrodes
The above scaling laws were derived from simulations of planar

electrodes while, in practice, EDLC electrodes are porous. Previous
studies using equilibrium models found that electrodes with radii
of curvature larger than 40 nm yielded the same areal capacitance
as planar electrodes [34,40]. This suggests that applying scaling
laws for planar electrodes to electrodes with large enough pores
is a reasonable approximation. However, the choice of surface area
used to define the surface current density js must be carefully con-
sidered. Indeed, in contrast to planar electrodes, the surface areas
of the separator and of the porous electrode differ significantly
[6]. Based on charge conservation, the average current density at
the electrode surface should equal js ¼ Is=Ael, where Is is the current
(in A) imposed at the current collector and Ael is the accessible sur-
face area of the porous electrode (in m2).

EDLC electrodes often feature mesopores and micropores smal-
ler than 40 nm [3]. For such systems, the above scaling laws for
planar electrodes could be corrected by a factor accounting for
the morphology of the electrode. In fact, Wang et al. [41] success-
fully modeled the integral capacitance of nanoporous carbon elec-
trodes as the product of the theoretical planar-electrode
capacitance and a function depending only on the average pore
radius in the electrode and on the effective ion diameter scaled
by the Debye length. In addition, the dielectric constant �r



(a)

(b)

Fig. 9. Fitting functions (a) AS;c and (b) BS;c versus j�s t�c in the expression for Q �S;c=a�3

given by Eq. (29).
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decreases under large electric fields typical of those found near
electrode/electrolyte interfaces in EDLCs [42]. However, here, �r

was assumed to be constant to facilitate the scaling analysis. Wang
et al. [41] also made this assumption and showed that the effect of
field-dependent relative permittivity was indirectly accounted for
by the semi-empirical constants appearing in the correlation. A
similar approach could be used to extend the present model to pre-
dict the heat generation rates and temperature oscillations in
actual porous electrodes. To do so, a broad range of experimental
data for various porous electrode structures and electrolytes would
be required to validate this approach. However, this falls beyond
the scope of the present study. Moreover, experimental tempera-
ture data currently available in the literature for EDLCs would be
insufficient to rigorously identify a correction factor for porous
electrodes and demonstrate the validity of any scaling analysis
[4–6,10,23–25]. Indeed, most of the data were collected on com-
mercial EDLC devices [4–6,10,25] whose electrolyte composition
and electrode morphologies are not readily available.

5. Conclusion

In this paper, scaling analysis was performed on a recent ther-
mal model derived from first principles for EDLCs with binary
and symmetric electrolyte under galvanostatic cycling [13]. The
scaling analysis reduced the design problem from twelve indepen-
dent dimensional parameters to seven physically meaningful
dimensionless similarity parameters governing coupled electrodif-
fusion and thermal transport in EDLC electrolyte. Scaling laws
characterizing the maximum temperature fluctuations and the
total irreversible and reversible heat generated during a charging
step were developed for planar electrodes. These expressions can
predict the heat generation and temperature behavior for various
realistic electrolytes and cycling conditions without having to per-
form sophisticated and time-consuming numerical simulations.
These dimensionless numbers and the scaling laws provide a
framework that can be used for developing design rules and ther-
mal management strategies for actual EDLCs.
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